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Overlap-Save and Overlap-Add Circular and Linear Convolution

The Discrete Fourier Transform Pair

I DFT and inverse-DFT (IDFT):

X (k) =
N−1∑
n=0

x(n)e−j2πk
n
N , k = 0, 1, . . . ,N − 1

x(n) =
1

N

N−1∑
k=0

X (k)e j2πk
n
N , n = 0, 1, . . . ,N − 1
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Important DFT Properties

Property Time Domain Frequency Domain
Notation: x(n) X (k)
Periodicity: x(n) = x(n + N) X (k) = X (k + N)
Linearity: a1x1(n) + a2x2(n) a1X1(k) + a2X2(k)
Time reversal x(N − n) X (N − k)

Circular time shift: x((n − l))N X (k)e−j2πkl/N

Circular frequency shift: x(n)e j2πln/N X ((k − l))N
Complex conjugate: x∗(n) X∗(N − k)
Circular convolution: x1(n)⊗ x2(n) X1(k)X2(k)
Multiplication: x1(n)x2(n)

1
N
X1(k)⊗ X2(k)

Parseval’s theorem:
∑N−1

n=0 x(n)y∗(n) 1
N

∑N−1
k=0 X (k)Y ∗(k)
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Circular Convolution

x1(n)⊗ x2(n)
F←→ X1(k)X2(k)

Q: What is circular convolution?
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Circular Convolution

Assume: x1(n) and x2(n) have support n = 0, 1, . . . ,N − 1.

Examples: N = 10 and support: n = 0, 1, . . . , 9

-1 0
n

-2-3 1 2 3 6 8754 9 101 2 3 6 8754 9 10

1

11 12

54

-1 10
n

-2-3 2 3

1

6 87 96 87 9 10 11 12 54-1 0
n

-2-3

1

1 2 3 6 87 9 10 11 12
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Circular Convolution

Assume: x1(n) and x2(n) have support n = 0, 1, . . . ,N − 1.

x1(n)⊗ x2(n) =
N−1∑
k=0

x1(k)x2((n − k))N

=
N−1∑
k=0

x2(k)x1((n − k))N

where (n)N = n mod N = remainder of n/N .
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Modulo Indices and Periodic Repetition

(n)N = n mod N = remainder of n/N

Example: N = 4

n -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
(n)4 0 1 2 3 0 1 2 3 0 1 2 3 0

n

N
= integer +

nonneg integer < N

N

5

4
= 1 +

1

4

−2

4
= −1 +

2

4
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Modulo Indices and Periodic Repetition

(n)N = n mod N = remainder of n/N

Example: N = 4

n -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
(n)4 0 1 2 3 0 1 2 3 0 1 2 3 0

x((n))4 will be periodic with period 4. The repeated pattern will be
consist of: {x(0), x(1), x(2), x(3)}.

Thus, x((n))N is a periodic signal comprised of the following
repeating pattern: {x(0), x(1), · · · x(N − 2), x(N − 1)}.
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Overlap During Periodic Repetition

A periodic repetition makes an aperiodic signal x(n), periodic to
produce x̃(n).

x̃(n) =
∞∑

l=−∞

x(n − lN)
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Overlap During Periodic Repetition

A periodic repetition makes an aperiodic signal x(n), periodic to
produce x̃(n).

There are two important parameters:

1. smallest support length of the signal x(n)

2. period N used for repetition that determines the period of x̃(n)

I smallest support length > period of repetition
I there will be overlap

I smallest support length ≤ period of repetition
I there will be no overlap

⇒ x(n) can be recovered from x̃(n)

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add 10 / 58

Overlap-Save and Overlap-Add Circular and Linear Convolution

Periodic Repetition: Example N = 4

-1 10
n

x (n)

= x (n)

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

x (n)support length = 4 = N

no overlap

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

x (n)

+

l=0

x (n-N)

+

l=1

+

x (n+N)
l=-1

+

x (n+2N)

l=-2

x (n-2N)

l=2

. . .. . .

~
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Period Repetition: Example N = 4

1

=x(n)

x (n)

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

1

2

support length = 6 > N

overlap

n
-1 10-2-3-4-5-6-7 2 3 4 5 6 7

2

1

x (n)

-1 10
n

-2-3-4-5-6-7 2 3 4 5 6 7

l=0 l=1

+ +

l=-1

+ + +

l=-2 l=2

. . .. . .

~

x (n)
x (n-N)x (n+N)

x (n+2N) x (n-2N)
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Modulo Indices and the Periodic Repetition

Assume: x(n) has support n = 0, 1, . . . ,N − 1.

x((n))N = x(n mod N) = x̃(n) =
∞∑

l=−∞

x(n − lN)

Note: Because the support size and period size are the same, there is
no overlap when taking the periodic repetition x((n))N .
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Modulo Indices and the Periodic Repetition

n

x(n)

1

2

-1 10-2-3-4-5-6-7 2 3 4 5 6 7
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Modulo Indices and the Periodic Repetition

1 1

2

0

n

x(n)

1

2

-1 10-2-3-4-5-6-7 2 3 4 5 6 7
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Modulo Indices and the Periodic Repetition

1 1

2

0

2

11

0
n

x(n)

1

2

-1 10-2-3-4-5-6-7 2 3 4 5 6 7

x((n))N
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Modulo Indices and the Periodic Repetition
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Modulo Indices and the Periodic Repetition

n
-1 10-2-3-4-5-6-7 2 3 4 5 6 7   ...

1

2

x (n)
~

1 1

2

0

2

11

0

12
8
4
0
-4

13951-3

14
10
6
2
-2

15 11 7 3 -1

n

x(n)

1

2

-1 10-2-3-4-5-6-7 2 3 4 5 6 7

x((n))N

Therefore x((n))N = x̃(n).
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Circular Convolution: One Interpretation

Assume: x1(n) and x2(n) have support n = 0, 1, . . . ,N − 1.

To compute
∑N−1

k=0 x1(k)x2((n − k))N (or
∑N−1

k=0 x2(k)x1((n − k))N):

1. Take the periodic repetition of x2(n) with period N:

x̃2(n) =
∞∑

l=−∞

x2(n − lN)

2. Conduct a standard linear convolution of x1(n) and x̃2(n) for
n = 0, 1, . . . ,N − 1:

x1(n)⊗ x2(n) = x1(n) ∗ x̃2(n) =
∞∑

k=−∞
x1(k)x̃2(n − k) =

N−1∑
k=0

x1(k)x̃2(n − k)

Note: x1(n)⊗ x2(n) = 0 for n < 0 and n ≥ N.
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Circular Convolution: One Interpretation

N−1∑
k=0

x1(k) x2((n − k))N =
N−1∑
k=0

x1(k) x̃2(n − k)

. . . which makes sense, since x((n))N = x̃(n).
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Circular Convolution: Another Interpretation
Assume: x1(n) and x2(n) have support n = 0, 1, . . . ,N − 1.

To compute
∑N−1

k=0 x1(k)x2((n − k))N (or
∑N−1

k=0 x2(k)x1((n − k))N):

1. Conduct a linear convolution of x1(n) and x2(n) for all n:

xL(n) = x1(n) ∗ x2(n) =
∞∑

k=−∞

x1(k)x2(n − k) =
N−1∑
k=0

x1(k)x2(n − k)

2. Compute the periodic repetition of xL(n) and window the result for
n = 0, 1, . . . ,N − 1:

x1(n)⊗ x2(n) =
∞∑

l=−∞

xL(n − lN), n = 0, 1, . . . ,N − 1
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Overlap-Save and Overlap-Add Circular and Linear Convolution

Using DFT for Linear Convolution

Therefore, circular convolution and linear convolution are related as
follows:

xC (n) = x1(n)⊗ x2(n) =
∞∑

l=−∞

xL(n − lN)

for n = 0, 1, . . . ,N − 1

Q: When can one recover xL(n) from xC (n)?
When can one use the DFT (or FFT) to compute linear convolution?

A: When there is no overlap in the periodic repetition of xL(n).
When support length of xL(n) ≤ N .
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Using DFT for Linear Convolution

Let x(n) have support n = 0, 1, . . . , L− 1.
Let h(n) have support n = 0, 1, . . . ,M − 1.

We can set N ≥ L + M − 1 and zero pad x(n) and h(n) to have
support n = 0, 1, . . . ,N − 1.

1. Take N-DFT of x(n) to give X (k), k = 0, 1, . . . ,N − 1.

2. Take N-DFT of h(n) to give H(k), k = 0, 1, . . . ,N − 1.

3. Multiply: Y (k) = X (k) · H(k), k = 0, 1, . . . ,N − 1.

4. Take N-IDFT of Y (k) to give y(n), n = 0, 1, . . . ,N − 1.
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Overlap-Save and Overlap-Add Filtering of Long Data Sequences

Filtering of Long Data Sequences

I The input signal x(n) is often very long especially in real-time
signal monitoring applications.

I For linear filtering via the DFT, for example, the signal must be
limited size due to memory requirements.
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Filtering of Long Data Sequences

Recall, for N = 8 the 8-FFT is given by

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(1)

x(5)

x(3)

x(7)

x(0)

x(4)

x(2)

x(6)

Stage 1 Stage 2 Stage 3

-1

-1

-1

-1 -1

-1 -1

-1

-1

-1

-1

-1

0W 8

0W 8

0W 8

0W 8

0W 8

0W 8

1W 8

2W 8

2W 8

0W 8

2W 8
3W 8

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add 25 / 58

Overlap-Save and Overlap-Add Filtering of Long Data Sequences

Filtering of Long Data Sequences

I All N-input samples are required simultaneously by the FFT
operator.

I Complexity of N-FFT is N log(N).

I If N is too large as for long data sequences, then there is a
significant delay in processing that precludes real-time
processing.

signal
input

signal
output

Data Acquisition
Delay

Data Processing
Delay
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Filtering of Long Data Sequences

I Strategy:

1. Segment the input signal into fixed-size blocks prior to
processing.

2. Compute DFT-based linear filtering of each block separately via
the FFT.

3. Fit the output blocks together in such a way that the overall
output is equivalent to the linear filtering of x(n) directly.

I Main advantage: samples of the output y(n) = h(n) ∗ x(n) will
be available real-time on a block-by-block basis.
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Filtering of Long Data Sequences

I Goal: FIR filtering: y(n) = x(n) ∗ h(n)

I Two approaches to real-time linear filtering of long inputs:
I Overlap-Add Method
I Overlap-Save Method

I Assumptions:
I FIR filter h(n) length = M
I Block length = L� M
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Overlap-Add Method

Overlap-Add Method
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Overlap-Add Method

Deals with the following signal processing principles:

I The linear convolution of a discrete-time signal of length L and a
discrete-time signal of length M produces a discrete-time
convolved result of length L + M − 1.

I Addititvity:

(x1(n)+x2(n)) ∗ h(n) = x1(n) ∗ h(n)+x2(n) ∗ h(n)
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Overlap-Add Filtering Stage

I makes use of the N-DFT and N-IDFT where: N = L + M − 1

I Thus, zero-padding of x(n) and h(n) that are of length
L,M < N is required.

I The actual implementation of the DFT/IDFT will use the
FFT/IFFT for computational simplicity.
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Using DFT for Linear Convolution

Let xm(n) have support n = 0, 1, . . . , L− 1.
Let h(n) have support n = 0, 1, . . . ,M − 1.

We set N ≥ L + M − 1 (the length of the linear convolution result)
and zero pad xm(n) and h(n) to have support n = 0, 1, . . . ,N − 1.

1. Take N-DFT of xm(n) to give Xm(k), k = 0, 1, . . . ,N − 1.

2. Take N-DFT of h(n) to give H(k), k = 0, 1, . . . ,N − 1.

3. Multiply: Ym(k) = Xm(k) · H(k), k = 0, 1, . . . ,N − 1.

4. Take N-IDFT of Ym(k) to give ym(n), n = 0, 1, . . . ,N − 1.
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Linear Convolution via the DFT
Length of linear convolution result = Length of DFT
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Overlap-Add Addition Stage

From the Addititvity property, since:

x(n) = x1(n) + x2(n) + x3(n) + · · · =
∞∑

m=1

xm(n)

x(n) ∗ h(n) = (x1(n) + x2(n) + x3(n) + · · · ) ∗ h(n)

= x1(n) ∗ h(n) + x2(n) ∗ h(n) + x3(n) ∗ h(n) + · · ·

=
∞∑

m=1

xm(n) ∗ h(n) =
∞∑

m=1

ym(n)
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Input signal:

Output signal:

zeros

zeros

zeros

Add

points Add

points
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Overlap-Add Method

1. Break the input signal x(n) into non-overlapping blocks xm(n) of length L.

2. Zero pad h(n) to be of length N = L + M − 1.

3. Take N-DFT of h(n) to give H(k), k = 0, 1, . . . ,N − 1.

4. For each block m:

4.1 Zero pad xm(n) to be of length N = L + M − 1.
4.2 Take N-DFT of xm(n) to give Xm(k), k = 0, 1, . . . ,N − 1.
4.3 Multiply: Ym(k) = Xm(k) · H(k), k = 0, 1, . . . ,N − 1.

4.4 Take N-IDFT of Ym(k) to give ym(n), n = 0, 1, . . . ,N − 1.

5. Form y(n) by overlapping the last M − 1 samples of ym(n) with the first
M − 1 samples of ym+1(n) and adding the result.
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Overlap-Add Method: Cautionary Note

If you DO NOT overlap and add, but only append the output blocks
ym(n) for m = 1, 2, . . ., then you will not get the true y(n) sequence.

Q: What sequence will you obtain instead?
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Overlap-Add Method: Cautionary Note

Output signal:

Add

points Add

points
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Overlap-Add Method: Cautionary Note

zeros

zeros

zeros
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Overlap-Save Method

Overlap-Save Method

Overlap-[Discard] Method
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Overlap-Save Method

Deals with the following signal processing principles:

I The N = (L + M − 1)-circular convolution of a discrete-time
signal of length N and a discrete-time signal of length M using
an N-DFT and N-IDFT.

I Time-Domain Aliasing:

xC (n) =
∞∑

l=−∞

xL(n − lN)︸ ︷︷ ︸
support=M + N − 1

, n = 0, 1, . . . ,N − 1

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add 45 / 58

Overlap-Save and Overlap-Add Overlap-Save Method
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Overlap-Save Method

I Convolution of xm(n) with support n = 0, 1, . . . ,N − 1 and h(n)
with support n = 0, 1, . . . ,M − 1 via the N-DFT will produce a
result yC ,m(n) such that:

yC ,m(n) =

{
aliasing corruption n = 0, 1, . . . ,M − 2
yL,m(n) n = M − 1,M, . . . ,N − 1

where yL,m(n) = xm(n) ∗ h(n) is the desired output.

I The first M − 1 points of a the current filtered output block
ym(n) must be discarded.

I The previous filtered block ym−1(n) must compensate by
providing these output samples.
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Overlap-Save Input Segmentation Stage

1. All input blocks xm(n) are of length N = (L + M − 1) and
contain sequential samples from x(n).

2. Input block xm(n) for m > 1 overlaps containing the first M − 1
points of the previous block xm−1(n) to deal with aliasing
corruption.

3. For m = 1, there is no previous block, so the first M − 1 points
are zeros.
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Overlap-Save Input Segmentation Stage

point
overlap

point
overlap

zeros

Input signal blocks:

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add 49 / 58

Overlap-Save and Overlap-Add Overlap-Save Method

Overlap-Save Input Segmentation Stage

x1(n) = {0, 0, . . . 0︸ ︷︷ ︸
M − 1 zeros

, x(0), x(1), . . . , x(L− 1)}

x2(n) = {x(L−M + 1), . . . x(L− 1)︸ ︷︷ ︸
last M − 1 points from x1(n)

, x(L), . . . , x(2L− 1)}

x3(n) = {x(2L−M + 1), . . . x(2L− 1)︸ ︷︷ ︸
last M − 1 points from x2(n)

, x(2L), . . . , x(3L− 1)}

...

The last M − 1 points from the previous input block must be saved
for use in the current input block.
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Overlap-Save Filtering Stage

I makes use of the N-DFT and N-IDFT where: N = L + M − 1

I Only a one-time zero-padding of h(n) of length M � L < N is
required to give it support n = 0, 1, . . . ,N − 1.

I The input blocks xm(n) are of length N to start, so no
zero-padding is necessary.

I The actual implementation of the DFT/IDFT will use the
FFT/IFFT for computational simplicity.
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Using DFT for Circular Convolution

N = L + M − 1.
Let xm(n) have support n = 0, 1, . . . ,N − 1.
Let h(n) have support n = 0, 1, . . . ,M − 1.

We zero pad h(n) to have support n = 0, 1, . . . ,N − 1.

1. Take N-DFT of xm(n) to give Xm(k), k = 0, 1, . . . ,N − 1.

2. Take N-DFT of h(n) to give H(k), k = 0, 1, . . . ,N − 1.

3. Multiply: Ym(k) = Xm(k) · H(k), k = 0, 1, . . . ,N − 1.

4. Take N-IDFT of Ym(k) to give yC ,m(n), n = 0, 1, . . . ,N − 1.
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Circular Convolution via the DFT
Length of linear convolution result > Length of DFT
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Overlap-Save Output Blocks

yC ,m(n) =

{
aliasing n = 0, 1, . . . ,M − 2
yL,m(n) n = M − 1,M , . . . ,N − 1

where yL,m(n) = xm(n) ∗ h(n) is the desired output.
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Overlap-Save [Discard] Output Blocks

y1(n) = {y1(0), y1(1), . . . y1(M − 2)︸ ︷︷ ︸
M − 1 points corrupted from aliasing

, y(0), . . . , y(L− 1)}

y2(n) = {y2(0), y2(1), . . . y2(M − 2)︸ ︷︷ ︸
M − 1 points corrupted from aliasing

, y(L), . . . , y(2L− 1)}

y3(n) = {y3(0), y3(1), . . . y3(M − 2)︸ ︷︷ ︸
M − 1 points corrupted from aliasing

, y(2L), . . . , y(3L− 1)}

where y(n) = x(n) ∗ h(n) is the desired output.

The first M − 1 points of each output block are discarded.

The remaining L points of each output block are appended to form
y(n).
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Overlap-Save Output Stage

Discard

points Discard

points Discard

points

Output signal blocks:
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Overlap-Save Method

1. Insert M − 1 zeros at the beginning of the input sequence x(n).

2. Break the padded input signal into overlapping blocks xm(n) of length
N = L + M − 1 where the overlap length is M − 1.

3. Zero pad h(n) to be of length N = L + M − 1.

4. Take N-DFT of h(n) to give H(k), k = 0, 1, . . . ,N − 1.

5. For each block m:

5.1 Take N-DFT of xm(n) to give Xm(k), k = 0, 1, . . . ,N − 1.
5.2 Multiply: Ym(k) = Xm(k) · H(k), k = 0, 1, . . . ,N − 1.

5.3 Take N-IDFT of Ym(k) to give ym(n), n = 0, 1, . . . ,N − 1.

5.4 Discard the first M − 1 points of each output block ym(n).

6. Form y(n) by appending the remaining (i.e., last) L samples of each block
ym(n).

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add 57 / 58

Overlap-Save and Overlap-Add Overlap-Save Method

Overlap-Save Method

Discard

points Discard

points Discard

points

Output signal blocks:

point
overlap

point
overlap

zeros

Input signal blocks:

�

Dr. Deepa Kundur (University of Toronto) Overlap-Save and Overlap-Add 58 / 58


	Overlap-Save and Overlap-Add
	Circular and Linear Convolution
	Filtering of Long Data Sequences
	Overlap-Add Method
	Overlap-Save Method


