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1 Definition and Some Technicalities

When it exists, the Fourier transform of a complex-valued signal g(t) is the complex-valued
function G(f) defined via

G(f) =

∫ ∞
−∞

g(t) exp(− j 2πft) dt, (1)

where j =
√
−1 denotes the imaginary unit, and f is any real number. Note that both t and

f are real-valued, i.e., g : R → C and also G : R → C. Thus G, like g, is a complex-valued
signal. Note that, although g(t) may be complex-valued in general, the integral in (1) is
not a contour integral as you may have encountered in complex analysis; here, the variable
t is real-valued, and the integral can be decomposed into a sum of two ordinary real-valued
integrals: one for the real part of the integrand, and one for the imaginary part.

To indicate that G(f) is the Fourier transform of g(t), we sometimes write G(f) = F [g(t)],

or g(t)
F

 G(f), or g(t)
G(f). In the latter notation, the reverse arrow is intended to

indicate that g(t) can in fact be recovered, almost everywhere, from G(f) via an inverse
Fourier transform operation; see (2).

The integral sign in (1) actually represents quite a complicated mathematical operation. For
one thing, the infinite range of integration indicates the need to take limits. To admit a
large class of functions g(t) for which the Fourier transform exists, one usually interprets
the integral as a Lebesgue integral. The Lebesgue integral strictly generalizes the Riemann
integral (the notion of integration taught in calculus): whenever the Riemann integral exists,
the Lebesgue integral exists and gives the same value. However, there are functions which
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are not Riemann integrable, but are Lebesgue integrable. Now, the development of the
Lebesgue integral is beyond the scope of these notes; for its application in communications,
the interested reader is invited to consult the textbook of A. Lapidoth [1]. For our purposes
in this course, we will need just one concept from Lebesgue integration theory: the concept
of a subset of R having zero measure, with which we can define the notion of equality “almost
everywhere” of two signals.

A measure on the real line R is a function that associates to certain subsets1 of R a real,
non-negative, number (or ∞). The measurable subsets (those whose measure is defined)
must include the empty set, they must be closed under complement, and they must be
closed under countable unions and countable intersections; technically, these subsets form
a so-called σ-algebra. The empty set has measure zero, and the measure of the union of
any countable collection of pairwise disjoint sets is the sum of their measures. Probability
measures on R form one particularly important class of examples with which the reader is
undoubtedly familiar.

Now, the Lebesgue measure µ([a, b]) associated with a closed finite interval [a, b] is simply its
length, b−a. Henceforth, when we refer to “measure,” we will mean Lebesgue measure. The
measure of a finite union of disjoint finite intervals is the sum of their measures, i.e., when
a1 ≤ b1 < a2 ≤ b2 < a3 · · · ≤ bn−1 < an ≤ bn,

µ([a1, b1] ∪ [a2, b2] ∪ · · · ∪ [an, bn]) = (b1 − a1) + (b2 − a2) + · · ·+ (bn − an).

As already noted, this notion of additivity is required to extend to countably many disjoint
finite intervals: if, for i = 1, 2, 3, . . ., Ii is a finite interval, and if, whenever i 6= j we have
Ii ∩ Ij = ∅ (i.e., the intervals are pairwise disjoint), then

µ

(
∞⋃
i=1

Ii

)
=
∞∑
i=1

µ(Ii).

If the right-hand side diverges, then the measure of the union is ∞.

If E1 and E2 are measurable sets with E1 ⊆ E2, then we must have µ(E1) ≤ µ(E2). If
E1, E2, . . . is any countable collection of measurable sets (not necessarily disjoint), we must
have

µ

(
∞⋃
i=1

Ei

)
≤

∞∑
i=1

µ(Ei).

A set S ⊆ R is said to be a set of measure zero if (a) µ is defined on S and (b) µ(S) = 0.
For example, µ({a}) = µ([a, a]) = a−a = 0, i.e., every singleton set is a set of measure zero.
From the additivity property for measures, it follows that every finite or countably infinite
subset of R must also be a set of measure zero. For example, the rational numbers Q are a

1but not necessarily to all subsets
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set of measure zero. Strangely enough, it is also possible to construct uncountable subsets
of R that have zero measure2, but for the purposes of intuition, it often suffices to think of a
set of measure zero as being finite or countably infinite. Now, if S is a set of measure zero,
we will require that every subset of S is measurable, necessarily with a measure of zero. Of
course, in particular, the empty set has measure zero.

A function f : R → R is said to be equal to zero almost everywhere (abbreviated “ae”) if
f(x) = 0 for every real number x, except possibly for x contained in a set of measure zero.
When this is the case, we will write f(x) = 0 ae or f(x)

ae
= 0. For example, the function

IQ(x) =

{
1 x ∈ Q,
0 otherwise

is equal to zero almost everywhere, since it is nonzero only on rational values of x, and the
rational numbers are a set of measure zero. It is easy to show that the product of any function
with a function that is equal to zero almost everywhere is another function that is equal to
zero almost everywhere, i.e., if f(x) is any function, and if z(x)

ae
= 0, then f(x)z(x)

ae
= 0.

Two functions f1 : R → R and f2 : R → R are said to be equal almost everywhere if
f1(x)−f2(x)

ae
= 0. In other words, two real-valued functions f1(x) and f2(x) are equal almost

everywhere if {x : f1(x) 6= f2(x)} is a set of measure zero. When this is the case, we will
write f1(x) = f2(x) ae or f1(x)

ae
= f2(x).

The relation
ae
= (“equal almost everywhere”) between two functions is in fact an equivalence

relation, i.e., a relation that is reflexive, symmetric, and transitive. Indeed, this relation is ob-
viously reflexive (f(x)

ae
= f(x) for any f(x)) and symmetric (if f(x)

ae
= g(x) then g(x)

ae
= f(x)).

To show transitivity, suppose that f(x)
ae
= g(x) and g(x)

ae
=h(x). Let A = {x : f(x) 6= g(x)},

let B = {x : g(x) 6= h(x)}, and let C = {x : f(x) 6= h(x)}. By definition, A and B are sets
of measure zero; furthermore, A∪B is measurable, and since µ(A∪B) ≤ µ(A) + µ(B) = 0,
we see that A∪B is itself a set of measure zero. Finally, observe that C ⊆ A∪B. Since C is
a subset of a set (namely, A ∪ B) of measure zero, we have that C itself is a set of measure
zero, which implies that f(x)

ae
=h(x). This shows that

ae
= is indeed transitive.

A significant result of Lebesgue integration theory states that, if f1 and f2 are Lebesgue
integrable functions, then ∫ b

a

f1(x) dx =

∫ b

a

f2(x) dx for all a < b

if and only if f1(x)
ae
= f2(x). In other words, the integrals of the two functions agree (on

all possible intervals) if and only if the two functions are equal almost everywhere. Stated

2One such example is the so-called “Cantor set,” containing numbers in the interval [0, 1] whose ternary
expansion does not contain the digit “1”.
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another way: the Lebesgue integral does not (in fact, it cannot) distinguish between two
integrands in the same equivalence class. For example, for any a < b, we have∫ b

a

IQ(x) dx =

∫ b

a

0 dx = 0.

Interestingly, though the function IQ(x) is not Riemann integrable, it is Lebesgue integrable
(its integral over any finite interval is zero).

Now, let us return to Fourier transforms. Suppose that g(t) has Fourier transform G(f), and
that h(t) = g(t) a.e. Then we have that h(t) = g(t) + z(t) where z(t)

ae
= 0. Since the Fourier

transform of z(t) is Z(f) = 0, it follows that H(f) = G(f) + Z(f) = G(f). In other words,
if two functions are equal almost everywhere, then they have the same Fourier transform.

It is possible to recover a signal g(t) whose Fourier transform is G(f) via the inverse Fourier
transform:

g(t) =

∫ ∞
−∞

G(f) exp(j 2πft) df. (2)

We sometimes write g(t) = F−1[G(f)]. Note that it is not necessary for F−1[F [g(t)]] to
return g(t); however, the inverse Fourier transform of the Fourier transform of g(t) will
return a function that is equal to g(t) almost everywhere. In other words,

F−1[F [g(t)]]
ae
= g(t).

For all engineering applications, two signals that are equal almost everywhere are indeed
indistinguishable by any physical system. Thus, in defining, say, the unit rectangle function,
we can define

rect1(t) =

{
1 −1

2
≤ t < 1

2

0 otherwise
or rect2(t) =

{
1 −1

2
≤ t ≤ 1

2

0 otherwise
or rect3(t) =


1 −1

2
< t < 1

2
1
2

t ∈ {±1/2}
0 otherwise

(or any one of many other possible definitions) as is convenient, since these functions are
indeed equal almost everywhere.

The reader should note that many textbook authors (including the authors of the recom-
mended text for this course) do not carefully distinguish between ‘=’ and ‘

ae
=’ when comparing

two functions. The reader must therefore take care to understand which sense of “equality”
is intended.

2 Properties of the Fourier Transform

Of course the Fourier transform enjoys many interesting and useful properties. We summarize
the main ones here. Proofs are given in the textbook. As mentioned already, j =

√
−1 denotes
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the purely imaginary unit. If z is a complex number, then z∗ denotes its complex conjugate.

2.1 Symmetries

The following are equivalent:

g(t)
G(f) g(−t)
G(−f)

g∗(t)
G∗(−f) g∗(−t)
G∗(f)

G(t)
 g(−f)† G(−t)
 g(f)

G∗(t)
 g∗(f) G∗(−t)
 g∗(−f)

† this relation is known as time-frequency duality.

Thus g(t) = g∗(t) if and only if G(f) = G∗(−f), i.e., a signal is real-valued if and only if its
Fourier transform exhibits Hermitian symmetry.

Furthermore g(t) = g∗(t) = g(−t) (i.e., g(t) is real and even) if and only if G(f) = G∗(−f) =
G(−f) (i.e., G(f) is purely real and even).

Finally g(t) = g∗(t) = −g(−t) (i.e., g(t) is real and odd) if and only if G(f) = G∗(−f) =
−G(−f) (i.e., G(f) is purely imaginary and odd).

2.2 Time Dilation

Suppose g(t)
G(f). If a is real and nonzero, then

g(at)

1

|a|
G

(
f

a

)
.

In particular, g(−t)
G(−f).

2.3 Linearity

Suppose g1(t)
G1(f) and g2(t)
G2(f). Then, for all scalars a ∈ C,

ag1(t) + g2(t)
 aG1(f) +G2(f).

2.4 Time-shifting

If g(t)
G(f), then for all t0 ∈ R, g(t− t0)
 exp(− j 2πft0)G(f).
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2.5 Modulation

If g(t)
G(f), then for all f0 ∈ R, exp(j 2πf0t)g(t)
G(f − f0).

2.6 Area Property

If g(t)
G(f), then ∫ ∞
−∞

g(t) dt = G(0) and g(0) =

∫ ∞
−∞

G(f) df.

2.7 Derivatives

If g(t)
G(f), then
d

dt
g(t)
 j 2πf ·G(f)

and

− j 2πt · g(t)

d

df
G(f).

2.8 Convolution

The convolution of functions g and h is the function f = g ? h defined by

f(x) =

∫ ∞
−∞

g(y)h(x− y) dy.

We will write (g ? h)(x) to denote the particular value that the function f takes at value x.

If g(t)
G(f) and h(t)
H(f), then

(g ∗ h)(t)
G(f) ·H(f)

and
g(t) · h(t)
(G?H)(f).

2.9 Time Correlation

If x(t)
X(f) and y(t)
Y (f), then

RXY (τ) =

∫ ∞
−∞

x(t)y∗(t− τ) dτ
X(f)Y ∗(f).
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2.10 Rayleigh’s Energy Theorem (Parseval’s Theorem)

∫ ∞
−∞
|g(t)|2 dt =

∫ ∞
−∞
|G(f)|2 df.

3 The Dirac Delta

It is useful to introduce a “function” δ(f), the Dirac delta, that plays the role of the Fourier
transform of the signal g(t) = 1, i.e.,

1
 δ(f).

Then, since g(t) · 1 = g(t), we must have, for all f ,

G(f) = (G? δ)(f) =

∫ ∞
−∞

G(λ)δ(f − λ) dλ =

∫ ∞
−∞

δ(λ)G(f − λ) dλ.

Now let G(f) = rect(f/a). Then∫ ∞
∞

δ(λ) rect((f − λ)/a) dλ =

∫ f+a/2

f−a/2
δ(λ) dλ = rect(f/a).

As long as |f | > a/2 this integral is zero, which implies, for any pair of numbers b and c,
b < c, with c < 0 or b > 0,

∫ c

b
δ(λ) dλ = 0, whereas if b < 0 < c,

∫ c

b
δ(λ) dλ = 1. Thus we

may think of a Dirac delta δ(f) as a unit area “function” that is zero (almost) everywhere,
except at f = 0, as depicted below.

It is important not to confuse the Dirac delta with a function that is equal to zero almost
everywhere. In fact, the Dirac delta is not a “function;” as no function exists that is equal
to zero almost everywhere, yet has unit integral. A Dirac delta is really just a convenient
book-keeping device, which is nicely behaved (and has a well-defined meaning) only under
convolution (with functions). A mathematically rigorous approach to the Dirac delta is given
by the theory of distributions; see e.g., [2].

f

δ(f)

0
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4 Fourier Transform Pairs

1
 δ(f)

δ(t)
 1

δ(t− t0)
 exp(− j 2πft0) t0 ∈ R
exp(j 2πf0t)
 δ(f − f0) f0 ∈ R

exp(−at)u(t)

1

a+ j 2πf
0 < a ∈ R

rect(t)
 sinc(f)

cos(2πf0t)

1

2
δ(f − f0) +

1

2
δ(f + f0) f0 ∈ R

sin(2πf0t)

1

2 j
δ(f − f0)−

1

2 j
δ(f + f0) f0 ∈ R

sgn(t)

1

j πf
1

πt

− j sgn(f)

u(t)

1

j 2πf
+

1

2
δ(f)

5 Periodic Signals and Fourier Series

A signal g(t) is periodic with period T > 0 if, for all t ∈ R, g(t + T ) = g(t). The smallest
period of a periodic signal is called the fundamental period, T0. The reciprocal f0 = 1/T0 is
called the fundamental frequency.

Every period is an integer multiple of the fundamental period (if it exists). Among periodic
signals, only the constant signals g(t) = c do not have a fundamental period.

t

· · · · · ·

T0

T0

If g(t) is periodic with period T , then g(t) has complex-exponential Fourier series

g(t) =
∞∑

k=−∞

ck exp(j 2πkt/T )
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where

ck =
1

T

∫
T

g(t) exp(− j 2πkt/T ) dt,

where
∫
T

is the integral over any interval of length T . Then

G(f) =
∞∑

k=−∞

ckδ

(
f − k

T

)
,

a line spectrum.

f
0 1

T
2
T

3
T

− 1
T

− 2
T

− 3
T

The following Fourier transform pair is sometimes called “the picket-fence miracle;” the
Fourier transform of a delta-function train (a “picket fence”) is another such function (with
the reciprocal spacing between pickets). More precisely, for any T > 0,

∞∑
k=−∞

δ(t− kT )

1

T

∞∑
k=−∞

δ

(
f − k

T

)

t
0 T 2T 3T−T−2T−3T


 f
0 1

T
2
T

3
T

− 1
T

− 2
T

− 3
T

This Fourier transform pair is useful for understanding the sampling theorem.

6 Energy, Correlation, Orthogonality

The energy of a signal g(t) is

Eg =

∫ ∞
−∞
|g(t)|2 dt,

when this integral exists. A signal of finite energy is called an energy signal.

The correlation between two signals g1(t) and g2(t) is

〈g1(t), g2(t)〉 =

∫ ∞
−∞

g1(t)g
∗
2(t) dt. (Note the complex conjugate.)

Evidently,
Eg = 〈g(t), g(t)〉.
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Two signals g1(t) and g2(t) are said to be orthogonal, written g1(t) ⊥ g2(t), if 〈g1(t), g2(t)〉 =
0.

If g1(t) ⊥ g2(t) then

Eg1+g2 = 〈g1(t) + g2(t), g1(t) + g2(t)〉
= 〈g1(t), g1(t)〉︸ ︷︷ ︸

Eg1

+ 〈g1(t), g2(t)〉︸ ︷︷ ︸
0

+ 〈g2(t), g1(t)〉︸ ︷︷ ︸
0

+ 〈g2(t), g2(t)〉︸ ︷︷ ︸
Eg2

= Eg1 + Eg2

(and conversely).

The Cauchy–Schwarz inequality states that every pair g1(t) and g2(t) of energy signals sat-
isfies

|〈g1(t), g2(t)〉|2 ≤ 〈g1(t), g1(t)〉 · 〈g2(t), g2(t)〉,

where equality holds if and only if g2(t) = ag1(t) for some a ∈ C.

Thus, for any two energy signals g1(t) and g2(t),∣∣∣∣∫ ∞
−∞

g1(t)g
∗
2(t) dt

∣∣∣∣2 ≤ ∫ ∞
−∞
|g1(t)|2 dt ·

∫ ∞
−∞
|g2(t)|2 dt.

Let g(t)
G(f). Since Eg =
∫∞
−∞ |g(t)|2 dt =

∫∞
−∞ |G(f)|2 df , we define the energy spectral

density of g(t) as
Ψg(f) = |G(f)|2 = G(f)G∗(f).

The inverse Fourier transform of Ψg(f) is the (deterministic) autocorrelation function

Rg(τ) =

∫ ∞
−∞

g(t)g∗(t− τ) dt = g(τ) ∗ g∗(−τ).

Note, this is a function of the lag variable τ . Note that Eg = Rg(0).

If x(t) is applied to a linear time-invariant system with impulse response h(t), the output
signal is y(t) = x(t) ? h(t).

Note that

Ry(τ) = y(τ) ? y∗(−τ)

= x(τ) ? h(τ) ?(x(−τ) ∗ h(−τ))∗

= (x(τ) ? x∗(−τ)) ?(h(τ) ? h∗(−τ))

= Rx(τ) ?Rh(τ)
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If follows that
Ψy(f) = Ψx(f)|H(f)|2.

The power of a signal g(t) is defined as

Pg = lim
T→∞

1

T

∫ T/2

−T/2
|g(t)|2 dt,

when this integral exists. The power of an energy signal is zero. A signal of finite nonzero
power is called a power signal.

Let gT (t) = g(t) · rect(t/T ) and suppose gT (t)
GT (f). Then

Pg = lim
T→∞

1

T

∫ ∞
−∞
|gT (t)|2 dt

= lim
T→∞

1

T

∫ ∞
−∞
|GT (f)|2 df.

The (deterministic) power spectral density of a power signal g(t) is defined as

Sg(f) = lim
T→∞

1

T
|GT (f)|2.
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