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ABSTRACT
Recently, a class of cyber-physical attacks termed coordi-
nated variable structure switching attacks has been identi-
fied for future smart grid systems. Here, an attacker who
has remotely gained access to a circuit breaker or switch is
able to disrupt power system operation by applying a state-
dependent switching sequence. The sequence can be effec-
tively designed employing variable structure systems theory.
In this work, we extend this research to demonstrate an ap-
proach to mitigation within this variable structure system
framework. Specifically, we study strategies employed by a
power system operator in the face of a switching attack to
steer the system to a stable equilibrium through persistent
co-switching and by leveraging the existence of a stable slid-
ing mode. We demonstrate how such co-switching can be
designed for a variant of the WECC 3-machine, 9-bus sys-
tem using linearized models and then employ simulations in
MATLAB/Simulink and PSCAD to demonstrate its poten-
tial in practice.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance
of Systems—Modeling techniques; G.1.7 [Mathematics of
Computing]: Ordinary Differential Equations—Convergence
and stability ; I.6.5 [Computing Methodologies]: Model
Development—Modeling methodologies

General Terms
Performance, security, theory

Keywords
cyber-physical system security, coordinated variable struc-
ture switching, smart grid attack mitigation
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1. INTRODUCTION
It is well known that future smart grid systems aim to

enable greater reliability, efficiency, economics, sustainabil-
ity and security. This is achieved through the marriage of
information technology with the power generation and deliv-
ery network. Within such a cyber-physical system increased
autonomy and functionality is enabled, in part, through
situational awareness and distributed control. A physical-
to-cyber bridge manifests at measurement devices such as
phasor measurement units (PMUs) and intelligent electronic
devices (IEDs) to enable the acquisition of highly granular
data for use in decision-making. A cyber-to-physical bridge
arises at actuators including circuit breakers and switches
which can be remotely controlled by system operators and
distributed control devices.

Recently, the authors have demonstrated how an oppo-
nent can leverage the future connectivity of these breakers
and switches to disrupt power delivery. Specifically, we have
identified the existence of a class of cyber-physical system
attacks entitled coordinated variable structure switching at-
tacks in which an opponent can employ local state infor-
mation to design a switching sequence that can destabilize
synchronous generators leading to various forms of instabil-
ity and power loss [2, 3].

In this work, we extend our research to demonstrate an
approach to mitigation within this variable structure sys-
tem framework. Specifically, we study strategies employed
by a power system operator in the face of a switching attack
to steer the system to a stable equilibrium through persis-
tent co-switching and by leveraging a stable sliding mode.
In the next section, we provide a necessary background to
variable structure systems and the sliding mode. We high-
light the conditions for the existence of a sliding mode and
demonstrate how the concept can be employed by either an
attacker or system operator to achieve diverse objectives.
In Section 3 we detail a mathematical approach to design a
mitigation technique against the class of switching attacks
and apply it to the Western Electricity Coordinating Coun-
cil (WECC) 3-machine, 9-bus system. Simulations are em-
ployed to verify our design results in Section 4. The paper
concludes with final remarks in Section 5.
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2. COORDINATED VARIABLE STRUCTURE
SWITCHING

2.1 Variable Structure Systems and the Slid-
ing Mode

Variable structure systems are a class of hybrid dynami-
cal systems that consist of a family of subsystems and one
or more rules that govern the switching among them [6].
Such systems exhibit both continuous and discrete states of
behavior important for modeling some underlying character-
istics of cyber-physical systems. For example, the switching
behavior represents an important analogy for discrete-time
decision-making especially involving power network recon-
figuration as determined by the state of associated circuit
breakers and switches. Moreover, the subsystem dynamics
represent a convenient structure from which to model power
system physics under a static switch condition. The natural
scalability of variable structure systems enables the mod-
eling of complex interdependencies in cyber-enabled power
systems.

Figure 1: State-dependent variable structure sys-
tem.

Fig. 1 is a pictorial representation of a variable structure
system with state-dependent switching. Here, the subsystem
dynamics are described as:

ẋ = fi(x, t) (1)

where i ∈ {1, . . . ,m} is the subsystem index (also known as
the switch position), x ∈ Rn×1 is the state vector, fi(x, t) ∈
Rn×1 is the subsystem dynamics corresponding to switch
position i and s(x) ∈ R1×n is the switching signal where
s(x) = 0 is called the switching surface. For certain system
parameters and selection of s(x) it can be shown that Eq. 1
exhibits a form of behavior known as a sliding mode [1, 6].
Here, the trajectory of x is attracted and subsequently con-
fined to the n-dimensional surface s(x) = 0, which in the
case of a sliding mode is also termed the sliding surface.

The necessary and sufficient conditions for the existence
of a sliding mode are given by:

lim
s(x)→0+

ṡ(x) < 0 and lim
s(x)→0−

ṡ(x) > 0. (2)

For m = n = 2 and

ẋ(t) =

{
f1(x, t), s(x) > 0

f2(x, t), s(x) ≤ 0
, (3)

Fig. 2 pictorially describes how the sliding surface partitions
two distinct regions in state-space given by s(x) > 0 and
s(x) < 0. When in either one of these regions local to the

Figure 2: Under the conditions of Eq. 2 a state x
is (locally) attracted to the sliding surface s(x) = 0,
and once on this surface it will stay on the surface.

sliding surface, the state is attracted back to it as governed
by the complementary sign of ṡ(x) in Eq. 2.

Recently we have demonstrated how variable structure
system theory can be applied to the modeling of power sys-
tem reconfiguration and its subsequent attack. Through ju-
dicious selection of a sliding surface, an attacker can con-
struct switching attacks on select breakers to destabilize
power system components [2, 3].

2.2 Cyber-Physical Attack via Variable Struc-
ture Theory

As power systems become increasingly cyber-enabled, cy-
ber attack will become a possible method of wrongly gaining
control of networked electromechanical switches. Forms of
cyber attack may include intrusion into the communications
infrastructure that networks the switch or the operating sys-
tem of a device that controls it. Coordinated variable struc-
ture switching attacks are facilitated through cyber attack,
but are designed to have a specific goal of physical disrup-
tion. They require that the opponent have control over the
electromechanical switching actions of one or more relay(s)
and/or circuit breaker(s) of the target power system as well
as knowledge of the local state dynamics and partial state
values.

An approach to construct a coordinated variable structure
switching attack involves modeling the power system under
consideration as a variable structure system and then identi-
fying an appropriate sliding surface s(x) that when applied
as state-dependent switching, will destabilize the system;
details are found in [2, 3].

We illustrate attack construction through the elementary
example of Fig. 3, which represents a load shedding scenario.
The (blue) dashed lines and hexagons represent (cyber) com-
munication channels, sensors, breaker actuators and the sys-
tem control center. The (black) solid lines correspond to
physical power system devices such as generators, loads,
switches and transmission lines. In this example, the genera-
tor G can serve one of two possible loads Z1 or Z2 controlled
through load switch S2. Employing information from sen-
sors S1 and S2, the control center makes decisions on the
position of S2 and hence the serviced load. The overall,
switched system of Fig. 3 can be modeled as:

ẋ =

{
f1(x, t), s(x) > 0

f2(x, t), s(x) ≤ 0
(4)
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Figure 3: Elementary variable structure system ex-
ample. Two different dynamics describe behavior of
the power system depending on the status of switch
S2.

Figure 4: Phase portraits of switched system with
s = x1 + x2.

where x ∈ Rn×1 is the state vector, fi(x, t) ∈ Rn×1, i ∈
{1, 2} is the subsystem dynamics when S2 connects Zi, and
s(x) ∈ R1×n where s(x) = 0 is the switching surface.

Consider a specific case of Fig. 3 in which we assume linear
models and n = 2; where x = [x1, x2]T . Suppose,

ẋ =


A1x, s(x) > 0, where A1 =

[
−1 −10
5 −0.5

]
A2x, s(x) ≤ 0, where A2 =

[
−0.5 5
−10 −1

] (5)

for some s(x). It can be shown that both subsystems (i.e., in
a static switch position) are globally asymptotically stable.
However, under the following switching rules

s(x) = x1 + x2 and s(x) = −x1 + x2

the switched system trajectories of Fig. 4 and Fig. 5 are
exhibited. The first switching rule exhibits unstable sliding
mode behavior and would be appropriate to be employed by
an attacker for system destabilization. The second switching
rule enables the system to converge to the stable equilibrium
point.

We have shown in [2, 3] how variable structure system
theory can be used to design switching rules for attack to
destabilize the system through the selection of an appro-
priate sliding surface s(x). In this work, we focus on the

Figure 5: Phase portraits of switched system with
s = −x1 + x2.

Figure 6: State trajectory for attack (at t = 0) us-
ing s(x) = x1 + x2 and attacker lockout and operator
control (at t = 1s) using s(x) = −x1 + x2.

properties of stable sliding modes and leverage their exis-
tence to equip operators with a means of mitigation against
such attacks once detected.

To illustrate our idea, consider the situation whereby a
switching attack is remotely applied to a system described
by Eq. 5 using s(x) = x1+x2 at time t = 0 seconds. Suppose
through cyber and physical means of intrusion detection,
an operator is able to identify the the attack and remove
remote access capability of the opponent. In order to steer
the system back to a stable equilibrium point, the operator
can exploit the stable sliding mode of s(x) = −x1 + x2 at
say time t = 1 second. The resulting state trajectory of the
limited-time attack and operator control is shown in Fig. 6
with corresponding switch status in Fig. 7. We observe that
the system travels along the unstable sliding mode until the
attacker lockout and subsequent trajectory steering back to
the equilibrium by the operator.
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Figure 7: Switch status during attack and mitiga-
tion.

2.3 Sliding Mode Existence for Linear Dynam-
ics

Mathematically determining the existence of a sliding mode
(for either attack or mitigation) for a general class of vari-
able structure systems is equivalent to establishing that the
conditions of Eq. 2 hold. Analytic results are difficult to de-
termine for general subsystem dynamics, functions s(x) and
problem dimensionality. However, assuming linear models of
dynamics and the switching surface and for a single switch
case, the following theorem has been derived by the authors
in [4] regarding the existence of such sliding modes.

Theorem 1 (Existence of a Sliding Mode). Given
the variable structure system:

ẋ =

{
A1x+ b1, s(x) > 0

A2x+ b2, s(x) ≤ 0
(6)

where x ∈ Rn×1, Ai ∈ Rn×n, b1 ∈ Rn×1 and

s(x) = Cx ∈ R (7)

for constant row vector C = [c1 c2 · · · cn] ∈ R1×n the nec-
essary and sufficient conditions for the existence of a sliding
mode are:

{
C(A1x+ b1) < 0, s(x) > 0

C(A2x+ b2) > 0, s(x) < 0
. (8)

We assert that this theorem is useful for identifying the
parameters C to construct coordinating variable structure
switching attacks or mitigation strategies because many power
system configurations can be approximated as tractable low-
order linear models within a local range of operating condi-
tions. Specifically, an opponent or operator would have to
determine the vector C for a given Ai, bi, i ∈ {1, 2} such
that Eq. 8 holds. It can be shown that stable and unsta-
ble sliding modes exist and the operator can leverage such
stable modes of behavior.

Figure 8: One line diagram of revised Western Elec-
tricity Coordinating Council (WECC) 3-machine, 9-
bus system. The (red) dashed rectangle is approxi-
mated as a SMIB system.

3. COORDINATED VARIABLE STRUCTURE
SWITCHING FOR MITIGATION

In this section, we demonstrate the utility of Theorem 1
in determining a strategy for switching-based operator miti-
gation through study of a variant of the well known Western
Electricity Coordinating Council (WECC) 3-machine, 9-bus
system.

3.1 System Modeling and Variable Structure
Representation

Fig. 8 shows both cyber and physical components of the
WECC 3-machine, 9-bus system. The (blue) dashed lines
represent the cyber components which correspond to com-
munication channels, sensors, breaker actuators and the con-
trol center. The (black) solid lines illustrate physical power
system elements including generators, loads, switches, trans-
mission lines.

We approximate this system using the following second
order nonlinear single-machine infinite bus (SMIB) model: δ̇1 = ω1

M1ω̇1 = PM1 − E2
1G11 − sLPL

−E1E∞B1∞ sin δ1 −D1ω1

(9)

where δ1 and ω1 are the rotor angle and rotor speed devia-
tion of Generator G1, respectively, and collectively form the
system state vector x = [δ1 ω1]T . The parameters M1, D1

and E1 represent the moment of inertia, damping coefficient,
and internal voltage of Generator G1, respectively, E∞ is the
voltage magnitude at the infinite bus, PL is the local load
at Bus 1, sL is the load switch status (sL = 1, if the load
is connected; sL = 0, otherwise), and B1∞ is the transfer
susceptance of the line between Bus 1 and infinite bus.

For simplicity, we may rewrite Eq. 9 as:{
δ̇1 = ω1

M1ω̇1 = P1 − C1∞ sin δ1 −D1ω1
(10)

where P1 = PM1 − E2
1G11 − sLPL and C1∞ = E1E∞B1∞.

Assuming that C1∞ = 1, D1 = 0.1,M1 = 0.1, PM1−E2
1G11−

PL = 0, PM1 − E2
1G11 = 0.9, the overall variable structure
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system can be represented as:

A1 :

{
δ̇1 = ω1

ω̇1 = −10 sin δ1 − ω1
if PL connected

A2 :

{
δ̇1 = ω1

ω̇1 = 9− 10 sin δ1 − ω1
if PL not connected

.

(11)
where the system state [δ1 ω1]T represents the phase angle
and frequency of Generator G1.

3.2 Sliding Mode Existence
To apply Theorem 1 to our WECC system model of Eq. 11,

we must linearize its representation. We make the simple
approximation that sin δ1 ≈ δ1 when δ1 is small. Assuming
s > 0 and s ≤ 0 corresponds to the load switch being closed
(subsystem A1) and open (subsystem A2), respectively, we
therefore obtain:

δ̇1 = ω1

ω̇1 =

{
−10δ1 − ω1, s > 0
9− 10δ1 − ω1, s ≤ 0

,
(12)

which corresponds to:

A1 = A2 =

[
0 −1
−10 −1

]
,

b1 =

[
0
0

]
and

b2 =

[
0
9

]
in Eq. 6.

We may use Theorem 1 and leverage the linearity of the in-
equality boundaries to analytically determine the existence
and parameter range of a linear sliding surface of the form
s(x) = Cx. Specifically, we determine the range of C that
guarantees the equilibrium point x∗ is in the region of at-
traction given by:{

C(A1x
∗ + b1) < 0, s(x∗) > 0

C(A2x
∗ + b2) > 0, s(x∗) < 0

.

For the linearized system of Eq. 12, the following exis-
tence conditions for the sliding mode s = c1δ1 + c2ω1 are
determined:

{
c1ω1 − 10c2δ1 − c2ω1 < 0

c1δ1 + c2ω1 > 0{
c1ω1 − 10c2δ1 − c2ω1 + 9c2 > 0

c1δ1 + c2ω1 < 0

. (13)

The results for x∗ = [δ∗1 ω
∗
1 ]T = [1.1198 0]T (at the equilib-

rium of system A2) are presented in Fig. 9.
As discussed in our previous work [2,3], a sliding mode can

also be selected through visual inspection of the overlapping
phase portraits of A1 and A2. Specifically, an attacker must
identify a line whereby the trajectories of the active switched
subsystem are pointing towards s(x) = 0. Fig. 10 shows the
individual and overlapping phase portraits of the linearized
subsystems of Eq. 12. Using both techniques (Theorem 1
and visual inspection) we, for example, can determine that
the following sliding modes exist: an unstable sliding mode

at s = δ1 + 0.5ω1 appropriate for an attacker and a stable
sliding mode at s = δ1 + 10ω1 appropriate for an operator
trying to stabilize the system.

In the next section employing the attack and mitigation
parameters identified here using linearized models, we exe-
cute our operator co-switching in the face of a coordinated
variable structure switching attack on the lower order non-
linear model of Eq. 11 using MATLAB/Simulink and on a
higher order model implemented in PSCADr. We demon-
strate how the identified parameters prove to result in an
effective approach for operator restabilization.

4. SIMULATION RESULTS

4.1 SMIB Swing Equation Model

4.1.1 Phase Portraits
The nonlinear second order system model of Eq. 11 is

characterized in Fig. 11, which presents the individual phase
portraits for the switch in the closed and open position, and
the overlapping phase portraits useful in identify a feasible
sliding surface s(x) = 0. To determine the individual phase
portraits, the equilibrium and saddle points are identified
by setting the left hand side of the corresponding subsystem
dynamics to zero. The system Jacobian matrix is employed
to distinguish between the two.

The Jacobin matrix of subsystem A1 can be expressed as:

J1 =

[
0 1

−10 cos δ1 −1

]
. (14)

Based on the Jacobian matrix, we identify that the equi-
librium points (2nπ, 0) are stable focus (as all of the re-
sulting eigenvalues of J1 are all in the left hand plane) and
(2nπ + π, 0) are saddle points (one or more eigenvalues of
J1 is in the right hand plane). The stability boundary of
the system can be obtained based on the saddle points and
inverse time system dynamics. The stability boundary par-
titions the 2-dimensional space into “smaller” periodically
repeating spaces. Each such space includes one stable focus.
If the initial state of the system lies in this space, the system
will converge to the stable focus within this more compact
space shown in the left graph of Fig. 11.

Similarly, we can identify that the equilibrium points of
subsystem A2 are (2nπ + 1.1198, 0) and (2nπ + 2.0218, 0),
where n is an integer. The Jacobin matrix can be expressed
as:

J2 =

[
0 1

−10 cos δ1 −1

]
. (15)

Thus, we identify that the equilibrium points (2nπ+1.1198, 0)
are stable focus and (2nπ+2.0218, 0) are saddle points. The
stability boundary of the system is obtained similarly to the
case of A1 above.

Using the overlapping phase portrait of Fig. 11, visual
inspection can be employed to determine that s = δ1+0.5ω1

and s = δ1 + 10ω1 are indeed sliding modes of the system.

4.1.2 Empirical Results
In order to determine the validity of our proposed ap-

proach for mitigation, we simulate the nonlinear swing equa-
tion model of Eq. 11 in MATLAB/Simulnk. We first assume
that the load is disconnected from the system (i.e., the vari-
able structure system is switched initially to A2). Therefore,
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Figure 9: [left] Range of C for s > 0. [middle] Range of C for s < 0. [right] Overall range of C for existence of
sliding mode; s = δ1 + 0.5ω1 (unstable) and s = δ1 + 10ω1 (stable) are highlighted.

Figure 10: [left] Linearized phase portrait of system A1. [middle] Linearized phase portrait of system A2.
[right] Overlapping linearized phase portraits.

Figure 11: Phase portraits of Eq. 11 subsystems [left] for switch in closed position (A1), [middle] for switch
in open position (A2), [right] shown overlapping.
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Figure 12: State trajectory employing the SMIB
swing equation model in the presence of an attack
(0-2.5 s) and operator co-switching (starting at 2.5s)
for re-stabilization.

Figure 13: Load switch status during attack and mit-
igation.

the initial state of the system is chosen as the stable focus
of A2 given by (1.1198, 0). If s > 0, the system dynamics
switch to system A1; otherwise, the system dynamics switch
to system A2. Due to the chattering effects, as detailed
in [3] we employ a hysteresis effect to make the switching
frequency finite.

We assume that an attacker applies a switching attack
from 0 to 2.5 seconds employing the unstable sliding mode
s = δ1 + 0.5ω1, which aims to drive the system trajectory
across the stability boundary of the system A2, to cause
power system instability. Assuming that the operator is
notified through intrusion detection systems of the attack,
he/she can employs means to disconnect the attacker’s re-
mote access and re-steer the system trajectory back to the
equilibrium point using the sliding surface s = δ1 + 10ω1 at
2.5 seconds. As can be seen in Fig. 12, the attacker is able to
move the state over the stability boundary, but the operator
successfully restabilizes the system. The corresponding load
switch status is shown in Fig. 13.

4.2 PSCADr Model
To further demonstrate the potential of our sliding mode

design approach, we study applying the attack and mitiga-
tion switching strategies to a high order nonlinear PSCADr

model of the WECC 3-machine, 9-bus system of Fig. 8 [5].
Here, the base MVA is 100, the system normal frequency is
60 Hz and the generator parameters are detailed in Table 1.
The transmission line connecting Generator G1 and the infi-
nite bus are modeled using an inductor of 0.014 H. The local
load PL is chosen to be 32.4 MW modeled using a constant
resistor. The PSCADr step size was chosen to be 50 µs. As
in the former studies, the PL load switch is used to attack
the system.

Table 1: Generator parameters for WECC system

Name Parameter Gen 1 Gen 2
Rated RMS Line-Line
Volatge Vgl−l 13.8 kV 16.5 kV
Active Power Pg 36 MW 100 MW
Power Factor pfg 0.8 0.8
Frequency f 60 Hz 60 Hz
Direct axis unsaturated
reactance Xd 1.55 0.146
D axis unsaturated
transient reactance Xd’ 0.22 0.0608
D axis open circuit
unsaturated transient
time constant Tdo’ 8.95 sec 8.96 sec
Q axis unsaturated
reactance Xq 0.76 0.0969
Q axis unsaturated
transient reactance Xq’ N.A 0.0969
Q axis open circuit
unsaturated transient
time constant Tqo’ N.A 0.31
Inertia Constant H 0.5 sec 23.64

Name Parameter Gen 3 Gen 4
Rated RMS Line-Line
Volatge Vgl−l 18.0 kV 13.8 kV
Active Power Pg 163 MW 85MW
Power Factor pfg 0.8 0.8
Frequency f 60 Hz 60 Hz
Direct axis unsaturated
reactance Xd 0.8958 1.3125
D axis unsaturated
transient reactance Xd’ 0.1198 0.1813
D axis open circuit
unsaturated transient
time constant Tdo’ 6.0 sec 5.89 sec
Q axis unsaturated
reactance Xq 0.8645 1.2578
Q axis unsaturated
transient reactance Xq’ 0.1969 0.25
Q axis open circuit
unsaturated transient
time constant Tqo’ 0.539 0.6
Inertia Constant H 6.4 3.01

For consistent comparison, the initial state of the WECC
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Figure 14: State trajectory employing the PSCADr

model in the presence of an attack (0-0.7s) and
operator co-switching (starting at 0.7s) for re-
stabilization.

Figure 15: Load switch status during attack and mit-
igation.

Figure 16: Generator G1 frequency during attack
and mitigation.

Figure 17: Generator G1 output voltage during at-
tack and mitigation.

system is set to to the stable focus of (1.1198, 0) and the
same sliding modes are employed by the attacker and oper-
ator. If s > 0, the system dynamics switch to system A1 and
if s < 0, they switch to A2. The attacker applies the slid-
ing mode attack from 0 to 0.7 seconds, which aims to drive
the system trajectory across the stability boundary of A2

at which point the switch is permanently set to A2 making
the system unstable. At 0.7 seconds, we assume the opera-
tor is notified of the attack the thus locks out the attacker
by removing other forms of remote access to the switch and
then applies switching to the load switch employing the sta-
ble sliding mode to drive the system trajectory back to the
stable focus of system A2.

Fig. 14 illustrates how the attacker moves the system over
the stability boundary and the operator is subsequently able
to redirect the state back to the stable equilibrium. The spe-
cific load switch status during both attack and mitigation is
shown in Fig. 15. The Generator G1 frequency and output
voltage are displayed in Figs. 16 and 17 to show how oper-
ator co-switching enables transient, frequency and voltage
stability in the power system.

5. CONCLUSIONS
This paper has extended our recent research identifying a

class of power system reconfiguration vulnerabilities termed
coordinated variable structure switching attacks by provid-
ing strategies for operators to re-stabilize the system (also
through switching) once switch control is re-gained from the
attacker. We propose a co-switching approach that exploits
the existence of stable sliding modes that are then used to
redirect the system trajectory back to an appropriate sta-
ble equilibrium point. Both analytic and empirical results
are used to design and verify the potential of coordinated
variable structure switching for mitigation.
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