Developing Cyber-Physical Experimental Capabilities for the Security Analysis of the Future Smart Grid

Authors: B. Genge, C. Siaterlis

Presenter: Joel D. Barrera

Submitted in Partial Fulfillment of the Course Requirements for ECEN 689: Cyber Security of the Smart Grid Instructor: Dr. Deepa Kundur

Outline

- Introduction
- Related Work
- Experimentation Framework Overview
- Framework Adaptation for Smart Grid Experimentation
- Study of Synchronized Cyber Attacks Against the Smart Grid
- Paper Assessment
- Conclusion
- References

Motivation

- Smart Grid becoming more open

Generation and Sub-stations

Transmission and Distribution

Home Area Networks

Photo: http://www.mywindpowersystem.com/2012/02/natural-gas-vs-wind-energy/

Motivation

- Communications architecture
 - IPv6 and Supervisory Control And Data Acquisition (SCADA)

Current issues with cyber threat experimentation

- Impractical and Dangerous
 - Faults/disruptions/possible system shutdown
 - Difficult to create control environment
 - Expensive

- Difficult and Unfeasible
 - Due to diversity and complexity of Smart grid
 - Fail to capture functionality protocols and computer systems in general

Hybrid approach to experimentation framework

Emulation – the ability of a computer program in an electronic device to emulate (imitate) another program or device

Real + Simulation by Chunlei, et. al. mentioned in [1]

- Advantages
 - Very reliable experimental data (mostly real components)
- Disadvantages
 - Difficult to support on large infrastructures
 - Distribution and transmission systems

All simulation by Chabukswar, et. al. mentioned in [1]

- Command and Control WindTunnel (CSWindTunnel)
 - Multi-mode simulation environment enabling the interaction between various simulation engines
- Disadvantages
 - Analyzing cyber-physical effects of malware not trivial
 - Requires detailed description of ICT components and dynamics of malware

All simulation by Davis, et. al. mentioned in [1]

- PowerWorld
 - Simulation server for modeling power systems
- Disadvantages
 - Does not include key components in cyber-physical system
 - PLCs and SCADA Masters

All simulation by McDonald, et. al. mentioned in [1]

- Disadvantages
 - Requires simulation of the interactions between malware and simulated networks
 - Not trivial

Process control architecture overview

Cyber Layer

- All ICT devices
- Software (data acquisition, command delivery)
- SCADA protocols

Physical Layer

- Actuators
- Sensors
- Other hardware devices

http://en.wikipedia.org/wiki/Smart meter

Process control architecture overview

Process control architecture overview

From [1]

Experimentation framework architecture based on hybrid approach

Experimentation framework architecture based on hybrid approach

Cyber-Physical Layer

Experimentation framework architecture

From [1]

Framework Adaptation for Smart Grid Experimentation

Physical Layer

- Additional smart gird components
- Not exhaustive
- Flexible

Cyber Layer

- Additional SCADA/ ICT components
- Flexible

Attack scenario

- Power grid
 - IEEE 9-bus test system
- Attack details
 - Logic bomb inserted into compromised PLC
 - Attack initiated upon reaching time conditions
- CIA
 - Mainly availability

From [1]

Attack scenario implementation on exp. framework

Simulated

- Compromised R-PLU's
 - Buses 5,7, and 9
- Observations
 - Variation on load

Load

Non-synchronized attack

- 10s attacks from multiple locations at different times
- Overall oscillations stabilized after each attack

50

60

Synchronized attack

- 10s attacks all at once
- Major oscillations on all buses
- Voltage drops shows power grid approaching voltage collapse

Paper Assessment

Positive aspects

- A look at simulation and experimentation
 - Importance (cost, efficiency, safety)
 - Personal research
- Real data shown as proof-of-concept
- Good formulation of problem
 - Why do we need experimentation?
- Overall
 - Well written and structured paper

Paper Assessment

Possible improvements

- Unclear definitions
 - Powerworld, OPNET
 - Personal background limited
- Discussion of results
 - More in-depth
 - Why 10s attacks?
 - Shown the average of a series of attacks
- Limitations of hybrid approach
 - No discussion

Conclusions

- An experimental framework for analysis cyber attack on Smart Grid developed
 - Hybrid approach (emulation + simulation)
- A proof-of-concept experimentation shown
 - A synchronized attack from multiple locations causes can cause the power grid to approach voltage collapse.
 - Security studies can be conducted on the Smart Grid
- Flexibility of experimental framework
 - As Smart Grid becomes more and more complex, additional components (physical and ICT) to framework introduced

References

[1] B. Genge, C. Siaterlis, "Developing cyber-physical experimental capabilities for the security analysis of the future Smart Grid," *Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd IEEE PES International Conference and Exhibition on*, pp.1-7, 5-7 Dec. 2011

Questions?