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Abstract

The deterministic network calculus offers an elegant framework for determining delays and backlog
in a network with deterministic service guarantees to individual traffic flows. This paper addresses the
problem of extending the network calculus to a probabilistic framework with statistical service guaran-
tees. Here, the key difficulty relates to expressing, in a statistical setting, an end-to-end (network) service
curve as a concatenation of per-node service curves. The notion of aneffective service curveis developed
as a probabilistic bound on the service received by an individual flow. It is shown that per-node effective
service curves can be concatenated to yield a network effective service curve.
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1 Introduction

The deterministic network calculus recently evolved as a fundamental theory for quality of service (QoS)
networks, and has provided powerful tools for reasoning about delay and backlog in a network with service
guarantees to individual traffic flows. Using the notion of arrival envelopes and service curves [12], several
recent works have shown that delay and backlog bounds can be concisely expressed in a min-plus algebra
[1, 5, 8].

However, the deterministic view of traffic generally overestimates the actual resource requirements of a
flow and results in a low utilization of available network resources. This motivates the search for a statistical
network calculus that can exploit statistical multiplexing, while preserving the algebraic aspects of the deter-
ministic calculus. The problem of developing a probabilistic network calculus has been the subject of several
studies. Kurose [16] uses the concept of stochastic ordering and obtains bounds on the distribution of delay
and buffer occupancy of a flow in a network with FIFO scheduling. Chang [7] presents probabilistic bounds
on output burstiness, backlog and delays in a network where the moment generating functions of arrivals
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are exponentially bounded. Different bounds for stochastically bounded arrivals are derived by Yaron and
Sidi [22] and Starobinski and Sidi [21]. The above results can be used to determine stochastic end-to-end
performance bounds. Results on statistical end-to-end delay guarantees in a network have been obtained for
specific scheduling algorithms, such as EDF [19, 20], and GPS[15], and a class of coordinated scheduling
algorithms [2, 17]. Several researchers have considered probabilistic formulations of service curves. Cruz
defines a probabilistic service curve which violates a givendeterministic service curve according to a certain
distribution [13]. Chang (see [9], Chp. 7) presents exercises which hint at a statistical network calculus for
the class of ‘dynamic F-servers’. Finally, Knightly and Qiu[18] derive ‘statistical service envelopes’ as
time-invariant lower bounds on the service received by an aggregate of flows.

With exception of ([9], Chp. 7), none of the cited works express statistical end-to-end performance
bounds in a min-plus algebra, and it has been an open questionwhether a statistical network calculus can be
developed in this setting. The contribution of this paper isthe presentation of a statistical network calculus
that uses the min-plus algebra [1, 5, 8]. The advantage of using the min-plus algebra is that end-to-end
guarantees can be expressed as a simple concatenation of single node guarantees, which, in turn, can be
exploited to achieve simple probabilistic bounds.

We define aneffective service curve, which is, with high certainty, a probabilistic bound on theservice
received by a single flow. We will show that the main results ofthe deterministic network calculus carry
over to the statistical framework we present. Our derivations reveal a difficulty that occurs when calculating
probabilistic service guarantees for multiple nodes. We show that the problem can be overcome either by
adding assumptions on the traffic at nodes or by modifying thedefinition of the effective service curve. The
results in this paper are set in a continuous time model with fluid left-continuous traffic arrival functions,
as is common for network delay analysis in the deterministicnetwork calculus. A node represents a router
(or switch) in a network. Packetization delays and other effects of discrete-sized packets, such as the non-
preemption of packet transmission, are ignored. We refer to[9] for the issues involved in relaxing these
assumptions for the analysis of packet networks. When analyzing delays in a network, all processing over-
head and propagation delays are ignored. As in the deterministic network calculus, arrivals from a traffic
flow to the network satisfy deterministic upper bounds, which are enforced by a deterministic regulator.

The remaining sections of this paper are structured as follows. In Section 2, we review the notation and
key results of the deterministic network calculus. In Section 3 we introduce effective service curves and
present the results for a statistical network calculus in terms of effective service curves. In Section 4 we
provide a discussion that motivates our revised definition of an effective service curve. In Section 5, we
present brief conclusions.

2 Network Calculus Preliminaries

The deterministic network calculus, which was created in [10, 11] and fully developed in the last decade,
provides concise expressions for upper bounds on the backlog and delay experienced by an individual flow
at one or more network nodes. An attractive feature of the network calculus is that end-to-end bounds can
often be easily obtained from manipulations of the per-nodebounds.

In this section we review some notation and results from the deterministic network calculus. This section
is not a comprehensive summary of the network calculus and werefer to [1, 6, 9] for a complete discussion.
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2.1 Operators

Much of the formal framework of the network calculus can be elegantly expressed in a min-plus algebra [3],
complete with convolution and deconvolution operators forfunctions. Generally, the functions in this paper
are non-negative, non-decreasing, and left-continuous, defined over time intervals[0, t]. We assume for a
given functionf thatf(t) = 0 if t ≤ 0.

Theconvolutionf ∗ g of two functionsf andg, is defined as

f ∗ g(t) = inf
τ∈[0,t]

{f(t − τ) + g(τ)} . (1)

Thedeconvolutionf ⊘ g of two functionsf andg is defined as

f ⊘ g(t) = sup
τ≥0

{f(t + τ) − g(τ)} . (2)

For τ ≥ 0, theimpulse functionδτ is defined as

δτ (t) =

{

∞ , if t > τ ,

0 , if t ≤ τ .
(3)

If f is nondecreasing, we have the formulas

f(t − τ) = f ∗ δτ (t) , (4)

f(t + τ) = f ⊘ δτ (t) . (5)

We refer to [3, 6, 9] for a detailed discussion of the properties of the min-plus algebra and the properties
of the convolution and deconvolution operators.

2.2 Arrival functions and Service Curves

Let us consider the traffic arrivals to a single network node.The arrivals of a flow in the time interval[0, t)
are given in terms of a functionA(t). The departures of a flow from the node in the time interval[0, t) are
denoted byD(t), with D(t) ≤ A(t). The backlog of a flow at timet, denoted byB(t), is given by

B(t) = A(t) − D(t) . (6)

The delay at timet, denoted asW (t), is the delay experienced by an arrival which departs at timet, given
by

W (t) = inf{d ≥ 0 | A(t − d) ≤ D(t)} . (7)

We will use A(x, y) and D(x, y) to denote the arrivals and departures in the time interval[x, y), with
A(x, y) = A(y) − A(x) andD(x, y) = D(y) − D(x).

We make the following assumptions on the arrival functions.

(A1) Non-Negativity.The arrivals in any interval of time are non-negative. That is, for anyx < y, we have
A(y) − A(x) ≥ 0.
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(A2) Upper Bound.The arrivalsA of a flow are bounded by a subadditive1 functionA∗, called thearrival
envelope,2 such thatA(t + τ) − A(t) ≤ A∗(τ) for all t, τ ≥ 0.

A minimum service curvefor a flow is a functionS which specifies a lower bound on the service given
to the flow such that, for allt ≥ 0,

D(t) ≥ A ∗ S(t) . (8)

A maximum service curvefor a flow is a functionS which specifies an upper bound on the service given
to a flow such that, for allt ≥ 0,

D(t) ≤ A ∗ S(t) . (9)

Minimum service curves play a larger role in the network calculus since they provide service guarantees.
Therefore, we, as the related literature, often refer to a minimum service curve simply as a service curve. If
no maximum service curve is explicitly given, one can useS(t) = Ct, whereC is the link capacity.

The following two theorems summarize some key results of thedeterministic network calculus. These
results have been derived in [1, 5, 8]. We follow the notationused in [1].

Theorem 1 Deterministic Calculus [1, 5, 8]. Given a flow with arrival envelopeA∗ and with minimum
service curveS, the following hold:

1. Output Envelope. The functionD∗ = A∗⊘S is an envelope for the departures, in the sense that, for
all t, τ ≥ 0,

D∗(t) ≥ D(t + τ) − D(τ) . (10)

2. Backlog Bound. An upper bound for the backlog, denoted bybmax, is given by

bmax = A∗ ⊘ S(0) . (11)

3. Delay Bound. An upper bound for the delay, denoted bydmax, is given by

dmax = inf {d ≥ 0 | ∀t ≥ 0 : A∗(t − d) ≤ S(t)} . (12)

The next theorem states that the service curves of a flow at thenodes on its route can be concatenated to
define a network service curve, which expresses service guarantees offered to the flow by the network as a
whole.

Theorem 2 Concatenation of Deterministic Network Service Curves [1, 5, 8]. Suppose a flow passes
throughH nodes in series, as shown in Figure 1, and suppose the flow is offered minimum and maximum
service curvesSh andS

h
, respectively, at each nodeh = 1, . . . ,H. Then, the sequence of nodes provides

minimum and maximum service curvesSnet andS
net

, which are given by

Snet = S1 ∗ S2 ∗ . . . ∗ SH , (13)

S
net

= S
1
∗ S

2
∗ . . . ∗ S

H
. (14)

1A functionf is subadditiveif f(x + y) ≤ f(x) + f(y), for all x, y ≥ 0, or, equivalently, iff(t) = f ∗ f(t).
2 A function E is called anenvelopefor a functionf if f(t + τ ) − f(τ ) ≤ E(t) for all t, τ ≥ 0, or, equivalently, if

f(t) ≤ E ∗ f(t), for all t ≥ 0.
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Node
1

Node
2

Node
H...

S1 S2 SH

A=A1 D1=A2 D2 AH DH=D

Figure 1: Traffic of a flow through a set ofH nodes. LetAh andDh denote the arrival and departures at theh-th node, with
A1 = A, Ah = Dh−1 for h = 2, . . . , H andDH = D.

Snet andS
net

will be referred to asnetwork service curves, and Eqs. (13)–(14) will be called theconcate-
nation formulas.

With Theorems 1 and 2 network service curves can be used to determine bounds on delay and backlog
for individual flows in a network. There are many additional properties and refinements that have been
derived for the deterministic calculus. However, in this paper we will concern ourselves only with the
results above.

3 Statistical Network Calculus

We now approach the network calculus in a probabilistic framework. Arrivals and departures from a flow
to the network in the time interval[0, t) are described by random processesA(t) andD(t) satisfying as-
sumptions (A1) and (A2). The random processes are defined over an underlying joint probability space that
we suppress in our notation. The statistical network calculus makes service guarantees for individual flows,
where each flow is allocated a probabilistic service in the form of an ‘effective service curve’.

Given a flow with arrival processA, a (minimum) effective service curveis a nonnegative functionSε

that satisfies for allt > 0,

Pr
{

D(t) ≥ A ∗ Sε(t)
}

≥ 1 − ε . (15)

Note that the effective service curve is a non-random function. We omit the corresponding definition of
amaximum effective service curve.

The following theorem is a probabilistic counterpart to Theorem 1.

Theorem 3 Statistical Calculus. Given a flow with arrival processA satisfying assumptions (A1)–(A2),
and given an effective service curveSε, the following hold:

1. Output Envelope. The functionA∗ ⊘ Sε is a probabilistic bound for the departures on[0, t], in the
sense that, for allt, τ > 0,

Pr {D(t, t + τ) ≤ A∗ ⊘ Sε(τ)} ≥ 1 − ε . (16)

2. Backlog Bound. A probabilistic bound for the backlog is given bybmax = A∗ ⊘ Sε(0), in the sense
that, for all t > 0,

Pr {B(t) ≤ bmax} ≥ 1 − ε . (17)
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3. Delay Bound. A probabilistic bound for the delay is given by,

dmax = inf {d ≥ 0 | ∀t ≥ 0 : A∗(t − d) ≤ Sε(t)} , (18)

in the sense that, for allt > 0,

Pr {W (t) ≤ dmax} ≥ 1 − ε . (19)

By settingε = 0 in Theorem 3, we can recover the bounds of Theorem 1 with probability one.

Proof. The proof uses on several occasions that the inequality

A(t + τ) − A ∗ g(t) ≤ A∗ ⊘ g(τ) (20)

holds for any nonnegative functiong and for allt, τ ≥ 0. To see this inequality, we compute

A(t + τ) − A ∗ g(t) = A(t + τ) − inf
x∈[0,t]

{

A(t − x) + g(x)
}

(21)

= sup
x∈[0,t]

{

A(t − x, t + τ) − g(x)
}

(22)

≤ sup
x≥0

{

A∗(τ + x) − g(x)
}

(23)

= A∗ ⊘ g(τ) . (24)

Eqn. (21) expands the convolution operator. Eqn. (22) takesA(t + τ) inside the infimum and uses that
A(t + τ) − A(t − x) = A(t − x, t + τ). Eqn. (23) uses thatA(t − x, t + τ) ≤ A∗(x + τ) for all x ≤ t

by definition of an arrival envelope, and extends the range ofthe supremum. Finally, Eqn. (24) uses the
definition of the deconvolution operator.

1. Proof of the Output Bound.For any fixedt, τ > 0, we have

1 − ε ≤ Pr {D(t) ≥ A ∗ Sε(t)} (25)

= Pr {D(t, t + τ) ≤ D(t + τ) − A ∗ Sε(t)} (26)

≤ Pr {D(t, t + τ) ≤ A(t + τ) − A ∗ Sε(t)} (27)

≤ Pr {D(t, t + τ) ≤ A∗ ⊘ Sε(τ)} . (28)

Eqn. (25) holds by the definition of the effective service curve Sε. Eqn. (26) uses thatD(t, t + τ) =

D(t + τ)−D(t). Eqn. (27) uses that departures in[0, t) cannot exceed arrivals, that is,D(t) ≤ A(t) for all
t ≥ 0. Finally, Eqn. (28) uses thatA(t + τ) − A ∗ Sε(t) ≤ A∗ ⊘ Sε(τ) by Eqn. (20).

2. Proof of the Backlog Bound.SinceB(t) = A(t) − D(t) and with the definition of the effective service
curve, we can write

1 − ε ≤ Pr {D(t) ≥ A ∗ Sε(t)} (29)

= Pr {B(t) ≤ A(t) − A ∗ Sε(t)} (30)

≤ Pr {B(t) ≤ A∗ ⊘ Sε(0)} . (31)

Eqn. (29) holds by definition of the effective service curve.Eqn. (30) uses thatB(t) = A(t) − D(t), and
Eqn. (31) uses thatA(t) − A ∗ Sε(t) ≤ A∗ ⊘ Sε(0) by Eqn. (20).
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3. Proof of the Delay Bound.The delay bound is proven by estimating the probability thatthe outputD(t)

exceeds the arrivalsA(t − dmax).

1 − ε ≤ Pr {D(t) ≥ A ∗ Sε(t)} (32)

≤ Pr {D(t) ≥ A ∗ (A∗ ∗ δdmax
)(t)} (33)

≤ Pr {D(t) ≥ (A ∗ A∗) ∗ δdmax
)(t)} (34)

≤ Pr {D(t) ≥ A(t − dmax)} . (35)

Eqn. (32) uses the definition of the effective service curveSε. Eqn. (33) uses the definition of the impulse
function in Eqn. (4) and the definition ofdmax in Eqn. (18). Eqn. (34) follows from the associativity of the
convolution, and Eqn. (34) uses the definition of an arrival envelope.

2

A probabilistic counterpart to Theorem 2 can be formulated as follows.

Theorem 4 Concatenation of Effective Service Curves. Consider a flow that passes throughH network
nodes in series, as shown in Figure 1. Assume that effective service curves are given by nondecreasing
functionsSh,ε at each node (h = 1, . . . ,H). Then, for anyt ≥ 0,

Pr
{

D(t) ≥ A ∗
(

S1,ε ∗ . . . ∗ SH,ε ∗ δ(H−1)a

)

(t)
}

≥ 1 − ε

(

1 + (H−1)
t

a

)

, (36)

wherea > 0 is an arbitrary parameter.

Again, we can can recover the deterministic result from Theorem 2. By settingε = 0, the results in
Eqn. (36) hold with probability one. Then by lettinga −→ 0, we obtain Theorem 2 almost surely.

Proof. We proceed in three steps. In the first step, we modify the effective service curve to give lower
bounds on the departures simultaneously for all times in theentire interval[0, t]. In the second step, we
perform a deterministic calculation. The proof concludes with a simple probabilistic estimate.

Step 1: Uniform probabilistic bound on[0, t]. Suppose thatSε is a nondecreasing effective service curve,
that is

∀x ∈ [0, t] : Pr
{

D(x) ≥ A ∗ Sε(x)
}

≥ 1 − ε . (37)

We will show that then, for any choice ofa > 0,

Pr
{

∀x ∈ [0, t] : D(x) ≥ A ∗ Sε(x − a)
}

≥ 1 − ε
t

a
. (38)

To see this, fixa > 0, setxj = ja, and consider the events

Ej =
{

D(xj) ≥ A ∗ Sε(xj)
}

, j = 1, . . . , n − 1, (39)

wheren = ⌈ℓ/a⌉ is the smallest integer no larger thant/a. Let x ∈ [0, t] be arbitrary, and letj the largest
integer withxj ≤ x, so thatx − xj ≤ a. If Ej occurs, then

D(x) ≥ D(xj) ≥ A ∗ Sε(xj) ≥ A ∗ Sε(x − a) , (40)
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where we have used the fact thatSε is nondecreasing in the last step. It follows that

Pr
{

∀x ∈ [0, t] : D(x) ≥ A ∗ Sε(x − a)
}

≥ Pr
{

∀j = 1, . . . , n : D(xj) ≥ A ∗ Sε(xj)
}

(41)

= Pr
{

⋂

0<j≤n

Ej

}

(42)

≥ 1 − nε , (43)

which proves Eqn. (38). Thus, the assumptions of the theoremimply that

Pr

{

∀x ∈ [0, t] : Dh(x) ≥ Ah ∗ Sh,ε ∗ δ(x) , h < H

DH(t) ≥ Ah ∗ SH,ε(t) , h = H

}

≥ 1 − ε

(

1 + (H − 1)
t

a

)

. (44)

Step 2: A deterministic argument.Suppose that, for a particular sample path,
{

∀x ∈ [0, t] : Dh(x) ≥ Ah ∗ Sh,ε ∗ δ(x) , h < H ,

DH(t) ≥ Ah ∗ SH,ε(t) , h = H .
(45)

Inserting the first line of Eqn. (45) withh = H − 1 into the second line yields

DH(t) ≥ inf
x∈[0,t]

{

inf
y∈[0,x]

{

AH−1(t − x − y) +
(

SH−1,ε ∗ δa

)

(y)
}

+ SH,ε(x)
}

(46)

= A ∗
(

SH−1,ε ∗ SH,ε ∗ δa

)

(t) . (47)

An induction over the number of nodes shows that Eqn. (45) implies thatA = A1 andD = Dh satisfy

D(t) ≥ A ∗
(

S1,ε ∗ . . . ∗ SH,ε ∗ δ(H−1)a

)

(t) . (48)

Step 3: Conclusion. We estimate

Pr
{

D(t) ≥ A ∗
(

S1,ε ∗ . . . ∗ SH,ε ∗ δ(H−1)a

)

(t)
}

(49)

≥ Pr{ Eqn. (45) is satisfied} (50)

≥ 1 − ε

(

1 + (H−1)ε
t

a

)

. (51)

The first inequality follows from the fact that Eqn. (45) implies Eqn. (48). The second inequality merely
uses Eqn. (44). 2

Since the bound in Eqn. (36) deteriorates ast becomes large, Theorem 4 is of limited practical value.
To explain why Eqn. (36) deteriorates, consider a network asshown in Figure 1, withH = 2 nodes. An
effective service curveS2,ε in the sense of Eqn. (15) at the second node guarantees that, for any given time
t, the departures from this node are with high probability bounded below by

D2(t) ≥ A2 ∗ S2,ε(t) = inf
τ∈[0,t]

{

A2(t − τ) + S2,ε(τ)
}

. (52)

Suppose that the infimum in Eqn. (52) is assumed at some valueτ̂ ≤ t. Since the departures from the first
node are random, even if the arrivals to the first node satisfythe deterministic boundA∗, τ̂ is a random
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variable. An effective service curveS1,ε at the first node guarantees that for any arbitrary but fixed timex,
the arrivalsA2(x) = D1(x) to the second node are with high probability bounded below by

D1(x) ≥ A1 ∗ S1,ε(x) . (53)

Sinceτ̂ is a random variable, we cannot simply evaluate Eqn. (53) forx = t− τ̂ and use the resulting bound
in Eqn. (52). Furthermore, there is, a priori, no time-independent bound on the distribution ofτ̂ . Note that
the above issue does not arise in the deterministic calculus, since deterministic service curves make service
guarantees that hold for all values ofx.

We conclude that, in a probabilistic setting, additional assumptions are required to establish time-
independent bounds on the range of the infimum, and, in that way, obtain probabilistic network service
curves that do not deteriorate with time. One example of suchan assumption is to add the condition that

Pr

{

D(t) ≥ inf
x∈[0,T ]

{

A(t − x) + Sε(x)
}

}

≥ 1 − ε . (54)

This condition imposes a limit on the range of the convolution. The condition can be satisfied for a given ef-
fective service curveSε and arrival envelopeA∗ by choosingT such thatA∗(T ) ≤ Sε(T ), which guarantees
that

A ∗ Sε(t) = inf
x∈[0,T ]

{

A(t − x) + Sε(x)
}

. (55)

Theorem 5 Assume that all hypotheses of Theorem 4 are satisfied, and additionally, that there exists a
numberT ≥ 0 such thatAh andSh,ε satisfy Eqn. (54) forh = 1, . . . ,H. Then, for any choice ofa > 0,

Snet,ε′ = S1,ε ∗ . . . ∗ SH,ε ∗ δ(H−1)a (56)

is an effective network service curve, with violation probability bounded by

ε′ ≤ Hε

(

1 + (H−1)
T + a

2a

)

. (57)

More precisely,Snet,ε′ satisfies

Pr

{

D(t) ≥ inf
x∈[0,H(T+a)]

{

A(t − x) + Snet,ε′(x)
}

}

≥ 1 − ε′ . (58)

The bounds of this network service curve deteriorate with the number of nodesH, but, different from
Theorem 4, the bounds are not dependent ont. Rather the bounds depend on a time scaleT as used in
Eqn. (54). A key issue, which is not addressed in this paper, relates to establishingT for an arbitrary node
in the network.
Proof. The proof is analogous to the proof of Theorem 4, and proceedsin the same three steps.

Step 1: Uniform probabilistic bounds on intervals of lengthℓ. Suppose thatSε is a nondecreasing effective
service curve satisfying Eqn. (54), and letℓ > 0. Fix a > 0, setxj = t − ℓ + ja, and consider the events

Ej =

{

D(xj) ≥ inf
y∈[0,T ]

{

A(xj − y) + Sε(y)
}

}

, j = 0, . . . , n − 1, (59)
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wheren = ⌈ℓ/a⌉. If x ∈ [xj, xj+1) and the eventEj occurs, then a computation analogous to Eqn. (40)
shows that

D(x) ≥ inf
y∈[0,T+a]

{

A(x − y) +
(

Sε ∗ δa(y)
)}

. (60)

We conclude as in Eqs. (41)-(43) that

Pr

{

∀x ∈ [t − ℓ, t] : D(x) ≥ inf
y∈[0,T+a]

{

A(x − y) +
(

Sε ∗ δa

)

(y)
}

}

≥ Pr
{

⋂

0≤j<n

Ej

}

(61)

≥ 1 − ε

⌈

ℓ

a

⌉

. (62)

Step 2: A deterministic argument.A computation analogous to Eqs. (46)-(48) shows that






∀x ∈ [t − (H−h), t] : Dh(x) ≥ inf
y∈[0,T+a]

{

Ah(x − y) +
(

Sh,ε ∗ δa

)

(y)
}

h < H,

DH(t) ≥ inf
y∈[0,T+a]

{

AH(t − y) + SH,ε(y)
}

h = H ,
(63)

implies

D(t) ≥ inf
x∈[0,H(T+a)]

{A(t − x) + Snet,ε′(x)} . (64)

Step 3: Conclusion. Combining Steps 1 and 2, we obtain

Pr
{

D(t) ≥ inf
x∈[0,H(T+a)]

{A(t − x) + Snet,ε′(x)}
}

≥ Pr
{

Eqn. (63) is satisfied
}

(65)

≥ 1 − ε

(

1 +

H−1
∑

h=1

⌈

(H−h)T

a

⌉

)

(66)

≥ 1 − ε′ . (67)

Here, Eqn. (65) follows from Step 2, and Eqn. (66) follows from the assumptions by choosingℓh = (H−h+1)

for h = 1, . . . ,H − 1 in Step 1. 2

4 Statistical Calculus with Adaptive Service Guarantees

We next define a class of effective service curves where the range of the infimum is bounded independently
of time, and then give conditions under which these service curves are also effective service curves in the
sense of Eqn. (15). The resulting effective service curves are valid without adding assumptions on a specific
arrival distribution or service discipline. Within this context, we obtain an effective network service curve,
where the convolution formula has a similarly simple form asin the deterministic network calculus.

4.1 (Deterministic) Adaptive Service Curves

We define a modified convolution operator by setting, for anyt0 ≤ t,

A ∗t0 g(t) = min
{

g(t − t0), B(t0) + inf
τ≤t−t0

{

A(t0, t − τ) + g(τ)
}

}

. (68)
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Figure 2: Illustration for the modified convolution operator. The operator∗t0 uses the backlog at timet0 and the arrivals in the
interval [t0, t].

The essential property of this modified operator is that the range over which the infimum is taken is limited
to the interval[t0, t]. Note that the functionA ∗t0 g(t) depends on the backlog at timet0 as well as on the
arrivals in the interval[t0, t]. It can be written equivalently as

A ∗t0 g(t) = min
{

g(t − t0), inf
τ≤t−t0

{

A(t − τ) + g(τ)
}

− D(t0)
}

. (69)

The usual convolution operator is recovered by settingt0 = 0.
We now reconsider the definition of a service curve in a deterministic regime. We introduce a revised

definition of a (deterministic) service curve, which is presented in [1, 14], and is referred to asadaptive
service curvein [6]. A (minimum) adaptive service curveis defined as a functionS which specifies a lower
bound on the service given to a flow such that, for allt, t0 ≥ 0, with t0 ≤ t,

D(t0, t) ≥ A ∗t0 S(t) . (70)

A maximum adaptive service curve can be defined accordingly.3 Eqn. (70) is equivalent to requiring thatS

satisfies Eqn. (8) for the time-shifted arrivals and departures

Ã(x) = B(t0) + A(t0, t0 + x) , D̃(x) = D(t0, t0 + x) . (71)

Figure 2 illustrates the time-shifted arrivals. Many service curves with applications in packet networks, such
as shapers, schedulers with delay guarantees, and rate-controlled schedulers such as GPS, can be expressed
in terms of adaptive service curves. By settingt0 = 0, one can see that each adaptive service curve is a
service curve. However, the converse does not hold [6].

We next define a(minimum)ℓ-adaptive service curve, denoted bySℓ, as a function for which Eqn. (70)
is satisfied whenevert − t0 ≤ ℓ. If ℓ = ∞, we obtain anadaptive service curve, and drop the superscript
in the notation. The difference between a service curve according to Eqn. (8) and anℓ-adaptive service
curve is that the former involves arrivals over the entire interval [0, t], while the latter uses information

3We note that the adaptive service curve in [6] is more generaland is defined usingD(t0, t) ≥ min
{

f(t − t0), B(t0) +

infτ≤t−t0

{

A(t0, t − τ ) + g(τ )
}

}

. In our context we setf = g.
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about arrivals and departures in intervals[t0, t] whose length does not depend ont. Performing a time shift
as in Eqn. (71) and applying Theorem 2 shows that the convolution of ℓ-adaptive service curves yields an
ℓ-adaptive network service curve.

The following lemma shows that forℓ sufficiently large, but finite, anℓ-adaptive service curve is a
service curve in the sense of Eqn. (8). In particular, the conclusions of Theorems 1 and 2 hold for such
service curves.

Lemma 1 Suppose that the arrival functionA of a flow has arrival envelopeA∗. LetSℓ be anℓ-adaptive
service curve. If

∃t ∈ [0, ℓ] : A∗(t) ≤ Sℓ(t) , (72)

thenS = Sℓ is an adaptive service curve for intervals of arbitrary length. In particular,S satisfies Eqn. (8)
for all t ≥ 0.

The proof of the lemma is given in the appendix.

4.2 Effective Adaptive Service Curves

Next we introduce a probabilistic version of theℓ-adaptive service curve. We define aneffectiveℓ-adaptive
service curveto be a nonnegative functionSℓ,ε such that

Pr
{

D(t0, t) ≥ A ∗t0 S
ℓ,ε(t)

}

≥ 1 − ε (73)

for all t0, t ≥ 0 with t − t0 ≤ ℓ. If ℓ = ∞, we call the resulting function aneffective adaptive service
curve, and drop the superscript. Note that the infimum in the convolution on the right hand side of Eqn. (73)
ranges over an interval of length at mostℓ. With this bound on the range of the infimum, we derive the
following effective network service curve. Technically,ℓ plays a similar role as the boundT on the range of
the convolution in Eqn. (54).

Theorem 6 Concatenation of Effective ℓ-Adaptive Service Curves. Consider a flow passing through
nodes numberedh = 1, . . . H, and assume that, at each node, an effectiveℓ-adaptive service curve is given
by a nondecreasing functionSh,ℓ,εh. Then the function

Snet,ℓ,ε′ = S1,ℓ,ε ∗ . . . ∗ SH,ℓ,ε ∗ δ(H−1)a(t) (74)

is an effectiveℓ-adaptive network service curve for any choice ofa > 0, with violation probability bounded
by

ε′ ≤ ε

(

1 + (H−1)

⌈

ℓ

a

⌉)

. (75)

Proof. We need to show that, for anyt0, t with t − t0 ≤ ℓ and any choice of the parametera, we have

Pr
{

D(t0, t) ≥ A ∗t0 S
net,ℓ,Hεℓ/a(t)

}

≥ 1 − ε′ . (76)

Performing a time shift as in Eqn. (71), we may assume withoutloss of generality thatt0 = 0 andt ∈ [0, ℓ].
The claim now follows immediately from Theorem 4.
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Even though the concatenation formula in Theorem 6 results in a significant improvement over Theo-
rem 4, a drawback of Theorem 6 is that the construction of the network service curve results in a degradation
of the violation probabilityε′ and introduces a time shiftδ(H−1)a, which grow significantly whenℓ andH

become large. To avoid this successive degradation of the service guarantees, we further strengthen the
effective service curve. We define astrong effective adaptive service curvefor intervals of lengthℓ to be a
functionT ℓ,ε which satisfies for any intervalIℓ of lengthℓ,

Pr
{

∀[t0, t] ⊆ Iℓ : D(t0, t) ≥ A ∗t0 T
ℓ,ε(t)

}

≥ 1 − ε . (77)

This definition differs from the definition of an effective service curve in Eqn. (15) in two ways: it uses
the modified convolution operator, and it provides lower bounds on the departures simultaneously in all
subintervals of an intervalIℓ.

With the strong effective adaptive network service curve, we obtain a probabilistic version of a network
service curve, with a similar concatenation formula as in the deterministic calculus. This is the content of
the following theorem.

Theorem 7 Concatenation of Strong Effective Adaptive Service Curves. Consider a flow that passes
throughH network nodes in series. Assume that the functionsT h,ℓ,ε define strong effective adaptive service
curves for intervals of lengthℓ at each node (h = 1, . . . ,H). Then

T net,ℓ,Hε(t) = T 1,ℓ,ε ∗ . . . ∗ T H,ℓ,ε(t) (78)

is a strong effective adaptive service curve for intervals of lengthℓ.

Note the similarity of the convolution formula in Eqn. (78) with the corresponding expression in the
deterministic calculus. Thus, in the statistical calculus, obtaining a statistical end-to-end service curve via
a simple convolution operation comes at the price of significant modifications to the definition of a service
curve.

Proof. We need to show thatT net,ℓ,Hε satisfies for any intervalIℓ of lengthℓ

Pr
{

∀[t0, t] ⊆ Iℓ : D(t0, t) ≥ A ∗t0 T
net,ℓ,Hε(t)

}

≥ 1 − Hε . (79)

The argument closely follows Steps 2 and 3 from the proof of Theorem 4. If, for a particular sample path,

∀[t0, x] ⊆ Iℓ, ∀h = 1, . . . ,H : Dh(t0, x) ≥ Ah ∗t0 T
h,ℓ,ε(x) , (80)

then, for any fixed[t0, t] ⊆ Iℓ, the time-shifted arrivals and departures defined by Eqn. (71) satisfy

∀x ≤ t − t0, ∀h = 1, . . . ,H : D̃h(x) ≥ Ãh ∗ T h,ℓ,ε(x) . (81)

By Step 2 of proof of Theorem 4, this implies

D̃(t) ≥ Ã ∗
(

T 1,ℓ,ε ∗ . . . ∗ T H,ℓ,ε
)

(t) . (82)
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Reversing the time shift and using that[t0, t] ⊆ Iℓ was arbitrary, we arrive at

∀[t0, t] ⊆ Iℓ : D(t) ≥ A ∗t0

(

T 1,ℓ,ε ∗ . . . ∗ T H,ℓ,ε
)

(t) . (83)

We conclude that

Pr
{

∀[t0, t] ⊆ Iℓ : D(t0, t) ≥ A ∗t0 T
net,ℓ,Hε(t)

}

(84)

≥ Pr
{

∀[t0, x] ⊆ Iℓ, ∀h = 1, . . . H : Dh(t0, x) ≥ Ah ∗t0 T
h,ℓ,ε(x)

}

(85)

≥ 1 − Hε . (86)

The first inequality follows from the definition ofT net,ℓ,Hε and the fact that Eqn. (80) implies Eqn. (83),
and the second inequality uses the defining property of strong effectiveℓ-adaptive service curves. 2

A comparison of the definition of the strong effective adaptive service curve in Eqn. (77) with Eqn. (73)
shows that a strong effective adaptive service curve is an effectiveℓ-adaptive service curve which provides
service guarantees simultaneously on all subintervals of an interval of lengthℓ. A comparison of Theorem 7
with Theorems 4, 5, and 6 shows that the more stringent strongeffective adaptive service curve expresses
the statistical calculus more concisely. Therefore, unless additional assumptions are made on the arrival
processes and the service curves, the network calculus withstrong effective adaptive service curves offers
the preferred framework.

Our next result shows how to construct a strong effective adaptive service curve from an effective adap-
tive service curve. The lemma indicates that the choice of working with a strong effective adaptive service
curve rather than an effective adaptive service curve is purely a matter of technical convenience.

Lemma 2 If Sℓ,ε is a nondecreasing function which defines an effectiveℓ-adaptive service curve for a flow,
then, for any choice ofa > 0, the function

T ℓ,ε′ = Sℓ,ε ∗ δa (87)

is a strong effective service curve for intervals of lengthℓ, with violation probability given by

ε′ = ⌈2ℓ/a⌉2ε/2 . (88)

Proof. We will show that for any intervalIℓ of lengthℓ,

∀[t0, t] ⊆ Iℓ : Pr
{

D(t0, t) ≥ A ∗t0 S
ℓ,ε(t)

}

≥ 1 − ε (89)

implies

Pr
{

∀[t0, t] ⊆ Iℓ : D(t0, t) ≥ A ∗t0 T
ℓ,ε′(t)

}

≥ 1 − ε′ , (90)

whereε′ andT ℓ,ε′ are as given in the statement of the lemma. By performing a suitable time shift as in
Eqn. (71), we may assume without loss of generality thatIℓ = [0, ℓ].

The strategy is similar to the construction of strong effective envelopes from effective envelopes in [4],
and uses the same techniques as the first step in the proof of Theorem 4. We first use the fact that the de-
partures satisfy the positivity assumption (A1) to translate service guarantees given on a subinterval into a
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service guarantee on a longer interval. In the second step, we establish probabilistic bounds for the depar-
tures simultaneously in a finite number of subintervalsIij of Iℓ, and then bound the departures in general
subintervals ofIℓ from below in terms of the departures in theIij .

Step 1: A property of the modified convolution.Let g be a nondecreasing function, let[t1, t2] ⊆ [t0, t], and
a ≥ (t − t0) − (t2 − t1). Then

D(t1, t2) ≥ A ∗t1 g(t2) (91)

implies

D(t0, t) ≥ A ∗t0

(

g ∗ δa)(t) . (92)

To see this, note that Eqn. (91) implies that either

D(t1, t2) ≥ g(t2 − t1) , (93)

or

D(t1, t2) ≥ B(t1) + inf
τ∈[t1,t2]

{A(t1, τ) + g(t2 − τ)} . (94)

If Eqn. (93) holds, then

D(t0, t) ≥ D(t1, t2) ≥ g(t2 − t1) ≥ g ∗ δa(t − t0) ≥ A ∗t0

(

g ∗ δa)(t) , (95)

proving Eqn. (92) in this case. We have used thatg is nondecreasing in the last inequality. If Eqn (94) holds,
then

D(t0, t) ≥ D(t0, t1) + B(t1) + inf
τ∈[t1,t2]

{A(t1, τ) + g(t2 − τ)} (96)

= B(t0) + inf
τ∈[t1,t2]

{A(t0, τ) + g(t2 − τ)} (97)

≥ B(t0) + inf
τ∈[t0,t]

{A(t0, τ) +
(

g ∗ δa)(t2 − τ)} (98)

≥ A ∗t0

(

g ∗ δa)(t) . (99)

which proves Eqn. (92) in the second case. In Eqn. (96) we haveused Eqn. (94). In Eqn. (97), we have
used thatD(t0, t1) + B(t1) = B(t0) + A(t0, t1) and takenA(t0, t1) under the infimum. Eqn. (98) uses the
monotonicity ofg and extends the range of the infimum.

Step 2: Uniform probabilistic bounds onIℓ. Fix a > 0, setxi = i a/2, and consider the intervals

Iij = [xi, xj ] , 0 ≤ i < j < n , (100)

wheren = ⌈2ℓ/a⌉ is the smallest integer no less than2ℓ/a. Consider the events

Eij :=
{

D(xi, xj) ≥ A ∗xi
Sℓ,ε(xj)

}

. (101)

Let [t0, t] ⊆ [0, ℓ] be arbitrary, and chooseIij ⊆ [t0, t] be as large as possible. IfEij occurs, we apply Step 1
with t1 = xi andt2 = xj , and use that(xi − t0) + (t − xj) ≤ a to see that

D(t) ≥ A ∗t0

(

Sℓ,ε ∗ δa

)

(t) . (102)
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It follows that

Pr
{

∀[t0, t] ⊆ [0, ℓ] : D(t0, t) ≥ A ∗t0

(

Sℓ,ε ∗ δa

)

(t)
}

≥ Pr
{

⋂

0≤i<j<n

Eij

}

(103)

≥ 1 − n2ε/2 , (104)

as claimed. Here, Eqn. (103) uses Step 2, and Eqn. (104) uses the definition ofSℓ,ε. 2

4.3 Recovering an effective service curve from effective adaptive service curves

We next show that the adaptive versions of the effective service curve can yield effective service service
curves in their original definition. This, however, requires us to add appropriate assumptions on the traffic at
a node. The following lemma gives a sufficient conditions foran effectiveℓ-adaptive curve to be an effective
service curve in the sense of Eqn. (15). Combining Theorem 6 with Lemma 3 yields an effective network
service curve, which by Theorem 3 guarantees probabilisticbounds on output, backlog, and delay.

Lemma 3 Let Sℓ,ε be a nondecreasing function which defines an effectiveℓ-adaptive service curve for a
flow with arrival processA, and an

1. If

Pr
{

∃t0 ∈ [t − ℓ, t] : B(t0) = 0
}

≥ 1 − ε1 (105)

for all t > 0, then, for any choice ofa > 0, Sεℓ/a+ε1 = Sℓ,ε ∗ δa is an effective adaptive service curve
for intervals of arbitrary length, with violation probability εℓ/a + ε1. In particular,

Pr
{

D(t) ≥ A ∗ Sℓ,ε ∗ δa(t)
}

≥ 1 − (εℓ/a + ε1) (106)

for all t > 0.

2. If the arrival processA has arrival envelopeA∗ and

Pr
{

B(t) ≤ Sℓ,ε(ℓ) − A∗(ℓ)
}

≥ 1 − ε1 , (107)

for all t ≥ 0, thenSε+ε1 = Sℓ,ε is an effective adaptive service curve for intervals of arbitrary length,
with violation probabilityε + ε1. In particular,

Pr
{

D(t) ≥ A ∗ Sℓ,ε(t)
}

≥ 1 − (ε + ε1) , (108)

for all t ≥ 0.

The lemma should be compared with Lemma 1, as both provide sufficient conditions under which service
guarantees on intervals of a given finite length imply service guarantees on intervals of arbitrary length.
While the condition onℓ in Eqn. (72) involves only the deterministic arrival envelope and the service curve,
Eqs. (105) and (107) represent additional assumptions on the backlog process. This points out a fundamental
difference between the deterministic and the statistical network calculus.
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Proof. The proof consists of three steps. If Eqn. (107) holds, the first step can be omitted. In the first
step, we modify a given effectiveℓ-adaptive service curve to give uniform probabilistic lower bounds on the
departure of all intervals of the form[t0, t], wheret is fixed andt0 ∈ [t − ℓ, t]. This is analogous to the first
step in the proof of Theorem 4. The second step contains a deterministic argument. We conclude with a
probabilistic estimate.

Step 1: Uniform probabilistic bounds.Suppose thatSℓ,ε is a nondecreasing effectiveℓ-adaptive service
curve, that is, for anyt ≥ 0,

∀t0 ∈ [t − ℓ, t] : Pr
{

D(t0, t) ≥ A ∗t0 S
ℓ,ε(t)

}

≥ 1 − ε . (109)

We will show that then, for any choice ofa > 0,

Pr
{

∀t0 ∈ [t − ℓ, t] : D(t0, t) ≥ A ∗t0 S
ℓ,ε(t − a)

}

≥ 1 − εℓ/a . (110)

To see this, assume without loss of generality thatt = ℓ, and consider the events

Ej =
{

D(xj , t) ≥ A ∗xj
Sℓ,ε(t)

}

, 0 ≤ i < n . (111)

If Ej occurs, we have forx ∈ [xj−1, xj) by the first step of the proof of Lemma 2 (witht0 = x, t1 = xj,
t2 = t), that

D(x, t) ≥ A ∗xj

(

Sℓ,ε ∗ δa

)

(t) . (112)

It follows that

Pr
{

∀t0 ∈ [0, ℓ] : D(t) ≥ A ∗t0 S
ℓ,ε(t − a)

}

= Pr
{

⋂

0≤i<n

Ej

}

(113)

≥ 1 − nε , (114)

which proves Eqn. (110) in the caset = ℓ.

Step 2: Deterministic argument.Fix t ≥ 0, and suppose that for a particular sample path, we have

∀x ∈ [t − ℓ, t] : D(x, t) ≥ A ∗x T ℓ,ε(t) , (115)

and either

1. ∃t0 ∈ [t − ℓ, t] : B(t0) = 0 , or (116)

2. B(t − ℓ) ≤ Sℓ,ε(ℓ) − A∗(ℓ) , whereA∗ is an arrival envelope. (117)

In the first case, we can setx = t0 in Eqn. (115) to obtain

D(t) ≥ inf
τ≤t−t0

{A(t − τ) + Sℓ,ε(τ)}. (118)

In the second case, we note that from Eqn. (117) it follows that

B(t − ℓ) + inf
τ≤ℓ

{A(t − ℓ, t − τ) + Sℓ,ε(τ)} ≤ Sℓ,ε(ℓ) − A∗(ℓ) + A(t − ℓ, t) ≤ Sℓ,ε(ℓ) , (119)
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which implies that

A ∗t−ℓ (t) = B(t − ℓ) + inf
τ≤ℓ

{A(t − ℓ, τ) + Sℓε(τ)} . (120)

Inserting this into Eqn. (115) withx = t − ℓ yields again Eqn. (118).

Step 3: Probabilistic estimate.If Eqn. (105) holds, we use Step 2 to see that

Pr
{

D(t) ≥ inf
τ≤ℓ

{A(t − τ) + D(τ)}
}

≥ Pr
{

∀x ∈ [t − ℓ, t] : D(x, t) ≥ A ∗x T ℓ,ε(t), and∃t0 ∈ [t − ℓ, t] : B(t0) = 0
}

(121)

≥ 1 − (εℓ/a + ε1) , (122)

where we have used the result of Step 2 in the second line. If inEqn. (107) holds, we have by Step 2

Pr
{

D(t) ≥ inf
τ≤ℓ

{A(t − τ) + D(τ)}
}

≥ Pr
{

D(t − ℓ, t) ≥ A ∗t−ℓ T
ℓ,ε(t), andB(t − ℓ) ≤ Sℓ,ε(ℓ) − A∗(ℓ)

}

(123)

≥ 1 − (ε + ε1) , (124)

where we have used the definition ofSℓ,ε in the second line. 2

Note that Eqs. (122) and (124) supply time-independent bounds on the range of the convolution, of the
form given in Eqn. (54). A similar, but simpler result holds for strong effectiveℓ-adaptive service curves:

Lemma 4 Given a flow with arrival processA, and a strong effective adaptive service curveT ℓ,ε on inter-
vals of lengthℓ. Assume that for everyt ≥ 0, either Eqn. (105) or or Eqn. (107) is satisfied. Then, for any
t ≥ 0 and anyt1 ≤ t,

Pr
{

D(t1, t) ≥ A ∗t1 T
ℓ,ε(t)

}

≥ 1 − (ε + ε1) . (125)

In particular, for t1 = 0, Sε+ε1 = T ℓ,ε is an effective service curve in the sense of Eqn. (15).

Proof. We need to show that under the assumptions of the lemma, we have for anyt > 0 and anyt1 ≤ t

Pr
{

D(t1, t) ≥ A ∗t1 T
ℓ,ε(t)

}

≥ 1 − (ε + ε1) . (126)

By considering time-shifted arrivals and departures as in Eqn. (71), we may assume without loss of gener-
ality thatt1 = 0. The first step in the proof of Lemma 3 shows that

Pr
{

D(t) ≥ inf
τ≤ℓ

{A(t − τ) + D(τ)}
}

≥ Pr











∀[x, y] ⊂ [t − ℓ, t] : D(x, y) ≥ A ∗x T ℓ,ε(x),

and
{

either ∃t0 ∈ [t − ℓ, t] : B(t0) = 0

or B(t − ℓ) ≤ T ℓ,ε(ℓ) − A∗(ℓ)
}











(127)

≥ 1 − (ε + ε1) , (128)

as claimed. 2
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5 Conclusions

We have presented a network calculus with probabilistic service guarantees where arrivals to the network
satisfy a deterministic arrival bound. We have introduced the notion ofeffective service curvesas a prob-
abilistic bound on the service received by individual flows in a network. We have shown that some key
results from the deterministic network calculus can be carried over to the statistical framework by inserting
appropriate probabilistic arguments.

We showed that the deterministic bounds on output, delay, and backlog from Theorem 1 have corre-
sponding formulations in the statistical calculus (Theorem 3). We have extended the concatenation formula
of Theorem 2 for network service curves to a statistical setting (Theorems 4, 5, 6, and 7). We showed
that a modified effective service curve, calledstrong effective adaptive service curveyields the simplest
concatenation formula. In order to connect the different notions of effective service curves, we have made
an additional assumption on the backlog in Lemmas 3 and 4. Theresults in this paper showed that a multi-
node version of the statistical network calculus requires us to make assumptions that limit the range of the
convolution operation when concatenating effective service curves. Such limits on a ‘maximum relevant
time scale’, can follow from assumptions on the traffic load (as in Theorems 5, Lemma 3 and Lemma 4),
or from appropriately modified service curves. While the question is open whether one can dispense with
these additional assumptions, we have made an attempt to justify the need for them.
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APPENDIX

A Proof of Lemma 1

Let Sℓ be anℓ-adaptive service curve. We need to show that

D(t1, t) ≥ A ∗t1 Sℓ(t) (129)

holds for allt, t1 ≥ 0 with t1 ≤ t. By considering the time-shifted arrivals and departures as in Eqn. (71),
we may assume without loss of generality thatt1 = 0.

Consider intervalsIk
ℓ = [kℓ, (k + 1)ℓ], wherek ≥ 0 is an integer. We will show by induction, that for

any integerk ≥ 0,

∀t ∈ Ik
ℓ : D(t) ≥ A ∗ Sℓ(t) . (130)

Applying the definition of anℓ-adaptive network service curve withIℓ = [0, ℓ], we see that Eqn. (130)
clearly holds fork = 0.

For the inductive step, suppose that Eqn. (130) holds for some integerk ≥ 0. Fix t ∈ Ik+1
ℓ , and let

t0 = t − ℓ ∈ Ik
ℓ . By the inductive assumption,D(t0) ≥ A ∗ Sℓ(t0). Eqn. (70) says that either

D(t0, t) ≥ Sℓ(t − t0) (131)

or

D(t0, t) ≥ B(t0) + inf
τ≤t−t0

{

A(t − t0, t − τ) + Sℓ(τ)
}

. (132)

If Eqn. (131) holds, then

D(t) = D(t0, t) + D(t0) (133)

≥ Sℓ(t − t0) + inf
τ≤t0

{

A(t0 − τ) + Sℓ(τ)
}

(134)

≥ Sℓ(t − t0) − A∗(t − t0) + inf
τ≤t0

{

A(t − τ) + Sℓ(τ)
}

(135)

≥ A ∗ Sℓ(t) . (136)

In Eqn. (134), we have used Eqn. (131) and the inductive assumption. In Eqn. (135), we have used that
A(t0 − τ, t − τ) ≤ A∗(t − t0) and pulledA∗(t − t0) out of the infimum. In Eqn. (136), we have inserted
t − t0 = ℓ, used the assumption thatA∗(ℓ) ≤ Sℓ(ℓ), and extended the range of the infimum.

If Eqn. (132) holds, then

D(t) = D(t0) + D(t − t0) (137)

≥ A(t0) + inf
τ≤t−t0

{

A(t0, t − τ) + Sℓ(τ)
}

(138)

= inf
τ≤t−t0

{

A(t − τ) + Sℓ(τ)
}

(139)

≥ A ∗ Sℓ(t) . (140)

In Eqn. (138), we have used Eqn. (132), and the fact thatD(t0) + B(t0) = A(t0). In Eqn. (139), we have
takenA(t0) under the infimum and used thatA(t0) + A(t0, t − τ) = A(t − τ). In Eqn. (140), we have
extended the range of the infimum and used the definition of theconvolution.

Sincet ∈ Ik+1
ℓ was arbitrary, this proves the inductive step, and the lemma.
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