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Abstract—This paper presents a framework for cyber attack
impact analysis of a smart grid. We focus on the model synthesis
stage in which both cyber and physical grid entity relationships
are modeled as directed graphs. Each node of the graph has
associated state information that is governed by dynamical system
equations that model the physics of the interaction (for electrical
grid components) or functionality (for cyber grid elements).
We illustrate how cause-effect relationships can be conveniently
expressed for both analysis and extension to large-scale smart
grid systems.

I. INTRODUCTION

The electric smart grid promises increased capacity, relia-
bility and efficiency through the marriage of cyber technology
with the existing electricity network. This integration, how-
ever, creates a new host of vulnerabilities stemming from cyber
intrusion and corruption potentially leading to devastating
physical effects. The security of a system is as strong as its
weakest link. Thus, the scale and complexity of the smart grid,
along with its increased connectivity and automation make the
task of cyber protection particularly challenging.

Recently, smart grid researchers and standards bodies have
developed technological requirements and solutions for pro-
tecting cyber infrastructure [1]–[8]. However, grid protection
remains daunting to asset owners because of resources limi-
tations [9], [10]. Important questions arise when identifying
priorities for design and protection: Which cyber components,
if compromised, can lead to significant power delivery disrup-
tion? What grid topologies are inherently robust to classes of
cyber attack? Is the information available through advanced
cyber infrastructure worth the increased security risk?

Vulnerability analysis for electric power utilities has begun
to aid in answering these questions [11]–[13]. However, before
such evaluation can have practical significance, it is neces-
sary to quantitatively study the potential severity of physical
impacts of cyber attacks. This requires identifying cascading
failures within and between the cyber and physical domains.
To address this challenge we study the development of a cyber
security analysis methodology that accounts for the complex
cyber-to-physical interactions.

The research presented in this paper represents a work in
progress towards the development of a comprehensive and
practical framework for electric smart grid cyber attack impact
analysis shown in Fig. 1 that has been influenced by the needs

of electric power utilities. Section II introduces and motivates
the problem of smart grid cyber security. Fundamental research
and development questions of importance to this area are
discussed with a focus on the topic of cyber attack impact
analysis. Sections III and IV introduce the proposed impact
analysis framework based on a graph-theoretic dynamical
systems approach for modeling the cyber-physical interactions.
We demonstrate how model synthesis can be applied to an
example system. Empirical results and discussion are found
in Sections V and VI followed by conclusions in Section VII.

II. SMART GRID CYBER SECURITY

A. Overview

A smart grid is defined as “the integration of real-time
monitoring, advanced sensing, and communications, utilizing
analytics and control, enabling the dynamic flow of both en-
ergy and information to accommodate existing and new forms
of supply, delivery, and use in a secure and reliable electric
power system, from generation source to end-user” (definition
by North American Electric Reliability Corporation). From a
technical perspective there is increased opportunity for cyber
attack in a smart grid because of the greater dependence on
intelligent electronic devices (IEDs), flexible communications
infrastructures, distributed control centers and advanced meter-
ing infrastructure. Such cyber infrastructure increases commu-
nications connectivity, automation and control, and employs
standardized information technologies (that often have docu-
mented vulnerabilities). Coupled with increased motivations
for attack (that stem, in part, from privatization of the energy
industry), cyber security of a smart grid represents a timely
engineering problem.

Preliminary studies and mechanisms for cyber protection
focus on data flow between the IEDs and control centers
and employ traditionally information-centric metrics of perfor-
mance. However, there is a significant need to quantitatively
account for the physical impacts of a cyber attack since the
ultimate objective of a smart grid is to provide reliable and
secure power delivery. Hence, it is important to understand the
influence a given data set has on power delivery capabilities
to prioritize mitigation. Specifically, fundamental research
and development questions arise: What attack scenarios are
plausible to achieve a significant electric supply interruption?
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Fig. 1: Stages of Proposed Impact Analysis Approach.

What realistic impacts can be achieved assuming certain
vulnerabilities or successful attacks?

Risk analysis approaches for electric power utilities aim to
understand the answers to such questions. However, strategies
are as-of-yet ad hoc by nature. Mathematical models of these
interactive subnetworks are typically vague or often do not
exist [14]. One of the stumbling blocks is the inability to
formally measure the impact of a cyber attack on power
delivery metrics of importance to the power industry.

B. Cyber Attack Impact Analysis

One of the initial activities on cyber security assessment
of power systems was a result of the Department of Energy
Infrastructure Assurance Outreach Program [11]. Almost a
decade ago, they set forth a vulnerability assessment process
for energy infrastructure providers that included a series of
analysis stages including

• the characterization of information threats by financially-
motivated individuals/organizations, information warfare
by other nations, environmental or political terrorists and
unstructured adversaries such as hackers,

• cyber network architecture analysis to identify informa-
tion assurance procedures,

• penetration testing to identify network vulnerabilities
exploitable by tools available on the Internet,

• interdependency analysis with other critical infrastruc-
tures such as telecommunications and transportation, and

• impact analysis of unauthorized access to cyber infras-
tructure on physical system operations.

Risk characterization is to be conducted based on the tasks
above (and others outlined in [11]). Risk of a given failure
F is often related to plausibility and severity of system
vulnerabilities, threats, and attack processes causing F as well
as the impact quantifying the consequence of F on the power
service [15]. It is well known that there is currently a lack
of historical data to sufficiently estimate the above quantities
necessitating the development of appropriate analysis tools
focused for emerging power systems.

In this paper we introduce an approach for cyber attack
impact analysis which involves quantifying the effects of given
classes of cyber attack on the physical electrical grid, hence,
providing information on the degree of disruption to power
delivery that a class of cyber attacks can enable. This infor-
mation is vital for vulnerability assessment [16]. Furthermore,
based on this information sophisticated dependencies between

the cyber and physical systems can be identified also shedding
light on behaviors of complex interdependent networks.

Recent research that has focused on the interaction between
the cyber and physical aspects of a smart grid to aid in cyber
attack impact analysis takes on a variety of flavors [15]–[26].
Our work builds on this body of research by focusing in
more detail on mathematically representing grid component
interactions to better identify non-cookie-cutter vulnerabilities,
the relative physical impact of cyber attacks, and cost-benefit
trade-offs for potential countermeasures. Thus we aim to
obtain a better compromise among computational complexity,
generality and modeling accuracy.

Based on these problem requirements, we propose a
paradigm for cyber attack impact analysis that employs a
graph-theoretic structure and a dynamical systems framework
to model the complex interactions amongst the various system
system components.

III. APPLICATION OF GRAPHS AND DYNAMICAL SYSTEMS

A graph is a mathematical structure that represents pairwise
relationships between a set of objects. A graph is defined by
a collection of vertices (also called nodes) and a collection
of edges that connect node pairs. Depending the use of a
graph, its edges may or may not have direction leading to
directed or undirected classes of graphs, respectively. Graphs
provide a convenient and compact way to show relationships
and relate dependencies within cyber physical power systems
as witnessed by recent papers that employ this tool [18],
[23], [25], [27]–[33]. However, as cited in [32], purely graph-
based approaches do not sufficiently model the state changes
within the physical system. Moreover, they do not effectively
account for the unique characteristics of the system at various
time-scales nor provide a convenient framework for modeling
system physics. We assert that modeling the electrical grid is
a vital component to an effective impact analysis framework.

One approach to physically modeling complex engineering
interactions employs dynamical systems. A dynamical sys-
tem is a mathematical formalization used to describe time-
evolution of a state x, which can represent a vector of physical
quantities. In continuous-time the deterministic evolution rule
describes future states from current states as follows:

ẋ = f(x,u) (1)

where ẋ is the time-derivative of x and u an input vector.
Dynamical systems theory is motivated, in part, by ordinary

245



differential equations and is well-suited to representing the
complex physical interactions of the power grid [34].

We assert that a graph-based dynamical systems formulation
is effective for a smart grid cyber attack impact analysis
framework for a variety of reasons. First, smart grid impact
analysis necessitates relating the cyber attack to physical
consequences in the electricity network. A dynamical sys-
tems paradigm provides a flexible framework to model (with
varying granularity and severity) the cause-effect relationships
between the cyber data and the electrical grid state signals and
ultimately relate them to power delivery metrics. Furthermore,
secondary effects whereby the consequence of an attack itself
influences the continued degree of attack can be represented.

Second, graphs enable a tighter coupling between the cyber
and physical domains. For a smart grid, the cyber-to-physical
connection is often represented through control signals that
actuate change in the power system and the physical-to-
cyber connection is typically due to the acquisition of power
state sensor readings. These connections can be conveniently
expressed as specifically located edges of the graphs. Further-
more, as we will discuss, the graphs induce a dynamical sys-
tems description of the overall smart grid, which conveniently
expresses complex time-varying interrelationships. This way
cascading failures and emergent properties from the highly
coupled system can be represented. Mitigation approaches
often involve islanding of the grid or partitioning of the core
smart grid components from optimization functions [14], and
a graph-based dynamical systems formulation can naturally
portray such separation as well.

IV. GRAPH-BASED DYNAMICAL SYSTEMS MODEL
SYNTHESIS

An overview of our impact analysis approach, which is cur-
rently a work-in-progress, is shown in Fig. 1. The three stages
of model synthesis, system analysis and system validation are
present. In addition, the output of the validation stage is used
to recalibrate our synthesis approach.

In our model synthesis stage, which is the focus of the
remainder of this paper, we use dynamical systems for the
systematic modeling of the cyber and electrical grids; this
affords the flexibility to tune the granularity of detail. The
use of graphs conveniently facilitates incorporating complex
dependencies within and between the cyber and electric com-
ponents. This stage is critical as it determines the relative accu-
racy of a smart grid impact analyses and dictates the possible
analysis tools available to glean insights about vulnerabilities
and strategies for system hardening. We have developed a
general and systematic approach to modeling a smart grid
system using graph-based dynamical system approach.

To elucidate our approach, we focus on the “elementary”
example of Fig. 2 that represents a potential system overload
and instability situation. In the single generator system, G
represents a conventional generator (such as nuclear, coal and
natural gas) that serves two loads denoted Z1 and Z2. The
transformer T1 steps down the voltage and is connected to
Cable 1. Cables 2 and 3 are connected to loads as shown. The
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Fig. 2: One Line Diagram of Elementary Power System
Example. Cyber attack is applied to tamper with sensor s3
effecting load management decisions by the control center.

hexagon symbols represent cyber infrastructure. The system
control center is shown and it communicates control signals
to each of the three switches shown. For switch i (denoted
with a hexagon with an i in the center), the control center
communicates control signal ci(t) where ci(t) = 0 denotes
open switch and ci(t) = 1 denotes close switch at time t.
The control center senses information at the output of the
generator denoted s1, and at the outputs of Cables 1, 2, and 3
denoted s2, s3 and s4, respectively. This information is passed
to the control center which employs a simple load shedding
algorithm to ideally avoid an overload situation if load demand
exceeds generation. If the sensed overall load demand exceeds
generation, then load management sheds one or both loads
to avoid instability by opening their corresponding switches
using control signals. If sensed information reveals that neither
load can individually be served by G then both are shed. If it
appears that only one can be served, then the smaller load is
shed assuming the larger load can be served by G; otherwise,
the smaller load is served.

A typical cyber attack can involve fabricating or tamper-
ing with the sensor information, so that load management
involves incorrect decision-making. In such a situation loads
are dropped when it is possible to serve them or loads are not
dropped when demand exceeds generation leading to decrease
of generator frequency and finally generator trip out.

As a first modeling step, electrical and cyber graphs are
formed such that each node represents associated grid ele-
ments; in this representation, nodes can be generators, trans-
formers, loads or plug-in hybrids, circuit-breakers (electric),
switches and control centers, sensors and breaker actuator
controls (cyber). Given this granularity of detail, edges are
selected in order to represent state dependencies amongst
the various components. As an instructive example, we show
the graph corresponding to Fig. 2; in Fig. 3, the electrical
and cyber graphs are shown along with edges representing
dependencies amongst components within the same network
or at the cyber-physical bridge. Thus, there is a node for every
generator, transformer, load/plug-in hybrid, circuit breaker,
switch, control center, sensor and actuator. Directed links
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Fig. 3: Electrical and Cyber Graphs for
System of Fig. 2. Nodes are comprised
of a generators G, circuit breakers Bi, a
transformer T and loads/plug-in hybrids
Zi of the electrical network and a control
centers cc, sensors si and actuator controls
ci of the cyber network. Edges represent
state dependencies for dynamical model-
ing. The cyber graph is distinguished with
shaded nodes and dashed edges. Attack
A targets the sensor s3. Example agent
groupings for analysis are also presented.

exist between nodes if there is an energy or information flow
dependence. The grid elements are mapped to nodes based
on the fact that it is feasible to model their behavior using
dynamical equations. For simplicity, communication links are
modeled ideally, but this does not have to be the case in
general. The cyber attack node A influences the sensor signal
s3(t) at the output of Cable 2.

Each node has an associated state x (consisting of appro-
priate system voltages and currents) governed by dynamical
system equations that model the physics of the entity (for
the case of power system elements) or the functional or
computational processing (for the case of cyber elements). The
exact expression for f depends on the edges of the associated
node. Nodes can be grouped to form dynamic agents to
represent interactions within a smart grid as highlighted in
Fig. 3 based on functionally or to balance subsystem order
to aid in analysis. Here, we focus on our preliminary results
pertaining to the graph and dynamical systems modeling of
cause-effect relationships of a cyber attack.

V. PRELIMINARY RESULTS

We implement the graph-based dynamical system model of
Fig. 3, which models the system of Fig. 2. A 12-parameter
ordinary differential equation generator model with generator
capacity 0.8 MW is employed that incorporates a governor,
threshold limiter, and prime mover elements as shown in
Fig. 4. The threshold for the generator under-frequency relay
is set to 58 Hz; thus, when the system frequency drops under
58 Hz, the generator will be tripped out.

All breakers are assumed to be ideal and controlled by a cor-
responding control signal ci(t) from the system control center.
An ideal transformer with conversion factor 15 is assumed.
Both of these types of components represent trivial dynamical
systems since they can be modeled as (time-varying in the
case of the switch) amplification systems. All three cables
are represented with lumped resistive and inductive models
that are easily represented with differential equations and as
dynamical systems. Specifically, for Cables 1, 2 and 3, R =
0.001, 0.001, 0.001 Ω and L = 0.000027, 0.000027, 0.000027
H, respectively. The first load denoted Z1 is an resistive-
inductive load with rating 0.6 MW and 0.8 PF (power factor);
it is modeled with R = 0.2158 Ω and L = 0.0004293 H.
The second load denoted Z2 is a resistive-capacitive load with

rating 0.4 MW with 0.8 PF with R = 0.606 Ω and C = 0.0032
F. The control center employs load management and in our
elementary example controls all three switches. The second
and third switches before loads Z1 and Z2, respectively, allow
load shedding at appropriate times to avoid system instability.
As previously discussed load shedding occurs only if an
individual or the combined load demand exceeds generation.
The sensor information si, i = 1, 2, 3, 4 is employed for this
decision-making process. If any of the sensors readings are
tampered with through a cyber attack, then there is potential
to reach an unwanted outcome.

A. Case Study

The graph-based dynamical system model of Fig. 3 was sim-
ulated in MATLAB/Simulink using the fourth-order Runge-
Kutta method with a step size of 0.001seconds and simulation
duration of 20 seconds. We present the results of one of our
case studies to demonstrate how a cyber attack on sensor
reading s3 will result in a disruption in power delivery. In
the system of Fig. 2 s3 is biased through cyber tampering.
Thus, we can model the sensor output as:

s3(t) = B(t) + P3(t) (2)

where s3(t) is the tampered sensor reading, B(t) is an un-
wanted bias that represents the tampering and P3(t) is the true
power at the output of Cable 2 that s3 is intended to track.
Continuous-time modeling is conducted to integrate the cyber-
physical graphs, but this can also be modified to discrete-time
with some additional overhead at the cyber-physical boundary.

The generator G has capacity of 0.8 MW. Since Loads 1
and 2 have ratings 0.6 MW and 0.4 MW, respectively, it is
clear that G cannot simultaneously serve both. The control
center will choose to shed Load 2 in favor of Load 1 should
they both demand service simultaneously. In the simulations,
at 0 seconds Load 1 is assumed to come on and thus Load 2 is
shed (if it were one prior to 0 seconds) as it is the smaller rated
load. In this study a cyber attack is applied at 7 seconds on s3
by adding a bias B(t) such that it may effect load management
by the control center. A load management processing delay of
0.2 seconds is assumed.

Fig. 5(a) shows the output of s3. From 0 to 7 seconds, Load
1 is being served thus, it is reading 0.6 MW as expected. At 7
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Fig. 4: Dynamical System Model for Generator.

seconds, the sensor is tampered and three different bias values
of B(t) = 0.9, 0.1,−0.3 are considered. Fig. 5(b) presents the
output of the sensor at Load 2. As expected, it is not being
served. However, for tampered Bias values of B(t) = 0.9 and
B(t) = −0.3, Load 2 is served. In the former case, this is
because it appears that the second load is being served, and
G (with capacity 0.8 MW) cannot serve both, thus, Load 1 is
shed (assuming it is the smaller load from the tampered s3).

In the latter case, of B(t) = −0.3 it appears that both loads
can be simultaneously served, so they are both switched on.
As seen in Fig. 5(c) this increases the total power generation
to be 1 MW, which is the sum of the actual load ratings of
0.6 MW (for Load 1) and 0.4 MW (for Load 2). However,
as witnessed in Fig. 5(d), this has the effect of decreasing
generator frequency. At 18.579 seconds, the frequency runs
below 58 Hz, which instigates the under-frequency relay to
trip out the generator creating a system blackout. For a bias
B(t) = 0.1, although the sensor reading is incorrect, it does
not actuate an incorrect load management decision.

VI. DISCUSSION

It is clear that our graph-based dynamical system model
synthesized from Fig. 2 represents expected behaviors. To have
potential for realistic cases, it is important to characterize how
the approach scales to larger systems.

The complexity of processing is dependent on graph size
(i.e., number of nodes), graph connectivity (related to number
of links) and the particular dynamics (related to its order) used
to model the nodes. Thus, if the same procedure of mapping
a smart grid to a graph were used for large studies, such as
the IEEE power flow test cases, it is apparent that the size of
the graph would grow incredibly. We assert that this may not
necessarily increase the complexity of the processing beyond
practicality. For instance, the graph-based dynamical systems
paradigm allows nodes to be grouped into “agents” as shown in
Fig. 3 whereby each agent (instead of node) is modeled using
dynamical system equations. Appropriate grouping of agents
would allow necessary system behaviors to be characterized
while approximating others that are not as salient to impact
analysis. This method of grouping with effective modeling of
dynamics is currently the focus of future work.

VII. CONCLUSIONS

In this paper we have introduced an approach to cyber
attack impact analysis applicable to emerging smart grids. The
advantage of this graph-theoretic dynamical systems paradigm
is that continuous-time electrical, discrete-event cyber and
their interface can be modeled within one framework allowing
a single, but potentially powerful analysis approach. Future
work will involve application of the synthesis methodology to
large-scale systems and the use of PSCAD R© and Powertech
Labs’ DSAToolsTM to verify our models results.
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