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Abstract— The stochastic network calculus is an evolving new for the entire network are computed in the same fashion as
methodology for backlog and delay analysis of networks that can single node results. The resulting end-to-end delay bounds are
account for statistical multiplexing gain. This paper advances generally tighter than the sum of the per-node delay bounds.

the stochastic network calculus by deriving a network service = le. if th . t theth node is i
curve, which expresses the service given to a flow by the network or eéxampie, Ir the service curve a nodels givenas a

as a whole in terms of a probabilistic bound. The presented constant rate function§” () = cr, one obtains from Eq. (1)
network service curve permits the calculation of statistical end- that S"¢*(7) = cr. As a result, the end-to-end backlog and
to-end delay and backlog bounds for broad classes of arrival delay bounds are identical to the bounds at the first node. In
and service distributions. The benefits of the derived service yyis \way the min-plus version of the network calculus provides
curve are illustrated for the exponentially bounded burstiness . | d-t d estimates for del d backl
(EBB) traffic model. It is shown that end-to-end performance Simpié end-to-end estimates for ef”‘y an aC_ o_g.
measures computed with a network service curve are bounded A drawback of the worst-case view of traffic in the de-
by O (H log H), where H is the number of nodes traversed by a terministic network calculus is that it does not reap the
flow. Using currently available techniques, which compute end- penefits of statistical multiplexing, which can result in an
to-end bounds by adding single node resuits, the corresponding yerestimation of the actual resource requirements and a low
performance measures are bounded by (H?). o . .
_ _ _ utilization of network resources. This has motivated the search
Index Terms— Stochastic network calculus, Quality-of-Service, for g stochastic network calculus which describes arrivals and
network service curve. service probabilistically while preserving the elegance and
expressiveness of the original framework. By allowing even
. INTRODUCTION a small fraction of traffic to violate its traffic description or

The network calculus is a framework for analyzing delays a,ﬁ,erformance guarantees, one can achieve significant resource
backlog in a network where the traffic, and sometimes als®VINgs. _

the service, are characterized in terms of envelope functions MoSt work on extending the network calculus to a prob-
Pioneered as deterministic network calculus in the early 19988llistic setting has been concerned with deriving statistical
for the computation of worst-case performance bounds performance bounds for'a sm_gle node. In a s'tochastlc netwprk
packet networks [10], it has played an important role igalculus framework, traffic arrivals and sometimes also service

the development of algorithms that support Quality-of-Servica Network nodes are random processes which are bounded by
guarantees in packet networks. probabilistic envelope functions. The first, and probably most

The elegance of the network calculus becomes evidentdely known envelope function is the exponentially bounded
in the min-plus algebra formulation developed in [1], [9], burstiness (EBB) characterization for traffic arrivals [25]. The
[16], where service guarantees to a flow at a node (switckPB model, which has been generalized in [3], [6], [24],
are expressed in terms eérvice curves [11], [21]. In this [26], has been shown to imply delay and backlog bounds at
formulation, bounds for single nodes can be easily extendétnple traffic multiplexers. In [4], [22], probabilistic arrival
to end-to-end bounds. More concretely, suppose a flow govelopes were used to derive schedulability conditions for a
assigned a service cung” at the h-th node on its route variety of scheduling algorithms. The authors of [6], [18] have
(h = 1,...,H). Then the service given to the flow by the€stablished a link between envelope functions and the theory of
network as a whole can be expressed in terms of a netwdiifective bandwidth [14], which estimates bandwidth require-
service curveS™ as ments to satisfy given performance guarantees. Probabilistic

. L s - envelope functions that specify the amount of service made
St =8 8%k x5 (1) available to a flow at a network node have appeared in [12],

where % is a convolution operator. With this remarkable[ls]’ [22]. ) S
)/A number of studies have used probabilistic single node

roperty, bounds for the output burstiness, backlog and del . ! .
property, bou Hipttt bulrst g Eounds on delay, backlog, or the burstiness of traffic departing
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stochastic network calculus lies in the development of prob- The remainder of the paper is organized as follows. In Sec-
abilistic network service curves that yield multi-node perfortion 1, we define our notion of a statistical service curve, and
mance bounds without the poor scaling properties associafg@sent our main result, i.e., a service curve that expresses the
with adding per-node results. However, the development eérvice received by a flow in a network. In Section Ill we use
such a calculus has shown to be difficult. One particul@nvelope functions for a probabilistic characterization of traffic
challenge is the formulation of the multi-node convolutiorand, together with our notion of probabilistic service, obtain
expression of a network service curve within a probabilistiperformance bounds on backlog, delay and output burstiness.
context. In [5] it was shown that a straightforward probabilistitn Section IV we discuss an application of our network service
extension of deterministic concepts yields a network serviceirve to EBB traffic, and compare the resulting end-to-end
curves that deteriorates with time. As a solution, the authodglay bounds with the bounds implied by existing single node
of [5] formulated a probabilistic service curve that takes theesults. In Section V we present a numerical example with
form of Eq. (1), however, this service curve is difficult toMarkovian On-Off traffic for illustration. We present brief
apply in numerical examples. In [2], a probabilistic networlconclusions in Section VI.

service curve was derived under the assumption that each

node drops traffic that locally violates a given delay guarantee. II. NETWORK SERVICE CURVES

This dropping policy requires that packets in each buffer are . .
sorted according to a deadline computed from the arrivaIsThe input and output traffic of a flow at a network node

envelope and the service curve. Another network service described by two stochastic processés=_(A(t)):>o

curve expression, developed in [18], assumes that a bouie D = (D(1))i>o that are defined on a joint probability

is available which limits the busy period over multiple nodess.pace'A(t> represents the cumulative arrivals, amtt) the

Such a bound, however, is difficult to obtain. ﬁur:éjlatrlve ciinepa:rtfl:resnlt[;?], b). er r:egu:e\:zam in%% aie
Until now, the derivation of a network service curve for a ondecreasing, left continuous functions witt0) = D(0) =

stochastic network calculus that does not depend on impliggsng 22?:5](% szr(:]Zaf:‘)r;;ney tcljrrnketEZtgh!snot:éstgageé';vc?ete-
or explicit a priori upper limits on delay, backlog, or busyu_ ontinuous-t nework. EX : :
me setting are discussed in remarks.

periods has remained an open problem. The main contributig I ket-switchi work. th . lable t
of this paper is the construction of a probabilistic network N a packet-switching network, the service avanable 1o
flow at a node is determined by a scheduling algorithm

service curve that does not rely on a priori bounds. We sho ) . .
that the network service curve derived here is applicable to &9 FIFO, Fair Queueing) which sets the order of packet

broad class of arrival and service distributions. The presentgﬁnsm'ﬁs'on‘:" A stehrwdcT cgrve, 'Erstthpresent.ed n [1.1]’ d[zbl]’
probabilistic service curve formulation is based on a definitiofy 2" a'ternate method to describe the Service received by a

introduced in [12]. A recent study [20] also attempts t Iovvthln term_s ofla Iﬁnctlo_n V\llh'Ch |Spgc'f'$3 a IIO\;\_/er b(?utr;]d
construct a network service curve with a service curve ¢ e_s_e?/lce.l nl € min-pius aigebra ?rmuamn Oh €
defined in [12], however, the presented network service cur §Lerministic calculus, a service curve Is a unctﬁ’in)., suc
is not correct that D(t) > A% S(t) fpr all ¢ >0, _Where; theconvolution of

We illustrate the benefits of the network service curve for tgvfo real-valued functlons‘f and”g 'i defined asf  (t) =
statistical end-to-end analysis of multiplexed EBB traffic. By" &fsﬁt{f(séﬁ,g(t —s)}forallt > ? babilisti .
contrasting end-to-end delay bounds obtained with our service ext we define our measure of a probabilistic service

curve with bounds obtained by iterating single node resyguarantee for a flow. We adopt a variation of the definition of a

as proposed in [25], we show the improvements attainab?éat'sncal service curve from [12], where we add a positivity

through our stochastic network calculus approach. We wiifduirement. We use the notatign] . = max(z,0) for the

show that the calculus approach with network service cur\Pé)S't“_/e F’a” (_)f a real number. .

renders bounds for delay, backlog, and output burstiness g&Deﬁnltlon 1'_ (_STAT'ST'_CAL SERVICE CURVE)' A funct|o_n

the order® (Hlog H) in the number of nodesd in the ) is a stat_lst|cal service curve for an arrival processf

network, as opposed t© (H?*) bounds obtained by adding for every choice ot and for allt > 0

per-node results. Thus, this paper, for the first time, quantifies _

the benefits of using network service curves in a probabilistic P(D(t> <AxIS ol (t)) <€), @)

setting. This presents a significant step forward towards thgherec (o) is a non-increasing function.

goal of developing the stochastic network calculus into a We refer to the bound(s) on the violation probability as

practical methodology for the analysis of networks. As ghe error function. Note that the condition is void whenever

remark, in the deterministic calculus, a network service curvgs) > 1, and that Eq. (2) fot = 0 implies thats(o) > 1

leads to end-to-end bounds that scale with(7), while for all o < S(0). We frequently require that the functiatio)

summing up single-node results gives bounds that scale wihtisfies the integrability condition

O (H?) [17]. Thus, network service curves have comparable o

benefits in a deterministic and a stochastic setting. / e(u)du < oo . 3)
0

1The paper fails to account for the fact that the convolution of c ina Definition 1 t babilisti ice d ioti
probabilistic arrival functions with service curves over multiple nodes omparing Detfinition 1 to probabllistic service descriptions

requires a sample path view. This and other pitfalls in the stochadficthe literature, we see that for each choicerpthe function
network calculus are discussed in [18]. [S — o]+ is an effective service curve in the sense of [5],



[18], [19]. Here, choosingr large amounts to increasing the are=pt [ \oge D=A?[ Noge | D? A" [ Node | DH=D!
latency and decreasing the violation probability of the service g T2 B " H >
guarantee. Compared to the service curve in [12], the enforced st < e
positivity of the statistical service curve can lead to tighter
performance bounds on backlog and output burstiness. Lastig. 1. Traffic of a flow through a set dff nodes.
if (o) = 0 for some value ofr, then[S — o], defines a
deterministic service curve almost surely.
In the continuous-time setting, we find it convenient t¢mall violation probability, while smaller values increase the

replace Eq. (2) by violation probability. In our examples we optimize over the
values of these parameters. In addition, the parameter
P(D(t) < Ax[S—o0], (t+m)) <o) (4)  chosen so that the value of the ered! () does not exceed

for all ¢ > 0, and thats(c) > 1 for all ¢ < S(79). Here, a (_iriswed V'f°|?t'?]n prr]obablllty, l_e.glo or 1O| ) h
79 > 0 is a parameter that specifies a discretization of the 1€ proot o the t eorem refies on sampe_pat arguments
time scale. Inspired by the deterministic calculus. To estimate the prob-

We emphasize that Eq. (2) does not present an additioﬁzg'“;y of dep?rtureDe\f/_enFs mi/olvrl]r?ghentl:(e sample paths,bwe
assumption, since it can be obtained from Eq. (4) by replacilﬁe to transform Definition 1, which makes statements about

S(t) with S(t—79). The addition of the parametes simplifies parturesD(t)_ at any given timet, into a sample path
the derivations to follow in Lemma 1 and Lemma 2. expression. This crucial step is provided in the next lemma.

We now state the main result of this paper. Consider]\gh'tIe f': IS kn_ovx:n howdtp obtalr:jr_elattr(]ad san:ple |ct)_ath b;)hu_nd_s
flow with a network path througtif > 1 nodes, as shown or traffic arrivals (as discussed in ihe next seciion), this is

in Figure 1. At each node, we assume that the flow receiveéhf first time that such a sample path bound is established for

probabilistic service guarantee in terms of a statistical serviéglr_\gﬁ]igels_’cﬂg:'gnt; a statistical service curve for an arrival
curve. The following theorem provides an expression for an :

end-to-end statistical network service curve in terms of th%rocessA. Assume thats satisfies Eqg. (4) for some, > 0,

per-node service curves. In the theorem, we use the notatl%rﬁd that (o) satisfies Eq. (3). Then, for any real number 0

fs(t) = f(t) + ot for a real functionf and a real numbef. and all¢,o > 0,

Theorem 1. (STATISTICAL NETWORK SERVICE CURVE). P ( sup {A * [S—6(t+70—5)— J]+(s) - D(s)} > 0)
Consider a flow with traffic throughl nodes. Letd™¢t := A! Oss<t .

denote the arrivals to the first node,"!(¢) = D"(z) for < b =(u) du . ©)
h =1,...,H — 1 the arrivals at thgh + 1)-th node, and 70 . o

Dret .— DY the departures from the last node. Assume th¥ye have slightly abused notation in order to simplify the
each nodé: — 1. ..., H provides a service guarantee in forpstatement of the lemma. The convolution term on the left hand

of a statistical service curv8” satisfying Eq. (4) for some side of Eg. (6) should be read as

70 > 0. Assume that for allh < H, the error functiong” inf {A(u) + [S(s ) — St To—8) — U} } o
satisfy the integrability condition in Eq. (3). Then, for every 0<u<s +

choice ofé > 0, the function ) ] ] )
PROOF Givent > 0, we discretize the event in Eq. (6) on a

St =S xS %% Sfl(H,l)(; (5) time scaler. Let0 < s <t, and letj = LtT;DSJ be the integer

t=s gj i
is a network service curve in the sense of Eq. (4), with a%art of To SinceA, 5, and D are nondecreasing, we have

error function given by Ax[S—0(t+70—s)—0o] (s)

Ho1 00 <Ax|S—0(+1)m0—0|,(t—jm
e"t(o) = inf {EH(O'H)+ Z L/ e (u) du} . B [ G+ Lm ]+( i)
ol4-doH=0 hel ) oh and

The formula for the network service curve in Eq. (5) D(s) > D([t— (4 D7ols) -
corresponds closely to the formulation of the deterministic
calculus given in Eqg. (1). The difference is that in Eq. (5), thé follows that
service curve at thé-th node is reduced by a raté — 1)d.

The convolution expression in the determir):istic cEaIcqu)s fro%(osgggt{ (A * [§—8(t+m0—s) — 0] +) (s) - D(S)} - 0)
Eq. (5) is recovered almost surely by setti(g) = 0 for all
o and then taking, 79,0 — 0.

We remark that parametefsand r, are technical devices.
The parameted is a relaxation of the service that reduces —D([t - (j + 1)70]+)} > 0)
the guaranteed service by a small rate. The paramgtes a L
dlscretlzatlon. parametgr indicating a tlme.step. Applications pf < P(A N [S — 50 + )rp — U} (t — j70)
the theorem in numerical examples require to choose specific — +
values for these parameters. Large values of these parameters !
lead to pessimistic performance bounds that hold with a > D([t - (j+1)70]+)) :

< P(,_max, {4+ [s=dG+Dm -0, (t=in)

3
i



where we have applied Boole’s inequality in the last step. By [1l. PERFORMANCEBOUNDS
Eq. (4), the last sum is bounded by

oo

The derivation of the statistical network service curve in
Theorem 1 does not make assumptions on the arrival functions
A at a node, and holds for all deterministic or probabilistic
descriptions of traffic. However, applying the network service

PROOF OFTHEOREM 1. Lett > 0,6 > 0 ando > 0 be Curve to compute performance bounds for a traffic flow
given, and choose!, ..., o with 3" ¢" = o. Suppose that requires a_cha_racterization for the_ a_lrrivals from the flow. In
for a particular sample path, the inequalities the deterministic network calculus, it is generally assumed that

the arrivals from a traffic flowA are bounded or regulated by
D'(s) > A"« [8" = 6(t+70—s) —0"] (s)  (8) anarrival envelope A*, such thatA(t + ) — A(t) < A*(r)

e(o+(j+1)dm) < %/:0 e(u) du . O

pn
i=0 0

hold for all0 < s <t andh =1,..., H — 1, and that for.all t,7 > 0. A frequently used envelgpejg*(t) = a+gt,
which corresponds to a leaky bucket with ratand burst size
DH(t) > AF « [SH - JHL (t+70) . (9) . In a stochastic network calculus, traffic arrivals are usually

described in terms of probabilistic extensions [4], [24], [25] of
this envelope concept. The following definition specifies such
an extension.
Dt(t) > inf {AHA(U) T {SH*(S — ) Definition 2: (STATISTICAL ENVELOPE). A nondecreasing
Osuss<t function G(¢) is said to be atatistical envelope for an arrival
St To—8) — UH—l} + [SH(t Yo —8) — UH} } _ processA if, for all o and allo < s <t
+ +

Inserting the bound fod” = D=1 from Eq. (8) into Eq. (9)
and expanding the convolutions yields with Eq. (7)

Note that our definition ofS justifies the restriction of the P(A(t) —A(s)>G(t—s)+ a) <eg(o), (10)
infimum to s < t. Collecting terms and using thét], +
[y]+ > [z + y]4+, we obtain wheree(o) is a nonnegative, nonincreasing function.

Note that Eq. (10) is formulated for negative as well as positive
values ofo. If EQ. (10) is only known to hold for nonnegative
values ofs, we sets(0) = max{1,£(0)} for o < 0.

Definition 2 is inspired by the Exponentially Bounded
Burstiness (EBB) model [25], which is the special case where

Dmet(t) > AH=1 [SH*I « SH — (o1 -I-O'H):|+(t+7'0) )

Iterating the argument for the remaining values.aind using
the definition ofS™¢t, we arrive at

H . . .
net ne ne G(t) = pt is a constant-rate function and the error function
Drei(e) 2 A7 [S - Z UhL(t +10) - de(:c)ays exponentially. The Stochastically Bounded Burstiness
h=1 (SBB) model [24] is a generalization of the EBB model where
Using Lemma 1 forh = 1,...,H — 1 and Eq. (4) for the condition that the error function decays exponentially is
h = H, we bound the violation probability by relaxed and replaced by the assumption that it decays faster
H than polynomially. These decay conditions are used to bound
P(D"et(t) < A" {S”et - Zoh} (t+ 70)) the violation probability of events involving entire arrival
h=1 T sample paths.

T

_ . An alternate approach, introduced in [26], requires that the
< P(Eq. (8) fails forS" for somes <¢)  arrivals satisfy an a priori sample path bound, leading to

h=1 the generalized Stochastic Bounded Burstiness (gSBB) model.
+P(Eq. (9) faily It is shown in [26] that an arrival process which conforms
H-1 4 o0 to the SBB traffic model is also gSBB, though with more
< 5—/ eh(u)ydu +7(oH) . pessimistic bounds. More generally, gSBB can accommodate
h=1 070 Jo" any arrival model satisfying a tail estimate analogous to
The proof is completed by minimizing over', ...,o". O Eqg. (3). The corresponding result in our paper is provided

by Lemma 2. Several recent studies [3], [20], [26] have

In a discrete time setting, there is no need for the paramet&jtaplished performance bounds for the gSBB arrival model

7o appearing in Eq. (4), and we use the definition of thgith hoth deterministic and statistical service descriptions. At a
statistical service curve in Eq. (2). If each node provides dIngle node these bounds take an especially appealing, concise

service curveS" in the sense of Eq. (2) with an error functionform. However, in order to bound delay and backlog along a

e?, then for any choice of > 0 path through a network, these results need to be combined
St =Sl S % *Sf(H—l)é with a ngtwork service curve, which is not provided in [3],
[26] and incorrect in [20].
is a network service curve which again satisfies Eq. (2), with |_et us comment briefly on the scope of the various traffic
error function models. The EBB model includes important classes such as
H-1 o0 multiplexed regulated traffic, Markovian On-Off traffic, and
e"et(g) = - iﬁEH_U{EH(JH) + YD e+ ké)} . the Poisson process, but does not include distributions with

>

=1 k=0 heavy tails or long-range correlations. In particular, fractional



Brownian motion traffic belongs to SBB but not EBB, sat- 2) BACKLOG BOUND: A statistical bound on the backlog
isfying Eq. (10) withG(t) = (p + 0)t ande(o) ~ e~ 7", at a node is given, fot > 0, by
wherep is the average traffic raté, > 0 is arbitrarily small,
. < )

and0 < a < 1 is related to the Hurst parameter. The gSBB P(B(t) > G;©8(0)+0) <& (o) (12)
model was shown to contain an even richer category of traffic 3) DELAY BOUND: A statistical bound on the delay is
patterns [26], in particular, heavy-tailed distributions where given, fort > 0, by
t1hi ergrzfunctlon decays as a power layy) ~ o~ with P(W(t) > d(0)) < (o) , (13)

DefiEition 2 allows statistical envelopes to be given by where
arbitrqry_ nondecrgasing function;, which can provide a t?ghter d(o) = inf {d - S(s+d) > Gs(s) + o for all s > 0} .
description of arrivals than the linear envelopes used in the (14)

EBB', SBB,. and gSBB traffic models. Still, linear envelop_eﬁ1 the theorem, the rate correction parametenay appear
provide an important class of examples, for two reasons. Firgfiher in the statistical envelope or in the statistical service
to imply any bounds on the delay and backlog at a link e, |n the above bounds, we have pladesiherever it
which provides a constant service rate, a statistical envelogﬁeS the better performance bound.

cannot grow faster than linearly. Second, linear envelopes lendrp,q proof of the theorem relies on a sample path argument

themselves to efficient computations. _analogous to the proof of Theorem 1. This is provided by the
Definition 2 is also closely related to other probablhsthonowing lemma.

envelope characterizations of traffic used in the literature. | gmmg 2: Assume thatg is a statistical envelope fod,

In [12], an arrival process satisfying Eq. (10) is call§d jth an error functiors (o) satisfying Eq. (3). Then, for every

smooth with overflow profile e. For each value ofr, the cpoice ofd, 79 > 0,

function G + o provides an effective envelope, as defined in

[4], with violation probability=(s). Finally, as shown in [6], P (A() > <inf<\{x4(u) + Gt+To—u) + d(s+To—u) + a})

[18], statistical envelopes can be connected with the notion of = 1 o

effective bandwidth [14]. < — e(u) du (15)
We next describe statistical performance guarantees on the 070 Jo

backlog B(t) = A(t) — D(t) and the delay¥/ (t) = inf{d > forall0<s<tando>0. , _

0: A(t) < D(t+d)}, where arrivals are bounded by statisticaftn implication of Lemma 2 is that an arrival process which

envelopes satisfying Definition 2, and service is expressed 1@s a linear statistical envelogét) = pt and an error function

terms of statistical service curves satisfying Definition 1. Weatisfying Eq. (3) is of class gSBB, as in [26].

also derive a bound on output burstiness in the form of a Proor Fix s < ¢. As in Lemma 1, we discretize the event

statistical envelope foD(t) satisfying Definition 2. We point in Eq. (15) on a time scale, by settingj = [=¢], for a

out that similar bounds have been derived in other statisticgiven « with 0 < u < s < t. By the monotonicit)? ofA and

network calculus papers [2], [5], [18], [20] for a variety ofG we have

arrival and service characterizations. We state the following Alu) > A([s -+ 1)TO]+)

results for completeness, since there are technical differences

between our definition of a statistical service curve in Egs. (3!

and (4) and those used in the literature. The theorem useg(t + 75 — u) + d(s + 70 — u)

the deconvolution operatore, which is defined for two real > G(t . .

—[s—(+1 +6(j +1)70 .
functions f andg as f @ g(t) = sup.»o Lf(t+5) — g(s)} for >G(t—[s—(j+1)7ls) +6(j + )70
all t > 0. B We estimate

Theorem 2: (PERFORMANCE BOUNDS). Let A(t) and P(A(t) > inf {A(u) + G(t+mo—u) + O(s+m0—u) +U})
D(t) denote the arrivals and departure processes at a node 0<u<s
which provides a service curg(t) satisfying Eq. (4) with < P(A(t) >  min {A([s — G+ D)mly)
somer, > 0 and an error functiort®(o). Let the arrivals 3=0,.,L75]
be bounded by a statistical envelofevith an error function , ,
t—|s— 1 ) 1
9(0) that satisfies the integrability condition from Eq. (3). TGt =l =~ G+D)mly) + 3G+ +U})

Fix 6,79 > 0, and define L7
. < > P(AW®) - A(ls = G+Vol-)
(o) = inf ef(o®) + L/ ed(u)du . §=0
oc9+ocs=0 57’0 o9

> G(t—[s — G+ 1)) 4) + 0+ 1)m0 + 0) ,

where we have used Boole’s inequality in the last step. Since
G is a statistical envelope fod by assumption and(o) is
nondecreasing, we can bound the last sum by

P(D(t) = D(s) > G0 S_s(t—s)+0) <e(o) (11) o 1 /oo i
glu u

Then we have the following bounds:

1) OUTPUT BURSTINESS G @ S_s provides a statistical
envelope forD, i.e.,

e(oc+ (j+1)dm) < — O

forall 0 < s <t. = ~ 07



PROOF OFTHEOREM 2. The argument follows the corre-leftover service curve is a pessimistic estimate of the service
sponding derivations in the deterministic calculus (see, e.g@vailable to the flow, which amounts to serving the tagged
[1], [8], [16]). For given0 < s < ¢, assume that for a particular flow at a lower priority than all other flows. For particular
sample path, scheduling algorithms, less pessimistic estimates have been

s obtained in [18], [22].
D(s) = Ax [S=0°] (s +70) , 18)  The following theorem shows that we can obtain a leftover
with S(79) < o*, and service curve compliant with Definition 1, whenever traffic
arrivals are characterized by statistical envelopes in the sense

Alt) —A(u) <G(t+70—u) +6(s+70 —u)+0? (17) of Definition 2. We will use the leftover service curve in
forall 0 < u < s. Then Section Iy to dete_rmine the se_rvice_ available to a single flow

at a multiplexer with EBB traffic arrivals.

D(t) — D(s) Theorem 3: (LEFTOVER SERVICE CURVE. Consider a
. s kconserving scheduler with constant rateserving mul-
<A@ - _inf {A@w)+S a1 S . ! .
< A1) OSuHSISJrTo () +[S(s +70—u) =07, tiple flows. Fix a collection of flows and denote its aggregate

arrival and departure processes Ayt) and D(t). Let A.(t)

and D.(t) denote the arrivals and departures of the aggregate

B N s of the remaining flows. Assume th@t is a statistical envelope
[S(S tro—u)—o ]+} for the arrivalsA. that satisfies

§g®8_5(t—5)+0'. g(t)

li —_—
In the first step, we have used th&x(t) < A(t) and the lfisololp t <C,

assumption in Eq. (17). Note that values > s do not
contribute to the infimum sincé&(ry) < o*. In the second
step, we have takeA(t) into the infimum and used Eq. (16),
and in the last step we have collected terms and applied the S(t) = C(t —10) — Ge5(1)
definition of the deconvolution.

Using Lemma 2 and the assumption ti#ais a statistical
service curve, we conclude that

< sup {g(t—i-To—u)—l—(S(s—l—To—u)—l—Ug

with an error functione4(o) that satisfies the integrability
condition in Eq. (3). Then, for any choice &> 0 andrq > 0,

is a statistical service curve fot that satisfies Eq. (4) with
error function

s [ — g
P(D(t) = D) > G2 S 5(t—5) +0) o) =5 [ ettwya.
< e (0%) + %/ €9 () du (18) If the stronger integrability condition
T0 Jo9

g
The proofs of the delay and backlog bounds proceed along the /O oed(0) do < oo (19)

same lines and are omitted. O holds, then:* (o) satisfies Eq. (3).
The proof actually shows that the output burstiness satisfigsthe theorem, we used the notatiGns(t) = G.(t) + ot.
the tighter bound PROOF. Since the link provides a service curiét) = Ct

s to the aggregate of through flows (describedA)yand cross
P (D(t) —D(s)>Go([S-0"],) s(t—s)+ Jg) flows (described byd.), and D..(t) < A. * R(t), we have

< 9. 0°

_E(U y O ) ) D(t) > (A+AC)*R(t)_Ac*R(t)
wheree® (09, 0°) is given by the right hand side of Eq. (18). — inf 1A A R(t —s) — Acx R(t
This is a consequence of the positivity property of the sta- Ogét{ ()4 Aels) A=) i )} .

tistical service curve in Definition 1. A similar bound can bgnserting the inequality
proven for the backlog,

A, * < min{A.(t), A.(s — s
P(B(t) >G5 © [S—US]+(O)+09) <e(d9,0%) , R(e) < { (8), Aels) + R(E )}

) and collecting terms, we obtain
but not for the delay. The improvement over Theorem 2

can be noticeable at low utilizations but disappears at high(t) > inf {A(S) + [Ac(s) = Ac(t) + R(t — S)L} (20)

utilizations. . 0<s<t .
i i - Fix ¢ > 0 and 8,79 > 0. Suppose that, for a particular
Given a workconserving scheduler at an output link th@ample path, we have

operates at a constant rate, we can describe the service

available to a tagged flow at a scheduler serving multiple flows ~ Ac(t) < oirifq{AC(S) +Ges(t+10—5)+of.  (21)
in terms of a service curve that expresses the capacity left T )

unused by other flows with traffic at this link. We refer toJSing this inequality in Eq. (20) yields

such a service curve asleftover service curve. This concept . N N

has been applied in a deterministic setting in [9], [17], and in t) =z ogfgt{A(s) [ =5) = Geslt 70— 5) 0]+}
a probabilistic setting in [18], [19], [22]. We point out that the > Ax[S—o](t+70) .



Cross Cross Cross

By Lemma 2 withs = t, the violation probability is bounded Flows Flows Flows
by

. Through
P(D(t) < A+ [S 0] (t+m)) = P(Eq. (21) faily <[ =< T =< T
Through
1 o0 Flows
— ed(u) du .
o [ et
If o < S(’T()), then ;fﬁz E.ff,z (F:EWS:
(o) > %/ e9(u) du > . (i)nf e9(u)>1, Fig. 2. A network with cross traffic.
70 —G.(0)—670 c(0)+u<0

as required for Eq. (4). We have used that the definition of the ) .
statistical envelope in Eq. (10) implies, by setting- ¢, that By choosing the EBB traffic model we can compare our

ed(o) > 1 for G.(0) + o < 0. stochastic net\_/\{ork calculus results with existing performance
If the error functions¢ satisfies Eq. (19), then bounds, specmcall_y [25]._ Moreover, the EBB model can
- L e be used to describe arrival processes that have relevance

/ (o) do = _/ / £9(u) du do in practice, e.g., Markov-modulated On-Off processes and

0 o0 Jo Jo multiplexed regulated arrivals. Finally, and most importantly,

_ 1 /OO wed(u) du < oo the EBB model lends itself to simple, closed-form performance

070 Jo ¢ bounds that permit us to gain insight into the scaling properties

by exchanging the order of integration. 0 of network-wide bounds obtained with the stochastic network

calculus.

Finally, we note that a leftover service curve and perfor-
mance bounds can also be obtained in a discrete time setting.
As in the case of Theorem 1, the only modification needed # Analysis at a single node
Theorems 2 and 3 is that the statistical service curve needspe will show that the network calculus developed in this
to satisfy Eq. (2) in place of Eq. (4), and that discrete sumsyper can recover the results of the EBB analysis for a
> r_o€(o + ko) appear in place of the integrals in the errokjngje node from [25]. This demonstrates that statistical service

functions. curves are an adequate representation of the service received
by a flow with respect to cross traffic. Reproducing the EBB
IV. AN APPLICATION WITH EBB ARRIVALS analysis with a service curve approach may help to dispel

We now present an application that relates the netwoek myth that service curves necessarily lead to inaccurate
service curve and the performance bounds developed in thisscriptions of service.
paper to the literature on statistical service guarantees from theConsider the first node in the network from Figure 2.
early 1990s. We demonstrate that statistical network servigée assume that the aggregate arrivals of the through flows,
curves can faithfully reproduce the single node results in [2%)enoted byA, and the aggregate arrivals of the cross flows,
which predate the service curve concept. In a multi-nodgenoted byA., are each EBB arrival processes with bounds
setting, we show the benefits of the statistical network servigeand p. on their long-term rates. For simplicity, both arrival
curve by comparing statistical end-to-end performance bounggocesses are assumed to have the same parameteisand
computed with the techniques from [25] (without a networkl/ > 1. Following [25], this subsection uses a discrete time
service curve) to those obtained with the results of this pape@obmain. In Subsection IV-B we will return to a continuous
The network scenario that we consider is shown in Figure ime domain, as it results in simpler expressions for the desired
We will refer to the flows which traverse the network a$ounds.
the through flows, and the flows which transit the network |t was shown in ([25], Theorem 2) that the output traffic
as thecross flows. We are interested in statistical multi-nodéas the EBB characterization

performance measures for the through flows, such as an output oM .

envelope at the last node in the network and bounds on the tofa( D(t) — D(s) > p(t — s) + o) < - e 27
. ]_ — 6_5(0_(I)+Pc))

delay experienced along the path through the network. Our (23)

performance bounds hold for all work-conserving scheduling, 411 0 < s < +.
algorithms that serve traffic from the same flow in the order 1,4 s;me_output bound can be obtained in the network

of arrival. calculus with a statistical service curve. The EBB characteri-

Network arrivals are described in terms of the exponentially, «ion of the cross traffic says that(t) = p.t is a statistical
bounded burstiness (EBB) model defined in [25] which IEnvelope in the sense of Definition 2, with error function

given for the arrival procesa by the condition that £9(0) = Me~%7. To characterize the service available to the

P(A(t) — A(s) > p(t — s) +0) < Me™ 9 (22) through flows, we use a leftover service curve. As explained at

the end of Section lll, the discrete-time version of Theorem 3
for any 0 < s < t. Here, p represents a bound on the '0”9‘|mp|ies that for any choice of > 0

term arrival ratef is the decay rate of the error function, and
M > 1 is a constant. S(t)=(C—pc.—9)t



is a statistical service curve fot in the sense of Eq. (2), with network calculus, that is, we use statistical envelopes to

error function describe arrivals and service curves to describe service. This
) M is justified by the result of the previous subsection that our

(o) =) Me o) = —— 00 network calculus can reproduce the input-output relation and

k=0 I—e performance bounds obtained by a direct analysis of the

Next we use thati(t) = pt is a statistical envelope for the Packlog process at a single node. _
through flows. The discrete-time version of Theorem 2 implies AS shown in Figure 2, the network haé workconserving

that, fors < % the function nodes arranged in series, with the capacity of egch node set
to C > 0. We useA” and D" to denote the arrivals and
GoS_s(t—s)=p(t—s) departures of the through flows at theh node, with4 "+ =

h — _
is a statistical envelope for the departure process of the throuﬁi]w dfocrr(})Lsg }I’o.v.v.sH;a&éAéé)gf(():rhee;r\ggtzzig?oitshﬁiﬁpetthhero:s;e
flows, with error function values forM andé and long-term bounds on their rates given
e(o) = ﬂe—%ﬂ ) by p andp..
1—e 9 At each node, the service available to the through flows is
C—([2)+/)c), we obtain Eq. (23). The backlog given by a leftover service curve. Since the cross flows at each

By settingd = . . .
@odeh are described in terms of the EBB model, it follows

bound of [25] can be similarly recovered, and the discre
counterpart of Theorem 2 provides a stronger delay bou
than the one suggested in [25]. Ge(t) = pet

This example demonstrates that the separation of the s{@y statistical envelope for the cross flows with error function
tistical analysis of the through flows (in terms of a statistical
envelope) from those made for the service of the cross flows gc(o) = Me™%7
(in terms of a statistical service curve) does not lead

N . . 59 Theorem 3, for any choice af > 0, 79 > 0, the function
more pessimistic bounds than a direct analysis of the backlog y o=

process. Sh(t) = (C — p. — &)t — Cry
] is a statistical service curve for the through flows at node
B. Analysis of end-to-end delay bounds h. The service curve can be formulated more elegantly by

We turn to the problem of deriving network performanceeplacings with o — C'1g, yielding
bounds for the through flows in the network from Figure 2. ,
The purpose of this section is to compare two strategies s (t) = (C=pc =)t (24)
for computing statistical end-to-end bounds. The techniquene resulting error function is
suggested in [25] is to analyze bounds at each node iteratively, 0G0
using the EBB characterization of the output in Eq. (23). 3 (0) = ¢ e 07
Network performance bounds are obtained by adding the per- 0470
node delay bounds. This approach has also been used ii) Adding per-node bounds. Here, we calculate delay
related works that compute statistical end-to-end delay bounsisunds according to Theorem 2 for each node, and then add
for other traffic models, e.g., [6], [15], [24], [25]. Network the per-node delay bounds to obtain network bounds. The
service curves offer an alternate technique of reducing tlservice available to the through flows at each node is given
analysis of a network to the analysis of a single node. oy Eq. (24). To apply the theorem we need to also have a
the deterministic network calculus under worst-case traffgtatistical envelope of the arrivals at each node. We will show
scenarios it is known that network service curves render bettgy induction that the arrivald” at each node are characterized
bounds than adding per-node delay bounds. This observatioy a statistical envelope
is appropriately called ‘pay-bursts-only-once’ in [17]. The h
results in this section establish the corresponding result in the g (t) = pt
probabilistic EBB context. We note that the statistical networlq the sense of Definition 2, with error function
service curves derived in [2], [5] share this property. However,
this is the first time that the benefit of the ‘pay-bursts-only- oh Ce T e,
once’ property in a stochastic context is established by a eMo) =M (7) et (26)
direct comparison with results from the literature that rely on O (otpe)
summing up per-node bounds. (The assumptions on the serWgered < =—2=< is a free parameter. In other words, the
curves in [2] and [5] make such a comparison difficult). OugITivals at each node comply with the EBB traffic model, with
results will show that adding per-node delay bounds results iridgntical rates at each node, but with a reduced decay rate and
network delay bound that increases Wi/ ?) in the number an increased constant at subsequent nobles 1).
of nodes, whereas the delay bounds with network service curveFor i = 1, there is nothing to show, since the arrivals of the
grow with O(H log H). through flows at the first node are characterized by the EBB

All derivations in this subsection, including those of thdraffic model from Eq. (22). To make the inductive step, we
per-node service bounds, are done in the framework of tiéll use the following lemma.

(25)

h24h—2




Lemma 3: For any positive numbersMy,0, (k = At this point, we can compute the probability that a given

., K) and anyo > 0, delay bound is exceeded. In our numerical examples, we
K K determine a delay bound so thatP (W (t) > d) < ¢, where
inf ZMkG*G’“”’“ = H (Mk,gk,w)ﬁ e v, ¢ is a given violation probability. Setting the right hand side
o1t tor=o i of Eq. (29) tos and solving ford gives
wherew = 37", 7 gL HH+3) (M -
A proof of the Iemma is given in the Appendix. T C—pe—10 20 08 ( c ) : (32)

Assume that for somé > 1, we already know that a

statistical envelope for the arrivals at nodeis given by Since the optimal value fof depends onl by Eq. (31), this

Egs. (25) and (26). Since the service of the through flows i an implicit equation for. In our numerical computations,

the h-th node is described by the service cus/ein Eq. (24), We obtain an explicit near-optimal bound by first setting

Theorem 2.1 implies that oy = m and computing the corresponding deldy

it N N from Eq. (32) We then determinefrom Eq. (31) withd g in

Gr(t) =G 0 SZ5(t) = plt — 5) place ofd, and finally obtain the desired delay bound from

is a statistical envelope for the output from th¢h node, with EQ. (32).

error function From Eq. (30) it follows thatlog(M"") grows linearly
Clon 2242 , in the number of node#/. Thus, with the quadratic term in
ey = inf —{<—) o he*ﬁ"urewme*e”} Eq. (32), we conclude that the delay bound in Eq. (32) scales
o1t+o2=0 9(57‘0 1)

asO(H?).
Applying Lemma 3 withK = 2, 6; = £ andf, = 6, and  2) Using the network service curve: We now derive net-
then minimizing overry by settingr, = &, we conclude work delay bounds fofV’ ™t for the same scenario using the

that W2 ian statistical network service curve from Section Il.
(o) A CeNT o, @7 Fix § < =222 Starting from the leftover service curves
5 ’ in Eq. (24), we apply Theorem 1 to obtain the statistical

which completes the induction. network service curve

We next obtain a statistical bound for the deldy”(¢) at

net — — pe — H
nodeh from Theorem 2.3. Set S"E) = (C = pe 0t

d(o) = inf{d L S(s+d) > Gs(s) +0} with error function
= L s,ne HGGCTO —iﬂ
C_pc_5 5l7‘t(0):M95 Lﬁr—le R
according to Eq. (14). Then we get from Theorem 2.3 that (8970)
h hil where we have again used Lemma 3 to compute the infimum
P(Wh(t) > d(o)) <" (o) , appearing in the formula for"* from Theorem 1.
where the error function”*! is given by Eq. (27). Replacing Recall the statistical envelope formulation of the through
o by (C — p.—0)d gives flows at the first node, which is given I8§(t) = pt, with error
: oo . \ S
h < htl o . functione?(o) = Me~"?. Having an arrival characterization
P (W () > d) =€ ((C Pe 5)0) (28) and a network service curve, we can apply Theorem 2.3 to
To obtain a bound for the network del& ", we add the obtain a bound on the network delay. From Eq. (14), we find
delay bounds at each node, that
" o) = —— .
P(Wrtt)>d) < inf > P(W"(t)>dy) . C—pe—Hb

dit-+dg=d
h=1 It follows from Theorem 2 withy replaced by(C' —p.— Hd)d
Inserting the bounds from Eq. (28) and using Lemma 3 to takhat

the infimum, we get

P (W”et(t) > d) < MnetC*#%(C*Pc*é)d 7 (29)
with with

P(W”et(t) > d) < Mnete—HL_H(C—l)c—Hé)d (33)

2H

(H+L)(H+5)  pr MnetZM H 1 HC o 34
et = 2 () T Lo @) o @
2

30) where we have once more used Lemma 3 and optimized

The value of the free paramet@that minimizes the violation OVer the parameter, in the formula for the error function
probability in Eq. (29) under the constraink § < c— (p+pa) in Theorem 2. The minimizing value of the free parameter

is given by for a given value ofd is given by

0 = min { H(H +619)C§H + 5), ¢- (g+ pe) } . (31) 6 = min { 92d %_ﬁ:pc)} . (35)
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Solving for the delay bound in Eq. (33) with the right hand V. NUMERICAL EXAMPLE

side set equal te, we get We next give a numerical example that illustrates the
net benefits of using network service curves for the computation of
1 H+1 M o .
d= C—p—Hs 0 log( . ). (36) statistical end-to-end delay bounds. We consider the network
— e —

and arrival scenario shown in Figure 2. Arrivals of cross
In our numerical example, we use the same two-step procedflmvs and arrivals of through flows at the first node are each
as for Eq. (32) to find a good value fér We computel, from described as an aggregate of independent Markov Modulated
Eq. (36) withé set equal tay = “5242=), then insertl, for On-Off processes. This type of process, which has been used
d into Eq. (35) for an improved value faf, which we use for modeling voice channels, falls into the category of the
to determine the delay bountifrom Eq. (36). It is apparent EBB traffic model. We will show plots that compare the
from Eq. (34) thatd ¢! grows polynomially in the number delay bounds obtained through adding per-node bounds (from
of nodes, and hence the delay bound in Eq. (36) is of ord&ubsection IV-B.1) to those obtainable with a network service
O(Hlog H). curve (from Subsection IV-B.2).

The same techniques can be used to obtain statistical bounds u
on the network backlog. Adding per-node bounds for the a
backlog yields A
=]

net net — 20
P (B (t) > U) < M™ e mUTE T, (37) Fig. 3. On-Off traffic model.
where M ™ is given by Eqg. (30). Here, the optimal choice is

5 = (C— (p+p.))/2. Using the network service curve yields The Markov Modulated On-Off arrival process of an arrival

flow, illustrated in Figure 3, is a continuous time process with

P (Bnet(t) > U) < Mt e~ TETO 7 suppor't given py a hpmogeneous two-state Markoy chain)
which is described in terms of the generator matrix
with M ™t given by Eqg. (34). In this case, the optimal choice —u
for § is G:( A _)\>
5= C—(ptp) »
T H+1 : Here, 1 denotes the transition rate from the ‘On’ state to the
) ) ) . ‘Off’ and A to denote the transition rate from the ‘Off’ state to
With this choice,M"“" evaluates to the ‘On’ state. In the ‘On’ state, the arrival process transmits
20 at the peak raté®, and no arrivals occur in the ‘Off’ state.
M" = Me(H + 1) (Hic) We assume that there aré through flows andV. cross
C—(p+pc) flows at each node. Through flows at the first node and cross

flows are stochastically independent. For the sake of simplicity,
we assume that all arrival processes are homogeneous and
p < H+1 o Mnet that there is an equal number of through and cross flows
= 0 g c (N = N.). We want to emphasize that computing examples
2H HC H+1 Me(H + 1) for heterogeneous flows does not pose a problem, other than
< g log (C - (p+pc)> t—p 1o ( ) increasing notation.
Next, following [6], we quickly derive an EBB characteriza-
Remarks: tion of N independent On-Off flows. The moment-generating
(a) We want to add that an explicit optimization far function of a single On-Off flow is bounded b&i[e“(”] <
may prove difficult if the error function is not exponential.cft»(¢) \where
However, the delay bounds are not very sensitive to the choice

So, a backlog bountl can be explicitly calculated as follows:

3

of § in proximity to the optimum. Thus, an exact optimization p(0) = % (PH — = A+ ((P@ —u+ N+ 4)\u) E) )
can often be replaced by an iterative procedure, as outlined 2
below Egs. (32) and (36). (see [14]). The quantity(0) is called ‘effective capacity’ in

(b) If it can be assumed that cross traffic at subsequent noda8] and has the property that0) < p(f) < P. The rate

is independent and arrival traffic has an effective bandwidi{0) = VAMP represents the average rate of the flow.
characterization, other techniques are applicable that yieldFor N independent flows we can bound the moment gen-
exact expressions for the backlog. Specifically, as shown émating function bye¥?*»(?) By the Chernoff bound, we can
[7], the bound in Eq. (37) can be refined as write

lim log P(B™!(t) > o) 9 P(A(t) — A(s) > Np(0)(t — s) + o)
00 o , < e—a(Np(G)(t—S)-HT)E[GGA(tfs)] <0
whered is related to an effective bandwidth equation. As re-

cently shown in [13], this leads to improved scaling pro ertiegOr each_chpice ob > 0, this provides us with an EBB .
y [13] P g prop characterization for the through flows and the cross flows in
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Fig. 4. End-to-end delay bounds of Markov Modulated On-Off arrivals as a function of the number of¥lew¥. (H = 1,2,5,10, e = 10~9, 7' = 10ms

(low burstiness);I" = 100ms (high burstiness)V = N.).

the network from Figure 2. Delay bounds for the through flowbounds of flows as a function of the number of floNst- V..
are provided by Egs. (29) and (33) from the previous sectioliVe consider networks where the number of nodes traversed by
Finally, we numerically optimize the resulting delay boundghe through flows is set téf = 1,2, 5, and10. The maximum

number of flows at each node is given ng = 666 flows.

overd.
In Figures 4(a) and (b) we show the delay bounds obtained
Bursti- | T P p(0) A ) r by adding per-node bounds from Subsection IV-B.1 and by
I”ess (TOS) (Mlbgs) ('\gblf) (”(‘)S; 1) (m1so) using the network service curves from Subsection IV-B.2,
rﬂ‘gh 100 | 15 015 | 001 01 respectively. For a single nodé/(= 1), both techniques yield
TABLE | the same delay bounds. The benefits of network service curves

become pronounced when the number of noHesraversed

by the through flows is increased. Figures 4(c) and (d) show

similar plots for flows that are more bursty. Here, the delay
In the example, the capacity of each node in the network u_nd_s are higher,_under_lining that bursty flows have a lower

set toC' = 100 Mbps, and time is measured in millisecondsStatistical multiplexing gain.

The parameters of the flows are given in Table I. We considerin Figure 5 we present end-to-end delay bounds for the

two types of flows, with identical peak rat#’ (= 1.5 Mbps) same setting as in Figure 4. The delay bounds are represented

and average ratep(0) = 0.15 Mbps). We introduce a as a function of the number of nod&s We set the number of

parametefl’ = . + 5 to describe the burstiness of a fldlis  flows so that the node utilization level is settfo= 10%, 50%,

the expected time for the Markov chain to change states twicand 90% of the capacity, whereV = N.. We only consider

For flows with given peak rat& and given mean ratg(0), flows whereT = 10 ms. In Figure 5, we depict the delay

a larger value off" indicates a higher degree of burstinesshounds obtained by adding per-node bounds as dashed lines,

In Table I, we us€l’ = 10 for flows with low burstiness and and the bounds obtained with network service curves as solid

T = 100 for flows with high burstiness. Lastly, the violationlines. The figure illustrates th® (H log H) bounds of end-to-

probability for the end-to-end delay bounds is sette 10 ~°.  end delays with network service curves, and the polynomial
In Figure 4 we show the probabilistic end-to-end delay (H3) bounds seen when adding per-node results. When

PARAMETERS OFON-OFF SOURCES
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APPENDIX: PROOF OFLEMMA 3
We need to minimize

K
f(glv SRR JK) = Z Mkeiekak (38)
k=1

subject to the constraint thafo+,...,0x) =01+ +ox =
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MypOpe %% =X k=1,... K, (39)

where the Lagrange multipliek is determined by the con-
straint. Eq. (39) allows to express the minimizing values
o1,...,0k interms of \. Inserting these values into Eq. (38)
shows that the minimum of is given by

NP
f(al""’UK):Z%' (40)
k=1

Let w be as in the statement of the lemma and sget=
1/(0rw). Sincep, + - -+ px = 1, Eqg. (39) implies
K

A= ﬁ A = H(%)pke*"/w SN CSY

W
k=1 1 WPk

where we have used the constraint and the definitiom ahd
pi in the last line. Inserting Eq. (41) into Eq. (40) completes
the proof.
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