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Abstract—The digitalization of power systems over the past
decade has made the cybersecurity of substations a top priority
for regulatory agencies and utilities. Proprietary communica-
tion protocols are being increasingly replaced by standardized
and interoperable protocols providing utility operators with
remote access and control capabilities at the expense of grow-
ing cyberattack risks. In particular, the potential of supply chain
cyberattacks is on the rise in industrial control systems. In this
environment, there is a pressing need for the development of
cyberattack detection systems for substations and in particular
protective relays, a critical component of substation operation.
This article presents a deep learning-based cyberattack detec-
tion system for transmission line protective relays. The proposed
cyberattack detection system is first trained with current and
voltage measurements representing various types of faults on
the transmission lines. The cyberattack detection system is then
employed to detect current and voltage measurements that are
maliciously injected by an attacker to trigger the transmis-
sion line protective relays. The proposed cyberattack detection
system is evaluated under a variety of cyberattack scenarios. The
results demonstrate that a universal architecture can be designed
for the deep learning-based cyberattack detection systems in
substations.
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I. INTRODUCTION

CRITICAL infrastructures including electric power
systems are undergoing a digital transformation and

their dependence on information technology is expected to
significantly increase in the coming years. The integration
of information technology (IT) with operational technol-
ogy (OT) in critical infrastructures improves efficiency,
sustainability and consumer-centricity at the expense of
increased cyberattack vulnerability [1], [2]. The high-profile
cyberattacks against critical infrastructures in recent years
like cyberattacks against the Ukrainian power grid illustrate
the increasing exposure of these critical infrastructures to
cyberattacks [3], [4]. These have promoted the detection and
mitigation of cyberattacks to a top priority for governments
and regulatory agencies as well as utilities [5].

Substations are at the forefront of digital transformation in
electric power systems. The deployment of the IEC 61850 pro-
tocol in substations is expected to revolutionize the substation
automation system by improving reliability, reducing costs and
allowing interoperability between intelligent electronic devices
(IEDs) while facilitating the realization of Internet of Things
through remote access to substation assets and IEDs [6], [7].
Despite the unquestionable benefits of substation digitaliza-
tion in automating and streamlining protection, control and
asset management, it introduces complex cybersecurity con-
cerns that need to be appropriately addressed [8]. This is
mainly because the substation communication protocols are
insecure as they must operate under the limited processing
capability of intelligent electronic devices (IEDs) as well as
various operational considerations such as speed, reliability,
user-friendliness and openness [9]. Moreover, the security-
by-obscurity philosophy that has traditionally been used as
a defensive strategy for proprietary information and commu-
nication technologies (ICT) in substations no longer applies
to emerging standards and interoperable communication pro-
tocols like IEC 61850 [10]. At the same time, the possibility
of supply chain cyberattacks against industrial control systems
(ICS), such as Stuxnet [11], [12], is a growing concern in the
utilities and regulatory agencies.

In order to address the growing cybersecurity concerns
in electric utilities, different standards and initiatives have
been launched by standards organizations like the International
Society of Automation (ISA) [13]–[15] and International
Electrotechnical Commission (IEC) [16], research institutes
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like Electric Power Research Institute (EPRI) [17] and govern-
ment agencies including U.S. Department of Energy [18], [19]
to develop cybersecurity measures and tools for cyber-assets
in power systems. Moreover, the North American Electric
Reliability Corporation (NERC) has established and enforced
Critical Infrastructure Protection (CIP) standards to identify,
categorize and protect cyber-assets that are essential to the
reliable operation of the bulk electric system [20].

Transmission line protective relays are one of the most crit-
ical protection and control devices in substations. Coordinated
cyberattacks targeting these relays have the potential to cause
simultaneous tripping of multiple transmission lines and a
widespread blackout [21]. As such, it is crucial to enhance the
cybersecurity of transmission line protective relays. Existing
research to address this problem can be classified as propos-
ing either novel relay logic, anomaly detection or rule-based
detection methods. Cyber-resilient logic designs have been
proposed in [22] and [23] respectively for distance protection
and line differential protective relays. A rule-based intrusion
detection system has been presented in [24] for the IEC
61850 protocol. In [25], anomaly detection systems have been
proposed for substation automation systems. An integrated
host- and network-based anomaly detection system has been
presented in [26] for substations. The semantics of sampled
value (SV) and Generic Object Oriented Substation Event
(GOOSE) messages have been employed in [27] to identify
intrusions, anomalies, or abnormal behaviors in the IEC 61850
protocol. The aforementioned anomaly detection systems can
successfully detect and mitigate some cyberattacks against
IEC 61850 GOOSE and SV communication packets as well
as IEDs by examining the logs of intruders’ footprints. Yet,
they are unable to detect new cyberattacks that continuously
evolve. A cyberattack can target the payload of communication
packets through a supply chain attack or a combined man-
in-the-middle (MITM) and false data injection (FDI) attack
that modify the sensor readings of current and voltage mea-
surements to trigger unwanted relay action while aiming to
maintain stealth. We assert that detection of such complex
attacks are better addressed through advanced data analytics.

In recent years, there has been a growing focus on the appli-
cation of machine learning for the detection and mitigation of
cyberattacks against power systems [28]–[30]. Nevertheless,
the application of machine learning for cybersecurity enhance-
ment of protective relays has received little or no attention.
Both misuse-based and anomaly-based techniques can be
used for cyberattack detection. The misuse-based methods
employ known signatures of cyberattacks; typically, such
approaches have the advantage that they can detect such known
cyberattacks with high recall rates, but demonstrate limita-
tions in detecting previously unseen attacks. This is while
anomaly-based approaches rely on learning and baselining
the normal behavior of power systems. The main merit of
anomaly-based techniques is their capability to detect zero-day
attacks [31]. Moreover, it is possible to obtain training data for
dynamic behaviors of power systems than the evolving and
clandestine signatures of cyberattacks. A machine learning-
based anomaly detection approach also removes the need to

manually enumerate specifications and rules based on the
communication protocol, as is required in specification-based
detection techniques.

Support vector machine and principal component analy-
sis have been used in [32] to detect stealthy attacks against
state estimation. The compromised meters have been detected
in [33] using an artificial intelligence-based method. In [34],
conditional deep belief network is applied to recognize behav-
ior patterns of FDI attacks using historical measurement data.
False data injection attacks against phasor measurement units
(PMU) have been detected in [35] using deep learning. A semi-
supervised method has been employed in [36] for anomaly
detection in an IEC 61850-based smart distribution substa-
tion. A non-nested generalized exemplar and state extraction
method has been used in [37] for intrusion detection. Machine
learning-based data analytics have been employed in [38]
to identify the root causes of the transmission protection
mal-operation such as cyberattacks. Nevertheless, the method
presented in [38] has not been designed to detect or prevent
cyberattacks against transmission line protection in real-time.

This article expands on the novel deep learning-based cyber-
attack detection system that we presented in [39] which
was limited to distance protective relays and symmetrical
three-phase faults. In this article, we present a novel deep
learning-based cyberattack detection system for transmission
line protective relays including distance protective relays, over-
current protective relays and differential protective relays and
for multiple fault scenarios. A 1-dimensional convolutional
based autoencoder is used for cyberattack detection, leverag-
ing the strength of unsupervised learning to detect previously
unseen attacks. The proposed cyberattack detection system is
trained with current and voltage datasets representing differ-
ent types of faults occurring on the protected transmission line.
The cyberattack detection system is then employed to detect
current and voltage measurements that are tampered with by
an attacker to trigger the transmission protective relays. The
proposed cyberattack detection system is evaluated for vari-
ous cyberattacks including combined MITM and FDI attack,
attacks on instrument transformer tap settings and replay
attack. It is demonstrated that a well-tuned deep learning-
based cyberattack detection system performs well for different
types of transmission protective relays which highlights the
possibility of designing a universal architecture for the deep
learning-based cyberattack detection systems in substations,
eliminating the need for the costly and time-consuming pro-
cess of tuning a model architecture for every combination of
fault and relay element types.

The main contributions of this article are as follows:
• A novel deep learning-based cyberattack detection system

with a universal architecture is proposed for detection
and mitigation of false tripping cyberattacks against
transmission line protective relays in substations.

• The performance and validity of the proposed cyberattack
detection system is examined for the following:

– Various transmission line protective relays includ-
ing distance protective relays, overcurrent protective
relays and differential protective relays.
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– Different types of faults including three-phase-
to-ground, two-phase-to-ground, single-phase-
to-ground, and phase-to-phase faults.

– Different cyberattack scenarios including 1) com-
bined MITM and FDI attack, 2) attacks on instrument
transformer tap settings, and 3) replay attack.

It is worth noting that the proposed method is different
from deep learning-based fault detection systems. The deep
learning-based fault detection systems replace the protective
relay logics for fault detection and isolation. This is while
the proposed method is used in conjunction with protective
relay elements to detect and mitigate false tripping cyberat-
tacks against protective relays using operational technology
data.

The remainder of this article is organized as follows. The
modeling of cyberattacks against transmission line protective
relays is described in Section II. Section III presents the
proposed cyberattack detection system. The training, valida-
tion and testing steps of the proposed cyberattack detection
system are presented in Section IV. The simulation results are
provided in Section V. A brief discussion about the challenges
facing the development of machine learning-based cyberat-
tack detection systems for protective relays and directions for
future research are provided in Section VI before concluding
the paper in Section VII.

II. THE MODELING OF CYBERATTACKS AGAINST

TRANSMISSION LINE PROTECTIVE RELAYS

Transmission lines are normally protected by primary/main
and back-up protections in power systems using the principles
of distance, overcurrent and differential relaying. High-speed
protection is an essential requirement for transmission lines
because it preserves system stability, reduces damage to
critical assets, improves power quality, and simplifies pro-
tective relay coordination. This has motivated the use of
communication-assisted protection including current differen-
tial and pilot protection as the primary/main protection for
transmission lines. This is while the step-distance and overcur-
rent protection remain as the widely used back-up protection
for transmission lines.

The architecture of IEC 61850 substation automation system
for transmission line protection is illustrated in Fig. 1. The
merging units (MU) collect the analog measurements from
the current transformers (CT) and voltage transformers (VT)
and perform the analog-to-digital conversion. The MUs then
transmit the measurements to the IEDs over the IEC 61850
substation LAN using SV messages. The transmission line pro-
tection logics for distance, overcurrent and differential relaying
are implemented in the IEDs. The current differential and pilot
protection logics receive the required information from the
remote substation through the inter-substation communication
network by GOOSE and SV messages.

It is worth noting that IEC 62351, a family of standards on
data and communications security for power system manage-
ment, was introduced to address the cybersecurity concerns
associated with the IEC 61850 protocol [16]. Specifically, the

Fig. 1. Architecture of IEC61850 substation automation system for trans-
mission line protection.

implementation of IEC 62351 will enhance the overall cyber-
security of the substation automation system by incorporating
confidentiality and integrity measures like role-based access
control that restricts unnecessary permissions, message level
authentications and encryption mechanisms. Yet, no encryp-
tion mechanism was specified in the IEC 62351 standard for
SV messages because of the time critical nature of these mes-
sages [40]. Instead, according to the IEC 62351-6 standard,
the cybersecurity for information exchange of these time-
critical messages relies on the supposition that SV messages
are restricted to a logical substation LAN. Consequently, a
breach on the substation LAN is sufficient to compromise
power system applications that utilize SV messages. Moreover,
the majority of the cyberattacks considered in our paper target
operational technology data rather than information technol-
ogy data. Authentication or other security measures proposed
in the IEC 62351 standard would not prevent cyberattacks that
are considered in the paper as discussed below.

The objective of the cyberattacker in this article is to cause
the false tripping of transmission lines through falsifying the
measurements from the instrument transformers to the trans-
mission line protective relays. In other words, the particular
type of cyberattack considered is one that aims to deceive
protective relays into incorrectly assessing that a fault exists
leading to unwanted breaker action. That is, no fault actually
exists, but the attack induces the protection system to pick up
as if there is. Hence, we aim to distinguish the presence of
actual faults from these cyberattacks that attempt to mimic and
fabricate the presence of faults that do not exist. Three sce-
narios are considered here to achieve this objective. The first
scenario is executed through the process bus while the remain-
ing two scenarios are executed by compromising a merging
unit as illustrated in Fig. 1.

A. Attack Scenario 1

In the first scenario, we assume that a cyberattacker has
remote access to the substation automation system through a
malicious device which is connected to the process bus. The
cyberattacker is assumed to recruit a substation employee who
has authority to access communication devices in the substa-
tion to install the malicious device. The cyberattacker with
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access to the process bus through the malicious device disrupts
the flow of SV packets from the merging unit to the IEDs and
forwards the SV packets with falsified payloads to the IEDs
using a combination of MITM and FDI attack. Specifically, the
attacker injects random false data with the appropriate magni-
tude, thus, coercing the transmission line protective relays to
issue false tripping commands. When targeting an overcurrent
relay, the attacker injects random current measurements with
large magnitude to mimic a fault condition. Similarly, with a
differential relay as a target, the attacker injects random cur-
rent measurements with large magnitude while also ensuring
the differential relay receives current measurements of differ-
ent magnitude from both terminals of the transmission line.
For the false tripping of distance relay, the attacker injects
both current measurements of high magnitude and voltage
measurements of low magnitude.

B. Attack Scenario 2

In the second scenario, we assume that the attacker has
remote or physical access to the merging unit and modifies the
settings of the CT/VT through the merging unit. The attack is
assumed to be executed by an insider with access to the sub-
station automation system or through a remote access to the
process bus similar to the first scenario. The attacker could
have recruited a disgruntled internal employee or may have
obtained stolen or leaked legitimate operator credentials that
allow remote access to the substation communication network.
The tap settings of the instrument transformers allow users
to change the voltage and current ratios between the primary
and secondary windings of the transformers. For example, an
attacker can change the tap settings of a current transformer
such that a larger current is observed downstream to the cur-
rent transformer. The attacker can also tamper with the tap
settings of a voltage transformer such that the protective relays
receive voltage measurements of lower magnitude, mimicking
the voltage behavior in a fault condition.

C. Attack Scenario 3

In the third scenario, we assume that a malware installed on
the merging unit is used to perform a replay attack by replac-
ing measurements from the CT/VT with previously recorded
fault measurements to cause false tripping of the transmis-
sion line protective relays. The malware can be installed on
the merging unit through a supply chain attack or a threat
agent with physical or remote access to the substation automa-
tion system. The malware can then eavesdrop and disrupt the
information exchange between the instrument transformer and
merging unit as well as between the merging unit and IED.
This allows the attacker to record current and voltage mea-
surements during fault scenario, which can be injected at a
later time as a replay attack.

III. THE PROPOSED CYBERATTACK DETECTION SYSTEM

The objective of the proposed cyberattack detection system
is to detect patterns in the measurements from instrument
transformers, i.e., CTs and VTs, that do not conform to the

normal behavior of measurements. Note that the notion of nor-
mal behavior of measurements in this article includes both
power system fault-free dynamics and dynamics during power
system faults. One distinction of the proposed approach is that
patterns in OT data are harnessed for the purpose of anomaly
detection. Hence, in contrast to typical IT intrusion detection
approaches that make use of communication packet semantics
or logs of intruder footprints, we make use of data closer to the
physical impacts of the attacks. Hence, time-series current and
voltage measurements at the process bus level of substations
are the inputs employed for data analytics.

A. Configuration of the Proposed Cyberattack Detection
System in Substations

Anomaly detection systems using machine learn-
ing approaches have received considerable attention in
recent years in various application domains including
cybersecurity [31], [41], [42]. Several factors such as the
nature of the input data, the availability of the labeled datasets
as well as the constraints and requirements induced by the
application domain determine the choice of the machine
learning approaches for anomaly detection. As stated above,
time-series current and voltage measurements at the process
bus level of substations are the inputs employed for in the
cyberattack detection system (CDS). Moreover, traditional
IEDs and automation devices in substations are resource con-
strained devices with just enough memory and computational
power to perform their tasks. This prevents the implemen-
tation of the power and resource demanding cyberattack
detection systems that use machine learning-based methods
within the IEDs and automation systems in substations. Yet,
IEDs and automation devices with more powerful processors
may emerge in the coming years with the ability to implement
machine learning-based methods in order to respond to the
growing need of power utilities to leverage machine learning
techniques in their system operations. Finally, the evolving
and clandestine nature of cyberattacks as well as their rarity
against protective relays limit the possibility of obtaining and
effectively modeling these anomalous behavior in contrast to
normal behavior in substations for which there is significantly
more data and more predictable characteristics. In this envi-
ronment, semi-supervised and unsupervised machine learning
approaches are in a superior position for cyberattack detection
in contrast to supervised machine learning approaches.

Considering the aforementioned factors, we propose a cen-
tralized deep learning-based CDS for transmission line pro-
tective relays performed by additional physical devices with
sufficient computational power separate from the IEDs as illus-
trated in Fig. 2. The cyberattack detection system is external
to the IEDs and MUs within the substation and is connected
to them via the process bus and inter-substation communi-
cation network. The proposed cyberattack detection system
functions in two steps: 1) the offline training, validation and
testing step and 2) the real-time operational step. In the
offline training, validation and testing step, the proposed model
learns the normal behavior of the current and voltage mea-
surements during transmission line faults. The cyberattack
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Fig. 2. The configuration of the proposed cyberattack detection system (CDS)
in a substation.

detection system will go live within the substation when cali-
bration through the offline training, validation and testing step
is finalized. In the real-time operational step, the cyberattack
detection system identifies anomalous measurements that do
not conform to the normal behavior of measurements. The
cyberattack detection system has two modes of operation in
real-time: 1) cyberattack detection mode, and 2) cyberattack
detection and mitigation mode. In the detection mode, the
cyberattack detection system only generates an alarm after
detecting anomalous measurements and does not intervene
with the functionality of the protective relays in the IED. This
is while, in the detection and mitigation mode, the cyberat-
tack detection system sends commands to the IEDs to block
the anomalous measurements in order to avoid transmission
line false tripping.

It is worth noting that the proposed cyberattack detection
system classifies any anomalous measurement as a cyberat-
tack. This means that in detection mode, an alarm is generated,
or in detection and mitigation mode, commands are sent to the
IEDs to block anomalous measurements. In typical anomaly
detection frameworks, the type of anomaly is not distinguished
because they are not explicitly modeled. There are advan-
tages to this treatment because new cyberattacks previously
unknown can be accounted for as long as they involve anoma-
lous measurements. If the source of anomalous measurements
is to be distinguished, offline post forensic analysis like the
one proposed in [38] is required.

B. A Deep Learning Autoencoder-Based Cyberattack
Detection System

We now outline an unsupervised deep learning approach to
anomaly detection using an autoencoder. Such an approach
allows for the detection of zero-day attacks and removes the
need to manually enumerate specifications and rules based on a
specific communication protocol and cyberattack type. A deep
learning approach also allows us to leverage the availability
of a large volume of high-fidelity data that can be obtained
for model training. The autoencoder consists of two parts;
encoder and decoder. The encoder, f , compresses the input
data, x, to a latent space, z, with dimensions typically smaller
than the input data. The decoder, g, reconstructs an estimate
of the input data from the latent space z. As the autoencoder is

Fig. 3. A 1-dimensional convolution operation on 10 measurement samples
with a convolution filter F of length M = 4.

trained to be an identity system, the latent space z of smaller
dimensionality must necessarily capture the most salient fea-
tures of the input. Since the latent space is particular to the
type of training data, inputs deviating from the training dataset
will result in high reconstruction errors and flagged as anoma-
lous data. The reconstruction error is computed from the mean
squared error (MSE) between the reconstructed output and
the input data to the autoencoder. Different types of mod-
els can be used in the autoencoder such as a fully-connected
network, recurrent neural network and convolutional neural
network. The reader should note that autoencoders are gener-
ally considered unsupervised methods because although labels
of the normal training data are known, they are not explicitly
incorporated during the training process as the original volt-
age and current input itself is also employed in the role of the
labels. The objective of the autoencoder is to build a model of
the normal data with the reasoning that data which is abnor-
mal cannot be properly reproduced (i.e., autoencoded) by an
autoencoder trained on only the normal data. As the autoen-
coder itself does not explicitly predict normal or abnormal
labels, the autoencoder is generally considered unsupervised.

In this article, a 1-dimensional convolutional based autoen-
coder is used for the cyberattack detection system. Here, both
the encoder and decoder make use of 1-dimensional convolu-
tion stages that consist of sliding a filter kernel over the data
set and applying a dot product. The output of the convolution
operation is given in (1).

Y(i) = (X ∗ F)(i)

=
M−1∑

m=0

FmXi+m (1)

where Y denotes the output of the convolution operation, X
denotes the 1-dimensional data input, F denotes the convolu-
tion filter of length M, ‘∗’ denotes the convolutional operator
and i denotes the input data index. The convolution operation
is illustrated in Fig. 3. The CNN model allows for parame-
ter sharing in F which reduces the total number of trainable
parameters, resulting in computational savings during model
training with less memory requirements and higher statistical
efficiency [42].

For the encoder section of the cyberattack detection system
that embeds the input into a low-dimensional latent space
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Fig. 4. A 1-dimensional upsampling with a factor of 2 applied to an input.

where similar inputs should embed near each other, we use
a neural network consisting of interleaved layers of convolu-
tional operations followed by a nonlinear activation and max
pooling [42]. An example of a common nonlinear activa-
tion function is the rectified linear unit (ReLU) which is a
piecewise linear function as defined in (2).

σ(x) = max(x, 0) (2)

The pooling layer has the effect of reducing the input dimen-
sion by downsampling the input. Common approaches include
average pooling and max pooling layers which slide a small
window at a given stride, taking the average and maximum
value respectively within the window to produce a downsized
dataset. In the decoder section of the autoencoder, the data
in the latent space is expanded back to the original input
dimensions. Our decoder consists of convolution operations
interleaved with 1-dimensional upsampling layers [43]. We
provide an example of a 1-dimensional upsampling operation
with an upsampling factor of 2 in Fig. 4.

IV. TRAINING, VALIDATION AND TESTING OF THE

CYBERATTACK DETECTION SYSTEM

Different types of faults including three-phase-to-ground
faults, two-phase-to-ground faults, single-phase-to-ground
faults and phase-to-phase faults may occur on transmission
lines. Naturally, the signatures of each of these faults are
distinct. Moreover, the types of input data used by different
protective relays such as distance, overcurrent and differ-
ential protective relays are different. For instance, distance
relays make use of both current and voltage measurements
while overcurrent and differential relays rely solely on current
measurements.

The differences between the types of faults and inputs to the
protective relays render it impossible to train a single deep
learning model for all types of faults and protective relays.
Yet, we posit that a universal architecture can be designed for
the deep-learning model in the cyberattack detection system.
The implementation of a universal architecture in the cyber-
attack detection system eliminates the cumbersome need for
optimizing the architecture for every variety and combina-
tion of faults and protective relays. Hence, in this article, we
consider a universal architecture for the deep-learning model
and train it for each type of fault and protective relay sepa-
rately. This approach results in a deep-learning model with the
universal architecture, with different model weights for each
combination of faults and protective relays. Each of the deep
learning models becomes active by the activation of the cor-
responding protective relay element and remains inactive for

Fig. 5. The IEEE PSRC D6 benchmark test system.

the activation of all other protective relay elements. Note that
the training, validation and testing steps are conducted offline.
Therefore, the computational complexity and execution times
are not limiting factors.

A. Transmission Test System

Fig. 5 illustrates the IEEE power system relaying commit-
tee (PSRC) D6 benchmark test system [44]. The test system
connects a power plant with four 250 MVA generator units to
a 230 kV transmission network through two parallel 500 kV
transmission lines. The test system is comprised of three sub-
stations. Substation A connects the power plant to the 500 kV
transmission lines. Substation B is a switching substation and
is located 280 km from substation A. Substation C is located
220 km from Substation B and models the connection to a
230 kV transmission system that is modeled as an infinite
bus. The transmission lines are protected by the principles of
distance, overcurrent and differential protection.

B. Training Dataset

The transmission test system in Fig. 5 is simulated in
OPAL-RT HYPERSIM to generate training datasets. The sim-
ulations are performed for a duration of 200 milliseconds with
the fault initiating randomly between t=100 ms to t=120 ms.
The starting time of the fault is varied between t=100 ms to
t=120 ms in the simulations to ensure fault occurs at differ-
ent parts of the current and voltage waveforms. Note that the
period of one cycle is approximately 16.7 ms in a 60 Hz power
system. Moreover, the generation levels and fault locations
on the transmission line L1 are changed in each simulation
to generate datasets under different operating conditions and
fault location scenarios. The generation levels of G1-G2 and
G3-G4 are varied in unison between 300 MW to 400 MW
with a step size of 10 MW. The fault location is changed
along the transmission line L1 with a step size of 10 km.
The simulations are performed for three-phase-to-ground, two-
phase-to-ground, single-phase-to-ground, and phase-to-phase
faults. The fault impedance is assumed to be zero. In total,
50,820 simulations are performed to generate training datasets
for each type of fault.

The measurements are collected for all three-phases. The
current measurements are collected from CT1 and CT2 in
Fig. 5 and the voltage measurements are collected from VT1.
The measurements are collected at the sampling rate of 4800
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samples per second to comply with IEC 61850-9-2 standard
for SV packet specifications [45]. As such, each simulation
run contains 960 samples per measurement per phase.

C. Training and Optimization of the Autoencoder
Architecture

The 1-dimensional convolutional based autoencoder
described in Section III-B is trained with three-phase mea-
surements corresponding to the inputs of the associated
protective relay. The autoencoder associated with the over-
current protective relay is trained with three-phase current
measurements from CT1. The autoencoder associated with
the distance relay is trained with three-phase current and
voltage measurements from CT1 and VT1 and the autoen-
coder associated with the differential relay is trained with
three-phase current measurements from CT1 and CT2.

The autoencoder is trained with 70% of the 50,820 simula-
tions. The validation and test datasets each comprises 15% of
the 50,820 simulations. An important parameter for autoen-
coder training is the input data length, i.e., the number of
input samples fed to the autoencoder. In this article, a sliding
window of 50 ms, i.e., 240 samples of current/voltage mea-
surements for each phase, is fed to the autoencoder as input.
As such, each window consists of 3 cycles of measurements.
Thus, the 200 ms simulation data is split into sliding win-
dows of 50 ms data. As the sliding window slides over the
entire simulation sample, the autoencoder is trained. Note that
data standardization is performed before the data is fed to the
autoencoder. Consider a training dataset D that contains the
measurement points, x1, x2, . . . , xN . In data standardization,
the data for each measurement type is scaled to unit variance
and zero mean as given in (3)-(5) where the mean, μ, and
standard deviation, σ , is calculated across the entire training
dataset.

μ =
∑N

i=1 xi

n
(3)

σ =
√∑N

i=1(xi − μ)2

n
(4)

xstand = x − μ

σ
(5)

The cyberattack detection system is further trained to reduce
the loss function, which is the MSE between the input and the
reconstructed output of the autoencoder as given in (6).

L = ‖g(f (x)) − x‖2
2 (6)

ADAM, a state-of-the-art stochastic gradient-based
optimization algorithm [46], is used for model training
to minimize the loss function. ADAM employs an adaptive
learning rate and momentum via a moving average of the
gradients and squared gradients, for faster convergence over
a straightforward gradient descent algorithm.

A universal architecture is used in this article for the
cyberattack detection system as discussed in Section IV. The
architecture is optimized via grid search for different number
of layers, number of convolution filters and pooling size. The
architecture is optimized in this article to obtain the highest

TABLE I
AUTOENCODER ARCHITECTURE

recall rate for the replay attack scenario instead of the lowest
loss value. This is because the lowest loss value does not nec-
essarily result in the best cyberattack detection performance.
The final architecture is chosen based on the highest recall rate
observed in the validation dataset. Using labelled replay attack
measurement samples during the validation step allows the
selection of a better tuned model architecture at the expense
of slightly biasing the performance of the cyberattack detec-
tion system towards the replay attack scenario. Nevertheless,
the cyberattack detection system is observed to perform well
in all other attack scenarios considered in this article.

The final architecture is summarized in Table I and illus-
trated in Fig. 6. In all convolutional layers, we used a
convolution filter size of 10, convolutional stride length of
1 and used ReLU as the activation function. When choosing
the final model weights, we chose the weights at the epoch
that results in the highest recall rate within 100 epochs. For
example, in the three-phase-to-ground fault scenario, we used
80 epochs for the overcurrent relay, 70 epochs for the dis-
tance relay and 60 epochs for the differential relay. This is
commonly known as early stopping. Again, this choice of the
final model weights is done based on the validation dataset.
The deep learning model is implemented with Keras with a
Tensorflow backend [47].

V. SIMULATION RESULTS

In this section, we examine the performance of the
proposed deep learning-based cyberattack detection system.
Three cyberattack scenarios including 1) combined MITM
and FDI attack, 2) attack on instrument transformer tap set-
tings, and 3) replay attack are considered. In each scenario,
we investigate the performance of the cyberattack detection
system for different types of faults and different protective
relay principles.

Anomalous or attack data are data that deviates from
normal behavior as recognized by the cyberattack detection
system during model training. These attack cases represent
rare occurrences resulting in an imbalanced dataset with
very small number of positive cases. Using accuracy as our
performance metric is therefore inapt. Consider a dataset with
1000 measurement samples with only 1 attack sample. A naive
cyberattack detection system that always classifies an input as
negative or normal will achieve an accuracy of 99.9%. As
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Fig. 6. The architecture of the proposed cyberattack detection system where the input/output dimensions depend on the type of the protective relay.

such, the precision and recall metrics are employed to mea-
sure the performance of the proposed cyberattack detection
system.

precision = # True Positive

# True Positive + # False Positive
(7)

recall = # True Positive

# True Positive + # False Negative
(8)

True Positive represents cyberattacks that are correctly
detected by the cyberattack detection system. False Positive
represents measurements with normal behavior that are incor-
rectly classified as a cyberattack. False Negative represents
cyberattacks that are not detected by the cyberattack detec-
tion system. True Negative represents measurements with
normal behavior that are correctly classified as legitimate mea-
surements. # represents the count of each event. Therefore,
precision is the fraction of attack classifications made by
the cyberattack detection model that is correct. Recall is the
fraction of actual attacks that are “recalled”, i.e., correctly
classified as attacks by the cyberattack detection system.

As discussed in Section III-B, the deep learning-based
cyberattack detection system is capable of reconstructing mea-
surements with low reconstruction error when applied to data
exhibiting normal characteristics. This is while reconstruction
error is high for anomalous measurements that deviate from
the training data. Hence, a threshold for the reconstruction
error can be set for cyberattack detection. The threshold for
cyberattack detection is set at 1.5 times of the maximum MSE
between the input and the reconstructed output observed with
the training dataset. This conservatively high threshold ensures
low false positive rates.

A. Combined Man-In-The-Middle and Random False Data
Injection Attack

In this scenario, we assume that a cyberattacker has remote
access to the substation automation system through a mali-
cious device which is connected to the process bus. We further
assume that the cyberattacker understands the principles of
transmission line protective relays but does not have knowl-
edge about the dynamics of the transmission network under
attack. Thus, the cyberattacker injects random measurements
to the process bus to trigger the transmission line protective
relays. In the case of the overcurrent relay, the cyberattacker
injects current measurements with large magnitudes to the

TABLE II
PERFORMANCE OF THE CDS: RANDOM FDI ATTACK

Fig. 7. Reconstruction of the measurements during a combined MITM and
random FDI attack on the overcurrent relay.

process bus. In the case of the distance relay, the cyberat-
tacker injects current and voltage measurements with high and
low magnitudes respectively to the process bus to represent a
fault. In the case of the differential relay, the cyberattacker
injects different current measurements with high magnitudes
to the process bus. The performance of the cyberattack detec-
tion system considering different types of faults and protective
relay principles for the combined MITM and FDI attack is
summarized in Table II. A sample of measurements during a
combined MITM and FDI attack on the overcurrent relay is
illustrated in Fig. 7. As illustrated in Fig. 7, the autoencoder
reconstructs the injected false data with high error.
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TABLE III
PERFORMANCE OF THE CDS: ATTACKS AGAINST INSTRUMENT

TRANSFORMER TAP SETTINGS

Fig. 8. Reconstruction of the measurements during an attack against the
instrument transformer tap settings to trigger the differential protective relay.

B. Tampering of Instrument Transformer Tap Settings

In the second scenario, we assume that the attacker has
remote or physical access to the merging unit and modifies
the settings of the CT/VT through the merging unit. In the
case of overcurrent relay, the attacker changes the tap set-
ting of the current transformer CT1 such that a large current
magnitude is seen by the overcurrent relay. In the case of
the distance relay, the attacker changes the tap settings of
current transformer CT1 and voltage transformer VT1 such
that it triggers the distance relay. In the case of differential
relay, the cyberattacker changes the tap settings of the current
transformers CT1 and CT2 to trigger the differential relay.
The performance of the cyberattack detection system consid-
ering different types of faults and protective relay principles
for the attacks against the instrument transformer tap settings
is summarized in Table III. A sample of measurements dur-
ing a cyberattack on the instrument transformer tap settings to
trigger a differential protective relay is illustrated in Fig. 8. As
illustrated in Fig. 8, the autoencoder poorly reconstructs the
measurements resulting in successful detection of the cyberat-
tack due to significant deviation of the attack data from normal
behavior.

C. Replay Attack

In the third scenario, we assume that a malware inside
the merging unit performs a replay attack by replacing the

TABLE IV
PERFORMANCE OF THE CDS: REPLAY ATTACK

Fig. 9. Reconstruction of the measurements during a replay attack on the
distance relay.

measurements from CT/VT with previously recorded mea-
surements to cause false trippings of the protective relays.
We considered various scenarios ranging from unsynchronized
to fully synchronized injection of the actual fault measure-
ments to cause false line tripping. Note that the replay attack
assumes a very strong capability on the part of the attacker.
The performance of the cyberattack detection system consider-
ing different types of faults and protective relay principles for
the replay attack is summarized in Table IV. A sample of the
measurements during a replay attack against the distance relay
is illustrated in Fig. 9. As illustrated in Fig. 9, the autoencoder
poorly reconstructs the measurements resulting in successful
detection of the cyberattack. It should be noted that in the case
of a fully-synchronized replay attack, the proposed cyberattack
detection system was not able to detect the attacks. In such
attack scenarios, the measurements received is essentially the
same as measurements received in real-fault conditions.

D. Computational Complexity of the Proposed Cyberattack
Detection System

The proposed cyberattack detection system was able to
detect the cyberattacks approximately 25 ms after the start-
ing point of the cyberattack, i.e., after receiving 120 samples
of falsified current/voltage measurements. Moreover, it takes
the autoencoder slightly under 4 ms to reconstruct the mea-
surements using i7-9700K CPU with RTX2080 GPU. This
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sums up to a minimum real-time delay of 29 ms in process-
ing the data, slightly less than 2 cycles. It is worth noting
that the operating time of the cyberattack detection system
may become larger than the operating time of commercial
protective relays [48]. Thus, further investigation is needed
to ensure that the sensitivity of protective relays will not be
compromised by the proposed cyberattack detection system.

As discussed previously in Section IV-C, a sliding window
of 50 ms (or 3 cycles) equivalent to 240 samples of cur-
rent/voltage measurements for each phase, is consecutively fed
in real-time to the autoencoder as input for possible cyber-
attack detection after the system becomes active. Moreover,
the proposed cyberattack detection system needs less than two
cycles of processing time to distinguish a cyberattack from a
legitimate fault. Therefore, a buffer with a capacity to cap-
ture 5 cycles (400 samples per phase) of current and voltage
measurements, which is practical and reasonable, would be
sufficient to enable real-time operation.

VI. DISCUSSION

The development of deep learning-based cyberattack detec-
tion systems for improving the cybersecurity of protective
relays in substations is at its embryonic stage. Despite the
promising results obtained in this article, several open chal-
lenges should be addressed before it can be applied to real
systems. The first is related to the scarcity of fault data in
substations that is required to train the cyberattack detec-
tion system. One can overcome this challenge by developing
dynamical models that represent the real substations in time-
domain simulators and validating the dynamical models with
data from the fault recorders in substations. We emphasize that
it is impossible to develop machine learning-based cyberattack
detection systems for protective relays without access to high
fidelity training datasets. Thus, the development of accurate
time-domain dynamical models of substations is the essen-
tial first step for the advancement of machine learning-based
cyberattack detection systems.

There are numerous scenarios and practical considerations
that should be taken into account before implementing the
proposed model in practice. For instance, one needs to inves-
tigate the impact of scenarios such as current transformer
saturation, the existence of short lines, in-feeds, out-feeds,
different fault impedances, varying penetration of distributed
energy resources to see how these scenarios would impact the
performance of the proposed model. Moreover, several con-
siderations such as different transmission network topologies,
communication packet loss and noise should be taken into
account. For digital substations, an IEC 61850-9-2 merging
unit publishes 80 SV packets per cycle in a 60 Hz power
system, which means that measurements are transmitted every
208.3 microseconds. Protective relays are designed such that
they transition to an offline status if more than two consecutive
SV packets are missed [49]. This means packet loss will not
be the limiting factor as the protective relays will no longer
be in service under these conditions. Moreover, digital com-
munication systems are designed such that noise is minimized
with various filters commonly employed in industrial devices

like IEDs and MUs to further reduce any effect of noise on
the data [50]. Hence, the impact of noise and packet loss are
neglected in this article.

Another interesting research direction is to examine the
cybersecurity of the proposed cyberattack detection system.
While the proposed cyberattack detection system addresses the
cybersecurity vulnerabilities of protective relays, its addition
may present an additional attack surface which needs further
investigation. An attacker may target the proposed cyberattack
detection system through the process bus to perform attacks
against protective relays and IEDs. Yet, cyberattackers with
access to the process bus can directly target the protective
relays without the need to compromise the proposed cyberat-
tack detection system. Moreover, authentication can be used
for the output signals of the proposed cyberattack detection
system to improve cybersecurity [51]. This is while it is impos-
sible to use authentication for SV packets considering the large
number of SV packets that should be processed by an IED in
each cycle, i.e., 80 packets per cycle in a 60 Hz system.

Last but not least, it is important to highlight that there is
no one-size-fits-all solution to the cybersecurity challenges of
industrial control systems like substation protection and con-
trol. The cybersecurity challenges in these systems can only
be overcome by considering a holistic approach and imple-
menting layered protective measures and defence-in-depth
models.

VII. CONCLUSION

This article presented a deep-learning based cyberattack
detection system for transmission line protective relays. The
proposed cyberattack detection system is trained with mea-
surements representing different types of faults. Moreover,
the cyberattack detection system is trained with different sets
of inputs depending on the principle of the protective relay
under study such as distance, overcurrent or differential pro-
tective relays. The simulation results verified the capability
of the proposed cyberattack detection system in identifying
different types of cyberattacks including 1) combined MITM
and FDI attack, 2) tampering of instrument transformer tap
settings, and 3) replay attack. The simulation results further
highlighted that a universal architecture can be designed for
the deep-learning model in the cyberattack detection system.
The implementation of such a universal architecture elimi-
nates the cumbersome need for optimizing the architecture for
each type of fault and protective relay and significantly facili-
tates the development of the cyberattack detection system for
the protective relays in substations. The challenges facing the
development of machine learning-based cyberattack detection
systems for protective relays and directions for future research
have been further discussed.
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