The Subadditivity Lemma

Frank R. Kschischang

November 3, 2009

Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of non-negative real numbers with the "subadditive property"

$$
a_{i+j} \leq a_{i}+a_{j} \text { for all } i, j \geq 1
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n}
$$

exists and equals $\inf _{n \geq 1}\left(a_{n} / n\right)$.
Proof: Let

$$
L=\inf _{n \geq 1} \frac{a_{n}}{n} .
$$

For any $\epsilon>0$, choose n so that $a_{n}<n(L+\epsilon)$. (Such an n necessarily exists by definition of infimum.) Let $b=\max _{1 \leq i<n} a_{i}$. If $m \geq n$, let $m=q n+r$ with $0 \leq r<n$. From the subadditivity property,

$$
a_{n q+r}=a_{n+n+\cdots+n+r} \leq \underbrace{a_{n}+a_{n}+\cdots+a_{n}}_{q \text { times }}+a_{r} \leq q a_{n}+b .
$$

Thus

$$
\begin{aligned}
\frac{a_{m}}{m} & \leq \frac{q a_{n}}{m}+\frac{b}{m} \\
& <\frac{q n(L+\epsilon)}{m}+\frac{b}{m} \\
& \rightarrow L+\epsilon \text { as } m \rightarrow \infty
\end{aligned}
$$

since $q n / m \rightarrow 1$ as $m \rightarrow \infty$.

For example, let A_{n} denote the set of sequences - called valid n-sequences - of length n over some finite alphabet. Suppose that, in order for an $(i+j)$ sequence to be valid, it is necessary (but not necessarily sufficient) that its first i components be a valid i-sequence and its last j components be a valid j-sequence. (This situation often arises in constrained coding, for example.) Then $A_{i+j} \subseteq A_{i} \times A_{j}$, and hence $\left|A_{i+j}\right| \leq\left|A_{i} \times A_{j}\right|=\left|A_{i}\right| \cdot\left|A_{j}\right|$. Taking logarithms, i.e., defining $a_{n}=\log _{2}\left|A_{n}\right|$, we get

$$
a_{i+j} \leq a_{i}+a_{j}
$$

The subadditivity lemma guarantees that a_{n} / n converges to a limit C as $n \rightarrow \infty$. Furthermore, $\log _{2}\left|A_{n}\right| / n \geq C$ for all n, and, for any $\epsilon>0$, $\log _{2}\left|A_{n}\right| / n<C+\epsilon$ for sufficiently large n. Equivalently,

$$
\left|A_{n}\right| \geq 2^{n C} \text { for all } n
$$

and, for all $\epsilon>0$,

$$
\left|A_{n}\right| \leq 2^{n(C+\epsilon)} \text { for sufficiently large } n \text {. }
$$

Note: The subadditivity lemma is sometimes called Fekete's Lemma after Michael Fekete [1].

References

[1] M. Fekete, "Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten," Mathematische Zeitschrift, vol. 17, pp. 228-249, 1923.

