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he goal of image

restoration is to

reconstruct the
original scene from a de-
graded observation. This recovery process is critical to many
image processing applications. Although classical linear im-
age restoration has been thoroughly studied [1, 2], the more
difficult problem of blind image restoration has numerous
research possibilities.

Our objective in this article is to introduce the problem of
blind deconvolution for images, provide an overview of the
basic principles and methodologies behind the existing algo-
rithms, and examine the current trends and the potential of
this difficult signal processing problem. A broad review of
blind deconvolution methods for images is given to portray
the experience of the authors and of the many other re-
searchers in this area. We first introduce the blind deconvo-
lution problem for general signal processing applications.
The specific challenges encountered in image related resto-
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ration applications are
explained. Analytic de-
scriptions of the struc-
ture of the major blind
deconvolution approaches for images then follows. The ap-
plication areas, convergence properties, complexity, and
other implementation issues are addressed for each approach.
We then discuss the strengths and limitations of various
approaches based on theoretical expectations and computer
simulations.

Blind image restoration is the process of estimating both
the true image and the blur from the degraded image charac-
teristics, using partial information about the imaging system.
In classical linear image restoration, the blurring function is
given, and the degradation process is inverted using one of
the many known restoration algorithms. The various ap-
proaches that have appeared in the literature depend upon the
particular degradation and image models [1,2].
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In many imaging applications, an observed image g(x, y),
neglecting additive noise, can be estimated to be the two-di-
mensional convolution of the true image f{x, y) with a linear
shift-invariant blur, also known as the point-spread function
(PSE), h(x, y). That is,

&(x,y)= f(x,y)* h(x,y)

=Y flnm)h(x=ny—m),
(nm) M

x,y,nmeZ

in which * denotes the two-dimensional linear convolu-
tion operator, and Z is the set of integer

numbers. The problem of recovering
the true image f{x, y) requires the
deconvolution of the PSF h(x,

y) from the degraded image

8, y).

Deconvolution is per-
formed for image restora-
tion in many applications
such as astronomical
speckle imaging [3], remote
sensing [4], and medical imaging
[5-81, among others. In most situations,
the PSF X(x, y) is assumed to be known explicitly
prior to the deconvolution procedure. This problem is known
as the classical linear image restoration problem. The long
list of deconvolution methods for this situation includes a
variety of well known techniques, such as inverse filtering,
Wiener filtering, least-squares (LS) filtering, recursive Kal-
man filtering, and constrained iterative deconvolution meth-
ods [1, 9-12].

Unfortunately, in many practical situations, the blur is
often unknown, and little information is available about the
true image. Therefore, the true image f(x, y) must be identified
directly from g(x, ¥) by using partial or no information about
the blurring process and the true image. Such an estimation
problem, assuming the linear degradation model of Eq. 1, is
called blind deconvolution. Experience shows that in practice
some information is needed to successfully restore the image.

There are several motivating factors behind the use of
blind deconvolution for image processing applications. In
practice, it is often costly, dangerous, or physically impossi-
ble to obtain a priori information about the imaged scene. For
example, in applications like remote sensing and astronomy,
it is difficult to statistically model the original image or even
know specific information about scenes never imaged before
[3-4]. In addition, the degradation from blurring cannot be
accurately specified. In aerial imaging and astronomy, the
blurring cannot be accurately modelled as a random process,
since fluctuations in the PSF are difficult to characterize [13].
In real-time image processing, such as medical video-confer-
encing, the parameters of the PSF cannot be pre-determined
to instantaneously deblur images [14]. Moreover, on-line

identification techniques used to estimate the degradation
may result in significant error, which can create artefacts in
the restored image [15].

Tn other applications, the physical requirements for im-
proved image quality are unrealizable. For instance, in space
exploration, the physical weight of a high resolution camera
exceeds practical constraints. Similarly, in x-ray imaging,
improved image quality occurs with increased incident x-ray
beam intensity, which is hazardous to a patient’s health [5].
Thus, blurring is unavoidable. In such situations, the hard-
ware available to measure the PSF of an imaging system is
often difficult to use. Although these methods work well to
identify the PSF, they are esoteric, which limits their wide

use [8, 13]. Blind deconvolution is a viable alternative

for improving image quality without requir-

ing complicated calibration meth-

ods.

Finally, for applications

such as astronomy, adap-

tive-optics systems may

be used to compensate

for blurring degrada-

tions, although the high

cost of these systems

makes imaging impractical

for some observational facilities.

Use of less expensive, partially com-

pensating systems may result in phase errors. In either

situation, post-processing such as blind deconvolution is
required for improved image quality [16-17].

It is clear that classical image restoration methods that
assume a known PSF are not suitable for many real image
processing situations. In these cases, an algorithmic approach
to combined blur identification and image restoration is re-
quired. In this sense, blind deconvolution is a practical
method for image restoration. Indeed, existing research in the
area [8, 13, 15, 18-51], has shown its worth.

Problem Formulation

The general blind deconvolution problem refers to the task
of separating two convolved signals, f and 4, when both the
signals are either unknown or partially known. This important
problem occurs in many applications in addition to image
restoration, such as seismic data analysis, blind equalization
of communication channels, transmission monitoring, and
echo cancellation in wireless telephony [18, 52-53]. The
basic approach for all cases involves using the partial infor-
mation available about the scheme as a reference to decon-
volve the received signal components. The partial
information can be in the form of physical properties of the
true signal, such as finite support and nonnegativity found in
image processing, or it can be in the form of statistical
information such as entropy used for seismic data analysis,
or the probability density function (pdf) of the true signal used
for equalization of communication channels. In most blind
deconvolution techniques, the partial information is incorpo-
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1. General blind deconvolution scenario.

rated into an optimality criterion, which is minimized (or
maximized) to find estimates of the components (or their
inverses). Figure 1 depicts the general blind deconvolution
scenario.

There are some important characteristics of the problem
of blind deconvolution for images. These include:
1. The true image and PSF must be irreducible for an unam-
biguous deconvolution. An irreducible signal is one which
cannot be exactly expressed as the convolution of two or
more component signals, on the understanding that the two-
dimensional delta function is not a component signal. This is
an important property of the system because if either the true
image or the PSF are reducible then the solution to the
problem is ambiguous. For example, if 2(x, y) and fix, y) are
reducible and A(x, y) = h (x, y) * hy(x, ¥) and flx, y) = f1 x,y)
* fy(x,y), then

8(x,y) = A9 £ (%, ¥ (%, Y4 1y (%, ) 0))
There are four components to g(x, y); ambiguity occurs for
image restoration in deciding which component(s) belong to
the true image and to the PSF.
2. In classical linear image restoration, the goal is to obtain

an estimate as close as possible to the true image. Ideally, f" (x,
y) = flx, y), where f” (x, y) is the image estimate from the
restoration procedure. However, in blind image restoration,
the goal is to obtain a scaled, shifted version of the original
image. That is,
fGx.y)=Kf(x-D,y-D) 3)
where f (x, y) is the estimate of the image from the blind
deconvolution procedure, and X, DX and D_ are arbitrary real
constants. K, D, ,and D, cannot be recovered by blind decon-
volution algorithms in ‘general [19]. After blind deconvolu-
tion is performed, however, the gain and shifting can be
recovered by using additional constraints, such as informa-
tion that the mean value of the image is preserved (i.e.,
2 V(m)h(x, y)=1, or information about the location of the

support of the image.
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2. Linear degradation model.

3. In many practical image processing applications, the
following linear model can accurately represent the degrada-
tion of the true image.

8(xy) = flxy) * h(x.y)+n(x,y) ©)
where g(x, y) is the degraded image, f(x, y) is the true image,
h(x, y) is the PSF, and n(x, y) represents the additive noise.
The noise term is important because in practical imaging
situations, additive noise is not negligible. Common types of
noise are 1) electronic noise, resulting from the thermal
motion of electrons in the electronic components of the
imaging system, 2) photoelectric noise, due to the statistical
nature of light and photoelectric conversion process in the
image sensor, 3) film grain noise, from the randomness of
silver halide grains in the film used for recording, and 4)
quantization noise, which occurs during image digitization.
Figure 2 provides an overview of the linear degradation
model for images. The problem of blind image restoration,
for situations in which additive noise is present, closely
follows the blind deconvolution problem described for the
noiseless case.

In addition to the above considerations, some practical
constraints for image processing applications include:

o The image restoration problem is, in general, ill-condi-
tioned;, a small perturbation of the given data produce large
deviations in the resulting solution [54, 55]. Since the
process of deconvolution attempts to restore the image by
some method of inversion of the PSF, the problem is often
ill-conditioned owing to the existence of the additive noise.
The direct inverse of the blur transfer function usually has
a large magnitude at high frequencies, so excessive ampli-
fication of the noise results at these frequencies.

Exact deconvolution is impossible as a result of the pres-
ence of additive noise in the imaging system. Only statis-
tical information about the noise may be available,
therefore, subtraction of the noise n(x, y) from the degraded
image g(x, y) is impossible. In addition, the additive noise
makes g(x, y), in general, irreducible. Thus, only an ap-
proximate deconvolution can be performed [19].

The solution may not be unique. Since only partial infor-
mation about the imaging process is used to formulate an
optimality criterion, many different estimates of the true
image and PSF may lead to an optimal solution. An appro-
priate solution may be chosen through proper initialization
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of the algorithm or by making additional assumptions on
the imaging system [52].

e There exists a poor compromise among computational
complexity, convergence properties, and portability of the
algorithm for the existing blind deconvolution methods.
The relative importance of each of the above factors de-
pends on the particular imaging application. For example,
in real-time image restoration, reducing computational
complexity and convergence speed is of the utmost impor-
tance, but for medical imaging applications, the reliability
of the solution is the primary consideration. The challenge
is to design a method that exhibits the most appropriate
compromise among computation complexity, reliability,
and portability for a given application [42].

Existing Approaches

There are two main approaches to blind deconvolution of
images:

1. Identifying the PSF separately from the true image, in order
to use it later with one of the known classical image restora-
tion methods. Estimating the PSF and the true image are
disjoint procedures. This approach leads to computationally
simple algorithms.

2. Incorporating the identification procedure with the resto-
ration algorithm. This merge involves simultaneously esti-
mating the PSF and the true image, which leads to the
development of more complex algorithms.

A possible classification of the existing blind deconvolu-
tion methods for images is depicted in Figure 3. A priori blur
identification techniques fall under the first approach, and the
remaining classes of methods fall under the second. This
section describes each class of algorithms, discusses their
strengths and limitations, and highlights potential application
areas.

Zero Sheet Separation

The method of zero sheets has received attention because it
provides valuable insight into the blind deconvolution prob-
lem in multiple dimensions. Lane and Bates [19] have shown
that any degraded image g, formed by convolving several

3. Classification map of existing blind deconvolution techniques for im-
ages.
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individual components f,, f,, ... f,, having compact support,
is automatically deconvolvable provided its dimension is
greater than one. Their argument rests on the analytic prop-
erties of the Z-Transform (ZT) in multiple dimensions. The
zeros of the ZT of a K-dimensjonal component f; is almost
always continuous and lies on a (2K -2)-dimensional hyper-
surface. The zero sheets can very rarely possess singularities;
the relevant details are provided in [63]. By separating these
hypersurfaces, we can recognize the individual components
up to a complex scale factor.

The following assumptions are made about the imaging
system [19]:
o There is no additive noise present in the imaging system.

That is,

8(xy) =fixy) * h(xy)

e The true image f{x, y) and the PSF A(x, y) have finite
support.

e flx, y) and A(x, y) are irreducible. From the analytic
properties of the ZT for a signal of dimension greater than
one, this implies that the ZT of each f{x, y) and A(x, y) is
zero on a single continuous surface, which is called a zero
sheet [19].

The zero sheets of fix, y) and A(x, y) are distinct in the sense
that they can intersect only at discrete points in the 4-di-
mensional space (assuming that we are dealing with two-
dimensional signals).

Based on the assumptions stated above, Lane and Bates
have shown that blind deconvolution of a single multidimen-
sional image is possible. There is no need to invoke either a
reference image or a sequence of differently blurred images.
The lack of the fundamental theorem of algebra for polyno-
mials of order greater than one indicates that multidimen-
sional polynomials are not generally factorizable. In the case
of the convolution of two components, g(x, y) = f(x, y) * h(x,
y), the following relation holds:

G(z,,2)) = Flz:2)H(z,,2,) ®

where capital letters represent the ZT’s of their lower-case
counterparts. Since Eq. 5 shows that the polynomial G(z 12
is factorizable, the blind deconvolution problem in two-di-
mensions is equivalent to factoring the two-dimen-
sional polynomial G(z , z,). The factors will represent
F (zl, Zz) and H(zl, 22) scaled by an arbitrary complex
constant. In the image space domain, this translates to
determining f{x, y) and A(x, y) up to a scale factor and
shift, which is the goal of the blind deconvolution of
images. The main steps of this technique for a two-di-
mensional image are outlined in Table 1. “ZT factor”
denotes any scaled version of either F (7’1’ 22) or H (zl,
12), and “FT factor” denotes a “ZT factor” evaluated
only on the unit circles.

The zero sheet separation technique is helpful in
providing insight into the blind deconvolution prob-
lem. Based on the concept of zero sheets, it has been
shown that image processing in three or more dimen-
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sions is an over-determined problem if the image or the
Fourier amplitude is measured at the Nyquist rate [21]. The
zero sheet method may also be used to simultaneously de-
convolve more than two components, and can determine the
number of irreducible signals a given signal is composed of.

Although the concept of zero sheets is helpful conceptually,
there exist many practical drawbacks to this approach of blind
deconvolution. Basically, the algorithm is highly sensitive to
noise, the fastest algorithm to date [20] has a computational
complexity of O(Ng4), where Ng is the number of pixels of the
blurred image, and the algorithm is prone to numerical inaccu-
racy for large data sizes. In the next section we introduce a class
of more practical blind deconvolution methods with consider-
ably fewer computational requirements.

A Priori Blur ldentification Methods

The General Approach

A priori blur identification methods perform blind deconvo-
lution by identifying the PSF prior to restoration. This gen-
eral class of techniques makes assumptions on the
characteristics of the PSF such as symmetry, and availability
of a known parametric form of the blur. Popular parametric
models include PSFs resulting from linear camera motion or
an out-of-focus lens system. Based on these assumptions, an
attempt is made to completely characterize the PSF using
special features of the true/blurred image. These features
may include a point source against a uniform background
found in applications such as astronomical speckle imaging
[3], edges common in non-destructive industrial x-ray imag-
ing [22], and frequency domain nulls found in situations in
which the blurring results from camera misfocus and linear
motion, among others [23-26]. Once the PSF has been com-
pletely identified, one of the classical restoration techniques
is used to estimate the true image.

A priori blur identification techniques are the simplest
class of blind deconvolution methods to implement and have
low computational requirements. They are applicable to situ-
ations in which the true image is known to possess special
features, and/or when the PSF is known to be of a special
parametric form. For more general situations or when less
information is available other deconvolution algorithms must
be used.

Many methods of this class use specific features about the
true image, such as point sources or edges, to estimate the
PSF. We will concentrate on the most popular methods of this
class that use the frequency domain nulls of the degraded
image to perform blind deconvolution [23-24]. The following
section provides an overview of this approach.

Blur Identification Based on the Frequency Domain Zeros
The following degradation model, which neglects noise, i.e.,

the discrete Fourier transform of their lowercase counter-
parts:

G(u,v) = Fu,)H@u,v), u,v € R 6)

From Eq. 6, one sees that the zeros of G(u,v) are collectively
the zeros of F(u,v) and H(u,v).

It is assumed that the PSF is of a known parametric form
and that given its frequency domain zeros (i.e., the zeros of
H(u,v)), the associated parameter value(s) can be uniquely
determined. The following PSFs, commonly encountered in
practice, are completely characterized by their frequency
domain zeros [23]:

1. Horizontal camera motion blur of length 2d:

h 0 y#0 —ee<x<eo

i * =

g(x,}’) —ﬂx»}’) h(x)y)s XY, EZ (x’y) 717 y:O —deSd (7)
is assumed for the imaging system. Taking the discrete

Fourier transform of each side results in the following fre-

quency domain relationship, in which capital letters denote
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This type of PSF has frequency domain zeros on lines per-
pendicular to the direction of the blur which are spaced at
intervals of 1/d.

2. Defocused lens system with a circular aperture:

hxy) 0 Y+ >r
XY=
7117 ﬁx2+y2 <r (®)

The corresponding frequency zeros are concentric circles
about the origin that are nearly periodic in r.

Given the zeros of G(u,v) and a parametric form of the
PSF, the problem of blind deconvolution involves distin-
guishing the zeros of H(u,v) from those of F(u,v). A parti-
tioning procedure explained in [23] and summarized in the
beginning of Table 2 can be used. Once the locations of the
zeros of H(u,v) are identified, the parameter value(s) of the
PSF are estimated (i.e., d in Eq. 7 or rin Eq. 8§ are estimated,
if the PSF is due to camera motion or defocus). Given the
estimated PSF, a classical image restoration algorithmis used
to obtain an estimate of the true image.

This method is summarized in Fig. 4. The PSF is assumed
to be at least two orders of magnitude less in extent than the
true image. The specific algorithm is provided in Table 2.

This blind deconvolution approach does not consider the
presence of the additive noise in the degraded image; the
noise has the effect of masking the frequency domain nulls
of g(x,y). The algorithm is, therefore, sensitive to noise, and
works well for high signal-to-noise ratios (SNR) [24]. Modi-
fications have been made to make the method more robust to
noise by using the bicepsirum instead of the power cepstrum.
These methods are successful in suppressing noise, but re-
quire the image data to be large (at least 512 x 512 pixels
large) for good results [24].

The method of blur identification based on frequency
domain zeros is one of the most popular and successful
methods because of its computational simplicity and reliabil-
ity. It has been shown to work well in real situations. The
major limitation is that a parametric form of the PSF. is
required to be known. In addition, for applications like x-ray
or astronomical imaging, where the PSF is often Gaussian,

4. Summary of blur identiﬁéation methods based on freq ncy do-
main nulls.
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frequency domain zeros of H(u,v) do not exist. For such
situations, another blind deconvolution method must be used.
The next section introduces a class of methods that requires
fewer assumptions on the PSF, but imposes constraints on the
true image.

ARMA Parameter Estimation Methods

Blind deconvolution using ARMA parameter estimation
methods involves modeling the true image as a two-dimen-
sional autoregressive (AR) process and the PSF as a two-di-
mensional moving average (MA) process. Based on these
models, the resulting blurred image is represented as an
autoregressive moving average (ARMA) process. Identify-
ing the ARMA parameters allows us to identify the true
image and PSF.

The existing methods of this class differ in how the ARMA
parameters are estimated. Techniques based on second-order
statistics, such as maximum-likelihood (ML) estimation [27-
30], generalized cross-validation (GCV) [31], and neural
networks [32] have been proposed. High order statistics
(HOS) methods have also been used for ARMA estimation
[33]. The ML and GCV methods are the most successful for
image processing applications and are discussed later.

AR Model of the True Image
The true image is modelled as a two-dimensional autoregres-
sive (AR) process represented by:

fyy= Y alm)f(x—1y—m)+v(x,y)

(Lm)CR,
(Lmy=(00) )

where the parameter a(0,0) equals 1, f(x,y) is the true image,
and v(x,y) is the modelling error which is a zero-mean homo-
geneous noise process with covariance matrix Qv, which is
statistically independent of f(x,y).

Existing methods based on second-order statistics assume
v(x,y) is Gaussian; however, HOS-based methods assume
v(x,y) is non-Gaussian. The AR model coefficients {a(l,m)}
of support, Ra, are chosen to minimize the variance of v(x,y)
denoted by 62. (The support of a two-dimensional signal is
the smallest rectangle encompassing all non-zero compo-
nents of the signal.) A more compact version of Eq. 9 can be
derived by lexicographically ordering the two-dimensional
signals and using matrix-vector notation [30]:

f=Aftv (10)

(Lexographic ordering is used to map an M x N matrix to
a column vector. This row-ordered vector is defined as x =
K(1,1) x(1,2).x(LN)  x(2,1).. x2.N)..x(M,1).. x(MN)],
where x([,m) is the (I,m)th element of the M X N matrix.)

The model of the true image in Eq. 10 is valid in applica-
tions such as photography where the true images are gener-
ally smooth and homogeneous [57]. Only three AR
coefficients {a(0,1), a(1,0), a(1,1)} are sufficient to reason-
ably model a photographic image. In fact, the model may be
represented as a process in which the autocorrelation function
consists of a separable exponentially decaying sequence and
amore simplified AR model may be used where a(0,1)=p ,
a(1,0)= p,, and a(1,1) = p,p,and 0 < p p, < 1[57]. The
model of Eq. 10 is also appropriate for texture images, but
model order selection is required to estimate the number of
AR coefficients. The AR model is not valid for situations in
which the true image has abrupt changes in local image
characteristics, such as for edges.

ARMA Model of the Blurred Image

In most practical situations, the PSF is of finite extent and its
effect on the true image can be modeled as that of a two-di-
mensional FIR filter. From the linear degradation model of
Eq. 4, the degraded image g(x,y) can be expressed as:

gxy)= Y hlm)f(x—Ly—m)+n(x,y)
LmeRy (11
where R, is the finite support of the PSF A(x.y), and n(x,y) is
the additive noise of the imaging system assumed to be
zero-mean Gaussian with covariance Qn. Once again, using
matrix-vector notation, Eq. 11 becomes:
g=Hf+n 12)
Rearranging Eq. 10, substituting into Eq. 12 and rearrang-
ing yields:
g=H(I-A) " v+n (13)
where 7 is the identity matrix. A complete model for the
blurred image using Eq. 13 is given in Fig. 5, where capital
letters denote Z-transforms of their lowercase counterparts.
Therefore, the problem of blind deconvolution consists of
estimating a(l/,m) for (Im) € R and h({l,m) for ([,m) € R,

5. ARMA model of the blurred image.
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from g(x,y). Once A(l,m) is determined, one of the classical
linear image restoration methods can be used to estimate the
true image.

Parametric Model of the PSF

The practical difficulties with estimating {a(l,m), h(l,m)}
using Eq. 13 include high computational complexity for PSFs
with large support, instability of the estimation algorithms,
and non-unique solutions, among others [30]. To overcome
these problems, the following additional assumptions are
commonly made on the PSF by existing second-order statis-
tics methods.

o The PSF is positive, and the mean value of the true image
is preserved in the degradation process. That is,

> h(t.my=1
meR; (14)
the use of these assumptions limits the number of possible
ambiguous solutions to the problem.

e The PSF is symmetric and zero-phase. These assumptions
are made for the stability and the uniqueness of solution of
the estimation algorithms.

o The PSF has a known parametric form consisting of only
a few parameters. Use of such models significantly lowers
the computational complexity.

Examples of blurs which conform to the above properties

include the linear motion and the out-of-focus PSFs of Eqs.

7 and 8, respectively. Based on these assumptions, the spe-

cific problem of model order selection (i.e., estimating R and

R, is avoided).

The Maximum-Likelihood Approach

The maximum-likelihood (ML) methods attempt to derive
restoration filters by estimating the PSF, variance of the
additive noise n(x,y), and the AR model coefficients of the
original image. Thus, the problem consists of estimating the
parameter set

0 ={{h(l,m)}.{a(l,m)},02,02}

from g(x,y), assuming that the given models of the true image
and PSF hold. > and 6> are the variances of n(x,y), and
v(x,y), respectively.

An estimate of the parameters is made such that the
probability or likelihood of receiving the observed image
given the parameter set, 0, is maximized. The ML estimator
is given by:

6, = arg{max L(6)} = are{maxlog p(g;6)} s
where L(0) denotes the log-likelihood function of 6, ©,
specifies the range of elements of 8, and p(g;0) is the prob-
ability density function (pdf) of g for a given 8.

Since both # and v are assumed to be zero-mean Gaussian

processes, g is also zero-mean and Gaussian, because it is a
linearly filtered version of both »n and v. In fact, it can be
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shown that the pdf of g conditioned on f; H, and the covari-
ance matrix of n, @, is given by

N SN I DU S
PGS H,0,) = mexp[ g HP Qe Hf)J
(16)

In addition, the pdf of , given A and the covariance matrix
of v, Qw is [28]:

detl] — AP

172
1 T T -1
e ——fT= 0 —A
21? detlQJ exp{ 2f -4y a )f:[

P(flA,Qv)=[

17

By combining Egs. 16 and 17, dropping all constant terms,

multiplying the result by -2 (the maximization problem now

becomes minimization due to the sign change), and assuming

Q, = oil and Q, = oI where I is the identity matrix, we
obtain the following equivalent likelihood function [28]:

A . Tp-1,
em,—arg{lgleléllog(dethl)+ g } as)

where P is the covariance matrix of g given by:

P=c*H(I-A)"U-ATH +5I (19)
and (-)_T and (-)T represent inverse transpose, and transpose
matrix operations, respectively.

Thus, the problem becomes that of minimizing Eq. 18 with
respect to the parameters {h(l,m)}, {a(lm)}, o>,62 }. Differ-
ent implementations exist to solve the nonlinear optimization
problem of Eq. 18, such as the gradient-based method, expec-
tation-maximization (EM) technique, prediction error-based
technique, and least squares methods. A survey of the differ-
ent implementations is given in [28]. The EM technique [30]
is the most popular because it is straightforward to imple-
ment. The method converts the original nonlinear optimiza-
tion problem of several variables into a linear iterative
procedure. The order of the EM implementation is O(N, f2)’
where N_is the total number of pixels in the image estimate.
It is a computationally efficient estimation algorithm; how-
ever, convergence speed may be slower than for gradient-
based methods. Another advantage of this implementation is
that an estimate of the true image is produced at every
iteration, so the algorithm is easily terminated when a visually
appealing result is obtained.

In the next section, we introduce an alternative ARMA
estimation algorithm, based on cross-validation. It has higher
complexity than ML methods, but is shown to produce better
results in simulations.

The Generalized Cross-Validation Approach

General cross-validation (GCV) is a widely recognized tech-
nique in the field of data analysis. It is sometimes known as
“leave-one-out” or predictive sample reuse. Historically, it
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has been used as a criterion for estimating the optimal regu-
larization parameter in smoothing problems [58].

The principle behind GCV is straightforward. The data is
divided into two sets: an estimation set and a validation set.
The estimation set is used to obtain a model or estimate based
on a particular parameter value or assumption. The validation
set is then used to validate the performance of the model or
estimate and thus the assumption. Therefore, many compet-
ing parameter values or assumptions may be tested to find the
most appropriate. The difficulty with dividing the data into
two sets is that it is necessary to use as much of the data as
possible to obtain a reliable estimate, but it is also desirable
to test the estimate on as much of the data that was excluded
from the estimation process as possible. GCV overcomes this
problem by allowing all the data to be used for both purposes.

The data is divided into M sets. The assumption being
tested is imposed on all the sets but one, and a validation error
measure is computed for the omitted set. The process is
repeated, selecting a different set each time, until all the sets
have been exhausted. The validation error measures for each
set are averaged to produce the validation error for the par-
ticular parameter value or assumption. Thus, all the data is
used for both estimation and validation.

The GCV technique, when applied to blind image resto-
ration, is straightforward. A “restored” image is estimated
using all but one of the from the degraded image g, for a fixed
set of model parameter values. The “restored” image is then
reblurred using the selected values for A(m,n) to predict the
observation that was left out of the restoration in the previous
step. Different restorations are performed by leaving out a
separate pixel of g each time.

A search technique or optimization method is used to find
the parameter set, 61., which minimizes the mean square
prediction error over all the observations (see Table 3). This
optimal set is chosen to be the image and PSF model parame-
ter estimates. Table 3 provides a summary of the algorithm.
The computational complexity is O(N, f2 Ng), where N.and N
are the number of pixels of the image estimate, and blurre
image, respectively. A computationally simpler-algorithm
has also been introduced with a slight loss in the quality of
restoration [31].

Properties of the ML and GCV Methods

The advantage of using the ML method to that of the GCV
method is that it has a more thoroughly developed history
with ARMA modeling. ML parameter estimation is a stand-
ard signal processing technique and algorithms such as EM
have been developed to make its implementation easier. On
the other hand, CV is more robust and has been shown to work
better than ML for real images [31].

The ML and GCV methods are less sensitive to additive
noise than methods of other classes of blind deconvolution
techniques because they take into account the noise in the
system. ML methods attempt to estimate the variance of the
additive noise, an, and GCV methods use the regularization
parameter, «, to reduce noise amplification in the restoration
procedure.
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A major limitation of these methods is that the log-likeli-
hood function of Eq. 18, and the GCV criterion of the appro-
priate equation in Table 3 become insensitive to changes in

the individual parameters of © when the total number of
parameters is large. In addition, there is a chance that the
methods may converge to local minima. A hierarchical ML
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method has been proposed to
reduce the risk of ill-conver-
gence [29]. The ML and CV
methods deal only with the
second-order signal statistics,
so phase cannot be identified
uniquely in the restoration
procedure unless the PSF is
known to be minimum phase.
The additional assumptions
discussed previously are im-
posed on the PSF to alleviate
such problems. Thus, these
ARMA estimation methods
are somewhat limited to spe-
cific situations.

The next class of algo-
rithms do not require that PSF
be of minimum phase or that
the image have a parametric AR form. Instead, it makes
several assumptions on the true image.

Nonparametric Deterministic Image Constraints
Restoration Techniques

In contrast to the methods discussed in the previous sections,
the algorithms of this class do not assume parametric models
for either the image or the blur. Deterministic constraints such
as nonnegativity, known finite support, and existence of blur
invariant edges are assumed for the true image. A number of
blind deconvolution techniques for images fall into this class,
which include the iterative blind deconvolution algorithm
[34-39], McCallum’s simulated annealing algorithm [40], the
nonnegativity and support constraints recursive inverse fil-
tering (NAS-RIF) algorithm [42-44], and the blind superre-
solution algorithm [45], among others [46].

The methods are iterative and simultaneously estimate the
pixels of the true image and the PSF (or its inverse). The
constraints on the true image and PSFF are incorporated into
an optimality criterion which is minimized using numerical
techniques.

In this section, we will consider three algorithms: the most
well-known method of this class, the iterative blind deconvo-
lution (IBD) algorithm by Ayers and Dainty [34-39]; McCal-
lum’s simulated annealing (SA) algorithm [40]; and the
nonnegativity and support constraints recursive inverse fil-
tering (NAS-RIF) algorithm [42-44]. With these methods, the
true image is assumed to be nonnegative and comprised of an
object with known finite support against a uniformly black,
grey, or white background. The support refers to the smallest
rectangle within which the true object is contained. Thus, the
imaging must be performed such that the object is entirely
encompassed by the observed frame. This situation often
occurs in such diverse applications as astronomical imaging
[3], fluorescence microscopy [8], and magnetic resonance

6. Example of a finite support image.

support of the true image is unknown, a novel cross-valida-
tion-based support finding algorithm proposed in [43] can be
used.

Constraints of nonnegativity and support have been used
in non-blind restoration problems to improve resolution of
gamma-ray spectra [60-61]. Evidence exists that nonnegativ-
ity and support information can extrapolate high frequency
components lost when the distortion is bandlimiting. There-
fore, such constraints hold promise in blind image restora-
tion.

The IBD Method

The iterative blind deconvolution (IBD) method proposed by
Ayers and Dainty is the most popular method in this class. In
addition to the assumptions stated above, the method requires
that the PSF be nonnegative with known finite support.

The general method makes use of the fast-Fourier trans-
form (FET) algorithm. The basic structure of the algorithm is
presented in Fig. 7. The image estimate is denoted by f ),
the PSF estimate by k (x,y), and the linearly degraded image
by g(x,y). The capital letters represent fast-Fourier trans-
formed versions of the corresponding signals. Subscripts
denote the iteration number of the algorithm,

After a random initial guess is made for the true image,
the algorithm alternates between the image and Fourier do-
mains, enforcing known constraints in each. The constraints
are based upon information available about the image and
PSF. The image domain constraints can be imposed by re-
placing negative-valued pixels within the region of support
with zero and nonzero pixels outside the region of support
with the background pixel value. The Fourier domain con-
straint involves estimating the PSF (image) using the FFT of
the degraded image and image (PSF) estimate. That is, at the
kth iteration,

~ B G, ()

imaging [59]. Figure 6 gives an example of a finite support H (u,v)=— - > ~
image undistorted and blurred. For situations in which the | Fy )+ Hy_y (,0)] (20)
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7. Iterative blind deconvolution method.

G(u, v)I:I;:_1 (u,v)

Fo(u,v) = — -
k 1 H,_, (u,v)P 4ol B, (u,v)P

2D

where (-)* denotes the complex conjugate of (-). The real
constant, o, represents the energy of the additive noise and is
determined by prior knowledge of the noise contamination
level, if available. The value of o must be chosen carefully
for reliable restoration. The algorithm is run for a specified
number of iterations, or until the estimates begin to converge.

The IBD method is popular for its low computational
complexity. Many different implementations of this basic
algorithm have been suggested. They differ in their assump-
tions about the true image and PSF, and how these assump-
tions are imposed in the image and Fourier domains [34, 35,
37, 38]. Extensions have been proposed for situations in
which several degraded versions of the same image are
available [36, 39]. Another advantage of this technique is its
robustness to noise because of the Wiener-like filters (Egs.
20 and 21] used in the Fourier domain. Robustness to noise
refers to the ability of the algorithm to suppress noise ampli-
fication that results from the ill-posed nature of the restoration
problem.

The major drawback of the IBD method is its lack of
reliability. The uniqueness and convergence properties are,
as yet, uncertain. In addition, the restoration is sensitive to
the initial image estimate, and the algorithm can exhibit
instability.
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The SA Algorithm

McCallum’s simulated annealing (SA) algorithm makes the
same assumptions on the PSF as the IBD method. It entails
the minimization of the following multimodal cost function:

Ty Ay = Y 1F (@) *hx,y) - g,y

Y(x,y) (22)

The image and PSF are assumed to be positive with known
finite support. Using these constraints on ;? (x,y) and ﬁ(x,y),
a simulated annealing procedure is employed for the minimi-

zation of J with respect to { f (x,¥)} and {l;(x, v)}. In simulated
annealing [41], estimates of the cost function parameters are
iteratively varied to globally minimize J. The parameter
values are randomly perturbed. If the perturbation reduces J,
then it is accepted; if it increases J, then it is accepted with
probability p = exp(-AJ/T}), where AJ is the change in the
cost function due to the perturbation, and 7, is the tempera-
ture parameter. As the iterations progress, the temperature
parameter Tk isreduced (i.e., p isreduced). Simulated anneal-
ing optimization is analogous to the annealing of metals.
When liquid metal is cooled (i.e., the temperature is
reduced) sufficiently slowly, it reaches the absolute mini-
mum energy state related to complete atornic ordering of the
metal. If the liquid is cooled too quickly, then the atoms reach
a suboptimal energy state. Similarly, in simulated annealing,
the temperature parameter 7, must be reduced “slowly”
every iteration to reach the global minimum of J, otherwise

itmay reach a local minimum. In the case of infinite precision
and infinitely many iterations, the minimization procedure is
guaranteed to reach the global minimum of a multimodal cost
function.

The SA algorithm for blind image restoration is given in
Table 4. The algorithm is reliable and provides reasonable
results in the presence of noise. The major disadvantage is
that convergence to the global minimum of the cost function
is slow. The speed of convergence of the algorithm depends
to a large extent on how quickly 7 is reduced. For realisti-
cally sized images, the algorithm is too computationally
intensive to produce a good solution.

The NAS-RIF Algorithm

The nonnegativity and support constraints recursive inverse
filtering (NAS-RIF) algorithm was introduced to overcome
the problems associated with the poor convergence properties
of the IBD method and the high computational complexity of
the SA method. This method makes the same assumptions on
the true image as the IBD and SA methods. The only assump-
tions made on the PSF, however, is that it is absolutely
summable, that is, X_(x.y) lh(x,y)| < oo, and that it has an
inverse h_l(x,y) that is also absolutely summable. No other
constraints are imposed on the PSF. An advantage of this
method is that it does not require the PSF to be of known finite
extent, as do the other methods; this information is often
difficult to obtain.
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8. NAS-RIF algorithm.

The NAS-RIF technique is shown in Fig. 8. It consists of
a variable FIR filter u(x,y) with the blurred image g(x,y) as
input. The output of this filter represents an estimate of the
true image f (x.y). This estimate is passed through a nonlinear
filter, which uses a non-expansive mapping to project the
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estimated image into the space representing the known char-
acteristics of the true image. The difference between the
projected image fNL(x, y) and f (x,y) is used as the error
signal to update the variable filter u(x,y). In general, a variety
of image constraints may be imposed in the nonlinear filter
denoted by NL in Fig. 8. Table 5 gives a list of possibilities.

If we assume the image is nonnegative with known sup-
port, the NL block of Fig. 8 represents the projection of the
estimated image onto the set of images that are nonnegative
with given finite support. Thus, the negative pixel values
within the region of support must be zero, and the pixel values
outside the region of support are the background grey-level,
LB’ as shown in Table 5. Either the nonnegativity constraint
or support constraint or both can be used for restoration.
Experience shows that the support information is more useful
than nomnegativity, which often yields ambiguous non-
unique solutions. The cost function for this particular situ-
ation is:

2
Jw= ¥ ez(Ly)‘FY[: Zu(:,y)_ljl )
Y(x,y) s
= 3 Pyl

(x.y)eDgyp 2

Sulx,y)-1

V(x,y)

+ X)) - LT +v{

2
(*",)')GD:up } (23, 24)
where f (xy) = glxy) * u(x,y), Dsup is the set of all pixels

inside the region of support, and D,,, is the set of all pixels

outside the region of support. The variable yin the third term
of Eq. 24 is nonzero only when Lyiszero,i.e., the background
color is black. The third term is used to constrain the parame-
ters away from the trivial all-zero global minimum for this
situation [42].

It can be shown that Eq. 24 is convex with respect to u(xy),
so that convergence of the algorithm to the global minimum
is possible using a variety of numerical optimization routines.
The conjugate gradient minimization routine was used for
minimization of J in [42-44] because its speed of conver-
gence is much faster than other descent routines, such as the
steepest-descent method. Table 6 provides the method in
basic algorithmic form.

Comparing the IBD, SA, and NAS-RIF Algorithms

This section provides a comparison of the performance of the
methods in this class based on convergence, computational
complexity, and sensitivity to noise. The NAS-RIF algorithm
is guaranteed to converge to the feasible set of solutions
because it deals with the minimization of a convex cost
function. The algorithm is well-behaved and stable, unlike
the IBD algorithm. In addition, the NAS-RIF algorithm con-
verges faster for large images.

The convergence properties of the IBD algorithm are
sensitive to the initial conditions and the noise parameter o,
as shown in Eqs. 20-21. Although the SA method guarantees
convergence to the global minimum in an infinite number of
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iterations and with infinite precision, the algorithm is too
computationally complex to be feasible for real imaging
applications; the order of the algorithm per iteration is O(N f4)’
where N, the number of pixel values of the image estimate.

In contrast, the IBD method has order O(N, ogZ(N f)), and
the NAS-RIF method has order O(N, Nu N 1s,1) PET iteration,
where N is the number of FIR filter parameters of u(x,y), and
N Isk is the number of line searches required at the kth itera-
tion. Since the number of filter parameters is usually much
smaller than the image size, the NAS-RIF method requires
fewer computations, on average, than the IBD method to
produce a good estimate.

The main advantage of the IBD method over the NAS-RIF
algorithm is that it incorporates a Wiener-like filter into the
restoration process. This filter largely prevents noise ampli-
fication from occurring. The NAS-RIF algorithm shows
some noise amplification at low SNRs, but premature termi-
nation of the algorithm may be employed to prevent this [44].

Nonparametric Methods Based on High Order
Statistics

This class of techniques is structurally similar to the NAS-
RIF algorithm, and is useful for restoring texture images [18,
47-48]. They are based on minimizing the given cost function
that accounts for the probabilistic non-Gaussian nature of the
true image. The degraded image is passed through an FIR
inverse filter, yielding an estimate of the true image. The FIR
filter parameters are updated in order to optimize a function
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that incorporates the high order statistics (HOS) model of the
true image. Figure 9 provides an overview of the scheme.

A well-known technique in this class is minimum entropy
deconvolution (MED) [18], which attempts to find the FIR
inverse filter of the PSF that yields the smallest output en-
tropy when applied to the degraded image. This technique
maximizes the simple “spike-like” character of the true image
estimate. This is useful for applications like astronomy, in
which the true image is composed of bright spots against a
dark background; and geophysics, where teleseismic signals
have a spike-like nature. MED has also been proposed for
restoring two-tone images [47]. The general algorithm is
provided in Table 7.

The various algorithms of this class differ in their choice
of g(-), shown in Table 7. For MED [18], the function g[fl="
is used. For Bayesian non-minimum phase approaches [48],
g(-) is used to reshape the marginal pdf of the signal fk(x,y)
to be that of the true image, and is derived for the particular
pdf.

The algorithm is an extension of the Bussgang class of
algorithms for communication channels [52]. The technique
has structural similarities to the NAS-RIF algorithm, but is
applicable only for situations in which the true image can be
represented as a known stationary stochastic signal.

The main advantages of methods in this class is that they
can identify non-minimum phase PSFs, and are fairly robust
to noise. The primary limitations are that the true image must
be accurately modeled by a known non-Gaussian probability

IEEE SIGNAL PROCESSING MAGAZINE 55



9. Basic scheme for methods based on high order statistics.

distribution, and the algorithms may become trapped in local
minima. The computational complexity of this class of meth-
ods is O(N, f2 +N fNu)’ where N fis the number of pixels in the
image estimate, and N, is the number of parameters in the
variable FIR filter, u(x,y).
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Simulation Examples

A variety of different methods exist for blind deconvolution
of images with varying assumptions on the true image and
PSF. For the purpose of comparison, these assumptions are
controlled in the simulations. In this section, we compare the
performance of methods of the same class, i.e., nonparamet-
ric deterministic image constraints methods. These methods
have been selected for simulation as they are a more general
class of techniques and are portable to many different appli-
cations. They also have moderate to low computational re-
quirements, which makes them more practical for real
imaging situations.

The simulations are provided to give an idea of the ability
of blind deconvolution. Examples of the performance of the
other methods discussed can be found with the corresponding
authors. Simulations were conducted for the case!of images
with a black (LB = 0) background. Some test im%lges were
synthetically degraded by convolving the true image with an
artificially generated PSF, and then adding a zero-mean
Gaussian noise realization. Restorations of real image data
are also provided later.
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' The following acronyms are used to refer to the different
techniques:

IBD:Iterative Blind Deconvolution method

SA: Simulated Annealing algorithm

NAS-RIF: Nonnegativity and Support constraints Recursive
Inverse Filtering algorithm

The IBD, SA, and NAS-RIF algorithms have been pre-
viously described. These methods are compared on the basis
of their convergence properties, performance under high
SNR conditions, performance under moderate SNR condi-
tions, and performance when the support size is incorrect.

Two related measures of performance will be used to help
assess the quality of the restorations: the percentage mean
square error (MSE), and the improvement in signal-to-noise
ratio (SNRI). These quantities are defined below:

Zypldf ) = F, )P

MSE(f)A100 v S () 25)
snrip MSE(®)
= MSE(f) (26)

Because any scaled version of the image estimate is de-
sired, @ is chosen such that MSE(f) is minimized. Specifi-
cally,

Tt (5,3) @7
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The problem of obtaining a shifted version of the image is not
considered in the MSE calculation, since one of the con-
straints applied on the true image in these algorithms is finite
known support that is kept in a fixed location. Thus, no
shifting occurs between subsequent iterations of the restora-
tion algorithms. Even though the MSE is not a reliable
estimator of the subjective quality of a restored image, it will
be used to give some indication of the performance of the
schemes.

The results for the following synthetically blurred images
are presented:

BIR image: a synthetically generated binary text image of
the words “BLIND IMAGE RESTORATION”

toy image: a grey-scale image of a toy

UT image: a synthetically generated binary image of the
letters “UT”

Each of these test images were synthetically blurred using the
linear degraded model of Eq. 4, with one of three types of
PSFs, referred to by their dimensions. A brief description of
each PSF is provided below. Figure 10 displays the PSFs
(negative pixels are displayed as black).

23 x 23 PSF: a separable PSF generated from y_yT, where v
is a column vector geometrically decreasing from the center
by a factor of 0.7.

21 x 21 PSF: a radially symmetric PSF, geometrically de-
creasing from the center by a factor of 0.8. This type of PSF
is often found in applications like x-ray imaging and astron-
omy.

5 x 5 PSF: a separable PSF, linearly decreasing in amplitude
from the center.

Performance under High SNR Conditions

This section discusses the performance of the algorithms for
high signal-to-noise (SNR) conditions. The performance of
the algorithms is similar to that for ideal noiseless conditions.
The following results are obtained for an SNR of 70 dB in all
cases.

Figure 11 shows the results for the BIR image with the 23
x 23 PSF. The IBD method takes approximately an order of
magnitude longer to converge than the NAS-RIF method, as
shown in the MSE plots of Figs. 11d and 11f. The SA method
was too computationally complex to produce a solution for
an image of this size.

Figure 12 shows the results for the toy image with the 23
X 23 PSF. The NAS-RIF algorithm convergences to a good
solution within 100 iterations. The IBD algorithm was run for
5000 iterations and was unable to converge to a good solu-
tion. Many different initial conditions and noise parameter
(o) values were simulated, but the algorithm did not converge
properly for any of them.

The results of the algorithms are shown in Fig. 13 for the
UT image blurred by the 5 X 5 PSF. The NAS-RIF algorithm
converges in the fewest number of iterations. One must note
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10. Synthetic test PSFs used for simulations.
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11. Results for the BIR image degraded by the 23 x 23 PSF for an
SNR of 70 dB.

that the SA method converges in 40 cycles. The algorithm
has 50 scans per cycle, so that this is equivalent to 2000
iterations, which is greater than that required by the IBD
algorithm.

For high SNRs, the NAS-RIF algorithm shows the most
desirable convergence properties of the three algorithms. The
IBD algorithm does not converge for complicated grey-scale
images, and the SA method is too computationally complex.

Performance under Moderate SNR Conditions

This section examines the behavior of the methods for lower
SNRs. Simulation results are presented for the three algo-
rithms at an SNR of 50 dB. The IBD algorithm is the most
robust to noise; the NAS-RIF method is the most sensitive.
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20 40 60 BO 100
12. Results for the toy image degraded by the 23 x 23 PSF for an
SNR of 70 dB.

Simulations for the BIR image blurred by the 21 x 21 PSE
were conducted using 10 independent noise realizations. The
results are displayed in Fig. 14. The best and worst restora-
tions, and the average of the 10 restorations are shown.
Although the best and average restorations are comparable
for the IBD and NAS-RIF methods, the worst NAS-RIF
restoration shows noise amplification. The MSEs of the two
methods are shown in Fig 14g and 14h. The solid lines are
the MSEs for the best restorations and the dashed lines are
for the worst restorations. From Fig. 14g, it is apparent that
the NAS-RIF algorithm begins to converge to a good solu-
tion, but then exhibits noise amplification on subsequent
iterations. Therefore, it is possible to monitor the algorithm
and prematurely terminate it when a visually appealing result
is obtained.

Performance for Inaccurate Support Size

This section discusses the behavior of the algorithms for
inaccurate support. The three algorithms did not converge to
an acceptable solution for underestimated supports. In fact,
the IBD method showed instability.

For overestimated supports, the IBD method experienced
difficulty in converging to a solution. However, The NAS-
RIF method was highly robust to the overestimation. Figure
15 shows the results of the NAS-RIF algorithm for the BIR
image and 21 X 21 PSF for incorrect supports. The BIR image
has an actual support of 15 x 65. The NAS-RIF algorithm
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13. Results for the UT image degraded by the 23 x 23 PSF for an
SNR of 70 dB.

assuming incorrect supports of 17 X 67 and 13 x 63 was
simulated.

Results for Real Image Data

In this section, we provide the restoration results of the
NAS-RIF and IBD algorithms on the “j413_crr.fit” image of
Jupiter taken by the Hubble Space Telescope (HST). The data
was prepared by STScl, and can be found in the soft-
ware/stsdas/restore directory at the stsci.edu internet site.

The degraded Hubble data is shown in Fig 16a. A non-
blind restoration using the Adaptive Regularized Restoration
algorithm by Katsaggelos, et-al. [65] is shown in Fig. 16b.
This algorithm requires knowledge of the PSF in the restora-
tion process. The non-blind restoration is used to provide a
basis. of visual evaluation of the performance of the blind
deconvolution methods. The data displayed in Figs. 16a and
16b were taken with permission from [65].

The IBD and NAS-RIF restorations are displayed in Figs.
16h for an estimated support size 282 x 294. Fig. 16¢ gives
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the IBD restoration. The algorithm was run for over 2500
iterations. The estimate that showed the minimum mean
squared error from the known nonnegativity and support
constraints is taken to be the “best” image estimate.

Figure 16e gives the NAS-RIF restoration for a FIR filter
length of 7 X 7 and, similarly, Fig. 16g for a filter length of
25 X 25. As the filter length is increased, there is improved
clarity in the restoration. A possibility for the higher variance
of the image in Fig. 16e is the coarse, four-bit quantization of
the original degraded image. The authors believe that the
smoother appearance of the non-blind restoration in Fig. 16b
is due to the regularization method incorporated in the algo-
rithm.

The absolute mean deviation (AMD) for each of the
restorations with respect to the blurred image is given in
Table 8. The AMD is defined as

AMD(}‘) - 2“V(x,y)lg('xﬂ y) - bf(xs y)l
Zv(,c_yﬂg(&y)'
where
b= 8% Y)

N EE))

Table 8 gives the AMD:s of the restored images of Jupiter.
The AMD provides, to some extent, a measure of the amount
of “deblurring” by the corresponding restoration algorithm.
The AMDs for the non-blind restoration and the NAS-RIF
method using a 25 x 25 filter are the closest in magnitude.
This indicates, in some sense, a similarity in the restorations.
Visual inspection of Figs 16b and 16g also demonstrates the
similarities of the two estimates. Thus, blind deconvolution
algorithms are useful tools for improving the quality of real
blurred images.

Summary and Conclusions

This article provided an overview of the major approaches to
the problem of blind deconvolution of images. Algorithms
can be grouped into the five major classes, and well-known
algorithms of each class have been described. Table 9 pro-
vides a summary of the general characteristics of the various
approaches. The classification provides an idea of the aver-
age, not individual, behavior of the algorithms in each ap-
proach.

The need for more practical image restoration algorithms
in situations where partial information is available about the
true image, and PSF has sparked research in the area of blind
deconvolution. Although many approaches for solving the
problem have been proposed for different applications (in-
cluding methods which do not fall under the the five classes
[49-51]), there is still a need for developing techniques that
exhibit a more appropriate compromise among computa-
tional complexity, convergence properties, portability, and
reliability for a given application.
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14. Results for the BIR image degraded by the 21 x 21 PSF at a BSNR of 50 dB.
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