
A Trapezoid-Ziggurat Algorithm for
Generating Gaussian Pseudorandom Variates

Frank R. Kschischang
Department of Electrical and Computer Engineering

University of Toronto

January 16, 2019

Concave Region
Trapezoidal Bounds

Inflection Point
Trapezoid + Triangle

Convex Region
Triangular Bounds

Tail Region

Concave Region
Trapezoidal Bounds

Inflection Point
Trapezoid + Triangle

Convex Region
Triangular Bounds

Tail Region

Concave Region
Trapezoidal Bounds

Inflection Point
Trapezoid + Triangle

Convex Region
Triangular Bounds

Tail Region

Concave Region
Trapezoidal Bounds

Inflection Point
Trapezoid + Triangle

Convex Region
Triangular Bounds

Tail Region

Concave Region
Trapezoidal Bounds

Inflection Point
Trapezoid + Triangle

Convex Region
Triangular Bounds

Tail Region

1



1 Introduction

The ziggurat algorithm is a well-known fast reject sampling method for generating pseudo-
random variates [1–4]. In this note we describe our implementation of a version of the mod-
ified ziggurat algorithm of McFarland [5] for generating Gaussian pseudorandom variates, in
which rectangular ziggurat layers form a subset of the hypograph of the density function,
rather than the other way around as in most other implementations. This approach allows
all points sampled from within a ziggurat layer to be accepted immediately, without need
for a comparison, thereby providing a speed advantage. We replace with trapezoids the
triangle-shaped regions suggested by McFarland for sampling the ziggurat overhang regions;
the trapezoids, however, degenerate to triangles in regions where the density function is con-
vex. Most points sampled from within a trapezoid can be accepted by comparison with a
linear boundary, obviating with high probability the need for an expensive density-function
evaluation. Points in the tail, which arise infrequently, are sampled using a standard tech-
nique [6]. Trapezoids and tail regions are selected with the appropriate discrete probability
distribution using Walker’s alias method [3,7,8]. Some use is made of type-punning, taking
advantage of the IEEE 754 floating point representation, gaining speed at the expense of
portability. The current implementation runs on 32- or 64-bit little endian machines (e.g.,
machines compatible with Intel x86 architecture), but can easily be modified to run on other
architectures. Endianness and floating point representation are checked when the random
number generator is initialized. Though compatible with any source of pseudorandom 32-bit
unsigned integers, our implementation makes use of O’Neill’s PCG family of random number
generators [9].

All of the following is well known, and is included here only for completeness. An excellent
reference on the general topic of algorithms that transform a source of uniformly distributed
random numbers to variates with a given non-uniform probability distribution is the book
of Devroye [10].

2 Sampling the Hypograph of a Density Function

The basic idea of the ziggurat algorithm is to return the x-coordinate of a point uniformly
sampled from the hypograph of the desired probability density function, in this case the
standard normal. The (truncated) hypograph1 associated with a non-negative function g(x)
is the subset

Rg = {(x, y) ∈ R2 : 0 ≤ y ≤ g(x)}
of the Cartesian plane. Suppose that g(x) = AfZ(x), where f(x) is a probability density
function for a random variable Z and A is a positive constant. A uniform density over Rg

1Hypograph = hypo (beneath, below from the Greek hupo ’under’) + graph (something drawn or written,
from the Greek graphos).

2



is then well defined: the density simply takes the value 1/A at all points of Rg. Sampling
from this density (i.e., choosing points from Rg uniformly at random) results in the random
variable (X, Y ), where X denotes the x-coordinate of the sampled point and Y denotes its
y-coordinate. The cumulative distribution function (cdf) for X is easily obtained as the
fraction of the total area of the hypograph on or to the left of a given x, i.e.,

FX(x) = P [X ≤ x] =

∫ x

−∞ g(t) dt∫∞
−∞ g(t) dt

=
AFZ(x)

A
= FZ(x),

where FZ(x) denotes the cdf of Z. In other words, the X coordinate of samples obtained
uniformly from RAfZ has the distribution of Z.

Since the standard normal is symmetric, it is standard practice to sample only from the
positive half of the distribution, and then attach a uniformly distributed sign. Thus we take
g(x) = exp(−x2/2), x ≥ 0, as sketched on the cover of this report. Note that g(x) has an
inflection point at x = 1, being concave over the interval [0, 1] and convex over [1,∞).

Generating a uniform distribution over an axis-aligned rectangle is easy. Generating a uni-
form distribution over a non-rectangle can be accomplished by enclosing the region in a
tight bounding rectangle, generating points uniformly in the bounding rectangle, rejecting
any points that occur outside of the given region. The number of trials before a point is
accepted is a geometrically distributed random variable with expected value given by the
ratio of the area of the bounding rectangle to that of the given region.

We follow the approach of McFarland [5] and use inscribed ziggurat rectangles, each selected
to have 2−m of the total area. The widest of these determines the start of the tail. The
parameters of each subsequent layer can be determined in terms of the previous layer. Let
R denote the maximum number of rectangles that can be so inscribed. When m = 8, for
example, we can R = 253 rectangles, accounting for 253/256 = 98.8% of the total probability,
as illustrated on the cover of this report.

The remaining (2m−R)/2m of the area is divided among the tail and R “overhang regions.”
As described below, in regions where g(x) is concave, the overhang regions can be enclosed
in a bounding trapezoid, while in regions where g(x) is convex, a bounding triangle (which
may be regarded as a degenerate trapezoid with a zero-height side) can be used. One of
the overhang regions will generally straddle the inflection point at x = 1; as illustrated on
the cover of this report, this region is subdivided and bounded to the left of x = 1 with
a trapezoid and to the right of x = 1 with a triangle. We also subdivide the upper-most
overhang region into 10 subregions. With the tail, this gives a total of R+11 non-rectangular
regions.

The overall sampling procedure is then described as follows:

generate an integer U uniformly distributed in {0, 1, . . . , 2m − 1}

3



if (U < R)
sample the x coordinate uniformly from the Uth rectangle

else
select a non-rectangular region T with the appropriate nonuniform distribution
if T is a trapezoid or triangle

sample x use rejection sampling from the T th region
else

sample x from the tail
endif

endif
return x with a random sign attached

Sampling from a discrete nonuniform distribution with a relatively small number of proba-
bility masses can be accomplished efficiently using the alias method described in Section 3.
Sampling from a trapezoid can be accomplished using the method described in Section 4.
Sampling from the Gaussian tail can be accomplished as described in Section 5. We provide
a few programming notes in Section 6. Results of testing the implemented Gaussian random
number generator are given in Section 7.

3 The Alias Method

The alias method provides a means of sampling from a discrete probability distribution on
{1, 2, . . . ,M} in O(1) time, using O(M) space.

Two vectors must be constructed:

r = (r1, r2, . . . , rM), 0 ≤ ri ≤ 1

a = (a1, a2, . . . , aM), ai ∈ {1, 2, . . . ,M}.
Each ri is referred to as a rest probability and each ai is referred to as an alias. The sampling
procedure is as follows:

generate an integer i uniformly distributed in {1, 2, . . . ,M}
generate a real number U uniformly distributed in [0, 1).
if (U < ri)

return i
else

return ai
endif

Evidently, given that a particular index i is chosen in the first step, the value i is returned
with probability ri and the value ai is returned with probability 1 − ri. Define, for every

4



element j ∈ {1, 2, . . . ,M} the set I(j) = {i ∈ {1, . . . ,M} \ {j} : ai = j} of (other) indices
having alias j, and note that I(j) may possibly be empty. The probability that the algorithm
produces output j ∈ {1, 2, . . . ,M} is then given by

p(j) =
1

M

rj +
∑
i∈I(j)

(1− ri)

 . (1)

By an appropriate choice of r and a, any desired probability mass function may be obtained.

Given a desired list of probabilities {p1, p2, . . . , pM} summing to one, let us now see how to
construct r and a. We do so in Robin Hood fashion, by taking from the “rich” and giving to
the “poor.” Initially we set ri = Mpi and ai = i. We also associate a Boolean flag fi with
each index i to indicate whether that index is “active” or not. Indices i where ri > 1 are
called “rich” and indices i where ri < 1 are called “poor” and their flag fi is set to true.
Indices i where ri = 1 (neither rich nor poor) have their flag fi set to false. Necessarily,
if some index i is rich, some other index j must be poor. In this case we can remove a
mass 1− rj from index i be assigning ri := ri − (1− rj) and “donate” this mass to index j,
remembering the source of the donation by setting aj = i. We remove index j from further
consideration by setting fj to false. If it should happen that ri = 1, then fi is set to false
also. The process continues while there remain active indices.

In summary, given a list p1, . . . , pM of probabilities summing to one, we construct r and a
as follows:

initialize: ai = i, i ∈ {1, 2, . . . ,M}
initialize: ri = Mpi, i ∈ {1, 2, . . . ,M}
initialize: fi to true if ri = 1, false otherwise
while fi are not all false

find a “rich” index i with ri > 1
find a “poor” index j with rj < 1
set aj = i
set fj to false
set ri to ri − (1− rj)
if ri = 1 then set fi to false

endwhile

Note that the number of active indices reduces by at least one in each step of the algorithm,
thus the algorithm must eventually terminate. Note also that every “poor” index is donated
to exactly once, although “rich” indices might indeed make several donations (and become
“poor” in the process). In our implementation we always take from the “richest” to give the
“poorest.”

5



For example, given (p1, . . . , p4) = (0.6, 0.2, 0.1, 0.1) we would proceed as follows: r
a
f

 =

 2.4 0.8 0.4 0.4
1 2 3 4
t t t t

 7→
 1.8 0.8 0.4 0.4

1 2 3 1
t t t f

 7→
 1.2 0.8 0.4 0.4

1 2 1 1
t t f f


7→

 1.0 0.8 0.4 0.4
1 1 1 1
f f f f

 .
From (1) we see that

1. I(1) = {2, 3, 4} and p(1) = 1
4
(1 + 0.2 + 0.6 + 0.6) = 0.6,

2. I(2) = ∅ and p(2) = 1
4
(0.8) = 0.2,

3. I(3) = ∅ and p(3) = 1
4
(0.4) = 0.1,

4. I(4) = ∅ and p(4) = 1
4
(0.4) = 0.1,

as desired.

It is convenient to pad M to a power of two by introducing sufficiently many zero-probability
dummy symbols. Indeed, such dummy symbols have a zero rest probability, obviating the
need to generate the uniform floating point random variate U , at the expense of a comparison
(to check if an index corresponds to a dummy symbol). Such a scheme is called the alias-urn
method [10, Section III.4] [11]. When the number of dummy symbols is relatively large,
some speed-up can be obtained.

4 Sampling Uniformly from a Trapezoid

Consider the problem of sampling uniformly from the region bounded by a right trapezoid
with width w, left height h1, and right height h2, oriented as shown in Fig. 1(a). This can
be accomplished by sampling uniformly from the w× (h1 +h2) rectangle shown in Fig. 1(b),
mapping any point p that lands above the sloped dividing line to a corresponding point p′

below the dividing line, as illustrated.

Suppose the mid-point of the sloped dividing line is given coordinates (0, 0). Denote the
slope (h2− h1)/w of the dividing line as m. Then a point (X, Y ) uniformly distributed over
the lower trapezoid can be accomplished as follows.

1. Generate W uniformly distributed over [−w/2, w/2).

6



w

h1 h2

h1 + h2

w

p

p′

(a) (b)

Figure 1: Uniform sampling from the trapezoid (a) can be accomplished by uniform sam-
pling from the rectangle (b), flipping points that arise above the sloped dividing line to
corresponding points below the sloped dividing line.

2. Generate Z uniformly distributed over [−(h1 + h2)/2, (h1 + h2)/2).

3. If Z ≤ mW (i.e., if (W,Z) already falls in the lower trapezoid) then set X = W and
Y = Z; otherwise set X = −W and Y = −Z (i.e., reflect points in the upper trapezoid
through the origin to the corresponding point in the lower trapezoid).

In this coordinate system, the lower left corner of the lower trapezoid is located at (−w/2,−(h1+
h2)/2). This can be translated to any arbitrary location in the plane by adding an appro-
priate offset in each coordinate.

Note that the boundary points of the trapezoid occur with half the probability density of
interior points. This bug becomes a useful feature when sampling uniformly from a larger
region that is decomposed into trapezoids overlapping along their boundaries, though special
care may need to be taken at (corner) points that fall into more than two trapezoids. In
most applications, such corner cases occur sufficiently rarely that they can safely be ignored.

In applications involving the accept-reject algorithm, one would like to select a trapezoid of
minimum area that contains a given region. Typically such regions are defined by a function
f(x) and an interval [x0, x1), with the region given as {(x, y) : x0 ≤ x < x1, 0 ≤ y < f(x)}.

In case the function is convex over the given interval, then, as illustrated in Fig. 2(a), the
top of the trapezoid should be chosen as the line joining (x0, f(x0)) with (x1, f(x1).

In case the function is concave over the given interval, then, as illustrated in Fig. 2(b), the
top of the trapezoid should be chosen tangent to the function f(x) at some point t between
x0 and x1. This line is given as y(x) = f ′(t)(x − t) + f(t), where f ′ denotes the derivative
of f . To minimize the area of the given trapezoid, it suffices to minimize the sum of the
heights S = y(x0) + y(x1) at the endpoints of the line. We have

S(t) = f ′(t)(x0 − t) + f(t) + f ′(t)(x1 − t) + f(t)

= f ′(t)(x0 + x1) + 2f(t)− 2tf ′(t).

7



x0 x1

f(x0)
f(x1)

x0 x1t

f(x0)
f(x1)

f(t)

(a) (b)

Figure 2: Fitting a tight trapezoid when (a) f(x) is convex over [x0, x1), (b) f(x) is concave
over [x0, x1).

At an extremum,

0 = S ′(t)

= f ′′(t)(x0 + x1) + 2f ′(t)− 2f ′(t)− 2tf ′′(t)

= f ′′(t)(x0 + x1 − 2t).

Since f ′′(t) < 0, we find that the optimum choice for t is the midpoint 1
2
(x0 + x1). That this

choice is indeed a minimizer of S, we note that

S ′′(t) = f ′′′(t)(x0 + x1 − 2t)− 2f ′′(t),

which takes on a positive value when t = (x0 + x1)/2.

In case the function f(x) is neither concave nor convex over the interval [x0, x1), then in most
cases of practical interest the interval can be refined, i.e., broken into smaller subintervals
divided at the points of inflection of f(x), so that in each resulting subinterval the function
is indeed either concave or convex.

5 Sampling From the Tail of the Gaussian Distribution

Recall the general accept-reject algorithm for drawing pseudorandom variates. Let h and g
be two probability density functions such that h(x) ≤ Mg(x) for every x in the support of
h. A pseudorandom variate X with density h can be generated as follows.

1. Draw Z according to density g; this constitutes a “trial.”

2. Accept Z with probability h(Z)/Mg(Z), setting X = Z; otherwise reject Z, returning
to step 1.

Note that the probability of accepting Z in any single trial is

P [accept] =

∫
P [accept | Z = x]g(x) dx =

∫
h(x)

Mg(x)
g(x) dx =

1

M
.

8



The number of trials needed until generating a Z that is accepted is geometrically distributed
with an expected value of M . Clearly, small values of M are preferred.

The right Gaussian tail, taken from a zero-mean unit-variance standard normal, and sup-
ported on [a,∞), has density function

h(x) =

{
1

K(a)
exp

(
−x2

2

)
x ≥ a,

0 otherwise;

where

K(a) =

√
π

2
erfc

(
a√
2

)
is the appropriate normalizing constant.

Suppose we take g as the tail of an exponential density with parameter λ > 0, so that

g(x) =

{
λ exp (−λ(x− a)) x ≥ a,

0 otherwise.

Let

f(x) =
exp(−x2/2) exp(λ(x− a))

λK(a)

=
1

λK(a)
exp

(
−1

2

(
x2 − 2λx+ 2λa

))
=

1

λK(a)
exp

(
−1

2
(x− λ)2

)
exp

(
λ

2
(λ− 2a)

)
.

For x ≥ a, f(x) agrees with h(x)/g(x) and, over this interval we require that M ≥ f(x). For
any fixed a and any fixed λ > 0, we see that f(x) is “bell-shaped” with a peak at x = λ, as
shown in Fig. 3.

f(x)

λ x

Case I: a ≤ λ, M ≥ f(λ)

Case II: a > λ, M ≥ f(a)

Figure 3: Since we require M ≥ f(x) for all x ≥ a, two cases arise as illustrated.

We must choose λ and M . If we choose λ ≥ a, then we must chose M ≥ f(λ); this is Case
I as illustrated in Fig. 3. If we choose λ ≤ a, then it suffices to have M ≥ f(a); this is Case
II as illustrated in Fig. 3. Note that Cases I and II overlap when λ = a.

9



In Case II (λ ≤ a), we would choose

M = f(a) =
1

λK(a)
exp(−a2/2).

To minimize M , we would then choose λ as large as possible, namely λ = a, the point of
overlap with Case I. Thus choosing λ < a is strictly suboptimal.

In Case I (λ ≥ a), we choose

M = f(λ) =
1

λK(a)
exp

(
λ

2
(λ− 2a)

)
.

Now since the first derivative of f(λ) with respect to λ is

d

dλ
f(λ) = f(λ)

λ2 − aλ− 1

λ
,

we expect to achieve minimum M when λ2 − aλ− 1 = 0, i.e., when

λ = λ∗ =
a+
√
a2 + 4

2
.

To see that this stationary point of f is a minimum, we note that the stationary point is in
the interior of the region of optimization, and the second derivative of f(λ) with respect to
λ, given by

d2

dλ2
f(λ) = f(λ)

(λ2 − aλ− 1)2 + λ2 + 1

λ2
,

is indeed positive, so the function f is convex.

Table 1 gives the value M as a function of a when choosing λ = λ∗, compared with sev-
eral suboptimal choices of choosing λ. When a is 3 or larger, there is very little practical
difference, among these possibilities, in the expected number of trials.

Table 1: Expected number of trials M for different values of a and λ
a = 0 0.5 1 1.5 2 2.5 3 3.5

λ = λ∗ 1.315 1.208 1.141 1.098 1.071 1.053 1.041 1.032
λ = a+ 1/a — 3.373 1.257 1.117 1.076 1.054 1.041 1.032
λ = a+ 1/2 1.808 1.293 1.152 1.098 1.076 1.066 1.063 1.063

λ = a — 2.282 1.525 1.292 1.187 1.129 1.094 1.072

Whatever value of λ ≥ a is chosen, we take M = f(λ), so that the accept probability when
Z = x is given by

h(x)

Mg(x)
=

exp(−x2/2)

K(a)

exp(λ(x− a))

λ
λK(a) exp

(
λ

2
(2a− λ)

)
= exp

(
−1

2
(x− λ)2

)
.

10



Suppose that λ = a + ∆. Equivalent to generating a random variate Z with density g is
generating an exponential random variable Y with parameter λ, and then setting Z = Y +a.
Then

Z − λ = Y + a− (a+ ∆) = Y −∆.

The accept-reject procedure then becomes:

1. Draw Y according to an exponential density with parameter λ = a+ ∆.

2. Accept Y with probability exp(−(Y −∆)2/2), setting X = Y + a; otherwise reject Y ,
returning to step 1.

6 Programming Notes

6.1 Type-punning

We use C’s union construct to access the internal bit representations of floating-point num-
bers. The IEEE 754 standard represents a nonzero number x using a sign bit s—assumed
to be the most significant bit (msb)—a binary exponent e, an integer mantissa m of p bits
(an integer between 0 and 2p − 1), so that

x = (−1)s(1 +m× 2−p)2e

For example, 32-bit floats have p = 23 bits while 64-bit doubles have p = 52.

This representation allows us to quickly attach a sign to a floating point number (by twiddling
the msb). For example, in the case of a float, if s is either 0 or 1<<31, then writing
x.i^=s;return x.r seems to compile to faster code than writing return s?-x:x (here x.i

is the integer alias for x, and x.r is the floating point alias for x).

From a source of random integers m of appropriate bit-length, we can quickly generate a
floating-point number uniformly distributed over all floating point numbers in [1, 2), simply
by choosing s = 0, and an exponent corresponding to e = 0. For floats, s = 0 and e = 0
corresponds to setting the most significant 9 of 32 bits to 001111111, while for doubles, s = 0
and e = 0 means setting the most significant 12 of 64 bits to 001111111111. This approach
seems to be significantly faster than ldexp(u,-32), though the latter gives a number in the
range [0, 1) and is itself obtained more quickly than by subtracting 1.0 from a number in
[1, 2).

11



6.2 Rest Probabilities

Recall that in the alias method, we must “rest” (return i when the ith bin is selected)
with probability ri. For speed (to permit an unsigned integer comparison), all such rest
probabilities are rounded to an integer multiple of 2−32. We assume that all zero rest-
probabilities occur only at the end of the table, and therefore if the bin index i is above
a threshold we return the corresponding alias value ai with probability one (and without
need to generate a random variate). Accordingly, only nonzero rest probabilities need to be
represented in the table. We use an off-by-one representation, i.e., if ri = mi×2−32, we store
mi − 1 in the ith table entry. If we generate a uniformly distributed integer u in the range
[0, 232− 1], then we would return the alias value ai only if u strictly exceeds the stored value
mi − 1 (or, equivalently, we “rest,” returning value i, if u ≤ mi − 1).

6.3 Random Multipliers

For efficiency, we try to minimize the number of calls to the random number generator. We
generate a random integer and use its least significant bits m bits to generate the index of
a ziggurat rectangle, we extract a sign bit (and shift it to the msb position), and we use the
remaining bits (shifted appropriately) as a multiplier for a suitably scaled rectangle width. In
our implementation we maintain a minimum of 23 bits for this multiplier; in case m+ 1 > 9,
we require another call to the random number generator. Since m is known at compile-time,
we use conditional compilation (i.e., a #if C-preprocessor directive) to achieve the desired
behaviour.

6.4 Source of Uniform Random Numbers

We assume the availability of a good generator of uniformly distributed unsigned 32-bit pseu-
dorandom integers. The current implementation builds on O’Neill’s PCG family [9]. In the
source code this dependence is encoded symbolically via appropriate typedef and #define

statements, which can easily be modified should some other random number generator be
preferred.

6.5 Speed Tests

We provide two implementations: a single-precision floating-point version zmgf and a double-
precision version zmgd.

The graph of Fig. 4 shows the (approximate) time required to generate 5×109 random variates
using the two implementations on my (current) laptop: (Intel Core i7-7500, 2.70GHz). The

12



number of ziggurat rectangles (nearly 2m) was varied. Note the jump in time for zmgf

that occurs when m = 9; as noted above, for m ≥ 9 an additional call to the random
number generator is required. In light of these timings, we have chosen m = 8 for both
implementations.

3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

40

50

60

Rectangle Selection Bits m

T
im

e
(s
)
n
am

e

Time to Generate 5× 109 Variates

zmgd
zmgf

Figure 4: Execution time as a function of the number of rectangle-selection bits
.

In comparison, the ziggurat implementation gsl_ran_gaussian_ziggurat in the GNU Sci-
entific Library required 60.9s to generate the same number of variates (using an underly-
ing Mersenne Twister random number generator) and the Box-Muller implementation of
gsl_ran_ugaussian required 288s. A single-precision version of Box-Muller using the PCG
random number generator was implemented; it required 39.41s. The corresponding double-
precision version required 104.9s.

Among all of these cases, the zmgf implementation, which required just 9.53s, was clearly
the fastest.

13



7 Results

Fig. 5 shows a histogram generated from 5 × 109 samples from zmgf, compared with the
histogram expected from a Gaussian distribution. Running zmgd gives similar results.

−5 −4 −3 −2 −1 0 1 2 3 4 5

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2
5× 109 trials
900 bins over [−5.5, 5.5]

188 out-of-range discards

(expect 190)

theory
measured

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

2

4

·10−3

theory
measured

Figure 5: Histogram from zmgf (measured), compared with the histogram expected from a
Gaussian distribution (theory). Simulation parameters are given in the plot.

In another trial of 5× 109 samples from zmgf, the sample moments (1st moment up to 8th
moment) shown in Table 2 were obtained. Similar results are obtained from zmgd.

Table 2: mth Moments
m 1 2 3 4 5 6 7 8

measured −0.000022 0.999998 −0.000061 3.000149 −0.000236 15.002819 −0.000915 105.043475
expected 0 1 0 3 0 15 0 105

Finally, Fig. 6 shows a normal plot obtained from 20 order-statistic trials of zmgf.d, each
of size 200 samples. In each order-statistic trial, a vector of length 200 samples is generated
and then sorted, resulting in a vector (y1, . . . , y200) with y1 ≤ y2 ≤ · · · ≤ y200. Denote the
expected value of the ith order statistic (called a rankit) as xi. Shown in the figure is a
scatter plot of the resulting (xi, yi) pairs obtained from 20 trials. Also shown in the figure
are coloured “bands” corresponding to the ε and 1 − ε percentiles for each order statistic,
where ε ∈ {2.5%, 0.5%, 0.05%}. In a large number of trials, we would expect 95% of the

14



samples to fall within in the first (inner) band, 99% to fall within the first or second bands,
and 99.9% to fall within the first, second, or third bands.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−4

−3

−2

−1

0

1

2

3

4

Figure 6: A normal plot showing 20 trials of size 200. Also shown are order-statistic
ranges corresponding to the ε and 1 − ε percentiles for each order statistic, with ε ∈
{2.5%, 0.5%, 0.05%}.

These results provide strong confidence that the samples produced by zmgf and zmgd do
appear to be consistent with a standard normal distribution.

15



References

[1] G. Marsaglia and W. W. Tsang, “A fast, easily implemented method for sampling from
decreasing or symmetric unimodal density functions,” SIAM J. Scient. Statist. Comput.,
vol. 5, pp. 349–359, 1984.

[2] G. Marsaglia and W. W. Tsang, “The ziggurat method for generating random vari-
ables,” J. Statist. Software, vol. 5, pp. 1–7, 2000.

[3] D. E. Knuth, The Art of Computer Programming, Vol. II, 3rd Ed., Addison Wesley,
1998.

[4] D. Eddelbuettel, “Ziggurat revisited,” University of Illinois at Urbana-Champaign, June
2018.

[5] C. D. McFarland, “A modified ziggurat algorithm for generating exponentially- and
normally-distributed pseudorandom numbers,” J. Statist. Comput. Simul., vol. 86,
pp. 1281–1294, 2016.

[6] G. Marsaglia, “Generating a variable from the tail of the normal distribution,” Techno-
metrics, vol. 6, pp. 101–102, 1964.

[7] A. J. Walker, “New fast method for generating discrete random numbers with arbitrary
frequency distributions,” Electronics Letters, vol. 10, p. 127, Apr. 1974.

[8] A. J. Walker, “An efficient method for generating discrete random variables with general
distributions,” ACM Trans. Mathem. Software, vol. 3, pp. 253–256, Sep. 1977.

[9] M. E. O’Neill, “PCG: a family of simple fast space-efficient statistically good algorithms
for random number generation,” Technical Report HMC-CS-2014-0905, Harvey Mudd
College, 2014, paper and source code available online at http://www.pcg-random.org.

[10] L. Devroye, Non-Uniform Random Variate Generation, Springer Verlag, 1986. Available
online: http://www.nrbook.com/devroye.

[11] A. V. Peterson and R. A. Kronmal, “On mixture methods for the computer generation
of random variables,” The American Statistician, vol. 36, pp. 184–191, 1982.

16

http://www.pcg-random.org
http://www.nrbook.com/devroye

	Introduction
	Sampling the Hypograph of a Density Function
	The Alias Method
	Sampling Uniformly from a Trapezoid
	Sampling From the Tail of the Gaussian Distribution
	Programming Notes
	Type-punning
	Rest Probabilities
	Random Multipliers
	Source of Uniform Random Numbers
	Speed Tests

	Results

