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Abstract— The stochastic network calculus is an evolving new
methodology for backlog and delay analysis of networks that can
account for statistical multiplexing gain. This paper advances
the stochastic network calculus by deriving a network service
curve, which expresses the service given to a flow by the network
as a whole in terms of a probabilistic bound. The presented
network service curve permits the calculation of statistical end-
to-end delay and backlog bounds for broad classes of arrival
and service distributions. The benefits of the derived service
curve are illustrated for the exponentially bounded burstiness
(EBB) traffic model. It is shown that end-to-end performance
measures computed with a network service curve are bounded
by O (H log H), where H is the number of nodes traversed by a
flow. Using currently available techniques, which compute end-
to-end bounds by adding single node results, the corresponding
performance measures are bounded byO (

H3
)
.

Index Terms— Stochastic network calculus, Quality-of-Service,
network service curve.

I. I NTRODUCTION

The network calculus is a framework for analyzing delays and
backlog in a network where the traffic, and sometimes also
the service, are characterized in terms of envelope functions.
Pioneered as deterministic network calculus in the early 1990s
for the computation of worst-case performance bounds in
packet networks [10], it has played an important role in
the development of algorithms that support Quality-of-Service
guarantees in packet networks.

The elegance of the network calculus becomes evident
in the min-plus algebra formulation developed in [1], [9],
[16], where service guarantees to a flow at a node (switch)
are expressed in terms ofservice curves [11], [21]. In this
formulation, bounds for single nodes can be easily extended
to end-to-end bounds. More concretely, suppose a flow is
assigned a service curveSh at the h-th node on its route
(h = 1, . . . , H). Then the service given to the flow by the
network as a whole can be expressed in terms of a network
service curveSnet as

Snet = S1 ∗ S2 ∗ . . . ∗ SH , (1)

where ∗ is a convolution operator. With this remarkable
property, bounds for the output burstiness, backlog and delay
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for the entire network are computed in the same fashion as
single node results. The resulting end-to-end delay bounds are
generally tighter than the sum of the per-node delay bounds.
For example, if the service curve at theh-th node is given as a
constant rate function,Sh(τ) = cτ , one obtains from Eq. (1)
that Snet(τ) = cτ . As a result, the end-to-end backlog and
delay bounds are identical to the bounds at the first node. In
this way, the min-plus version of the network calculus provides
simple end-to-end estimates for delay and backlog.

A drawback of the worst-case view of traffic in the de-
terministic network calculus is that it does not reap the
benefits of statistical multiplexing, which can result in an
overestimation of the actual resource requirements and a low
utilization of network resources. This has motivated the search
for a stochastic network calculus which describes arrivals and
service probabilistically while preserving the elegance and
expressiveness of the original framework. By allowing even
a small fraction of traffic to violate its traffic description or
performance guarantees, one can achieve significant resource
savings.

Most work on extending the network calculus to a prob-
abilistic setting has been concerned with deriving statistical
performance bounds for a single node. In a stochastic network
calculus framework, traffic arrivals and sometimes also service
at network nodes are random processes which are bounded by
probabilistic envelope functions. The first, and probably most
widely known envelope function is the exponentially bounded
burstiness (EBB) characterization for traffic arrivals [25]. The
EBB model, which has been generalized in [3], [6], [24],
[26], has been shown to imply delay and backlog bounds at
simple traffic multiplexers. In [4], [22], probabilistic arrival
envelopes were used to derive schedulability conditions for a
variety of scheduling algorithms. The authors of [6], [18] have
established a link between envelope functions and the theory of
effective bandwidth [14], which estimates bandwidth require-
ments to satisfy given performance guarantees. Probabilistic
envelope functions that specify the amount of service made
available to a flow at a network node have appeared in [12],
[18], [22].

A number of studies have used probabilistic single node
bounds on delay, backlog, or the burstiness of traffic departing
from a node to derive multi-node performance bounds, e.g.,
[6], [15], [24], [25]. Indeed, by relating output descriptions
of traffic at a node to corresponding input descriptions, one
can obtain end-to-end bounds by adding the per-node bounds.
However, such results tend to degrade rapidly as the number
of nodes traversed by a flow is increased.

The promise of a min-plus algebra formulation of the
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stochastic network calculus lies in the development of prob-
abilistic network service curves that yield multi-node perfor-
mance bounds without the poor scaling properties associated
with adding per-node results. However, the development of
such a calculus has shown to be difficult. One particular
challenge is the formulation of the multi-node convolution
expression of a network service curve within a probabilistic
context. In [5] it was shown that a straightforward probabilistic
extension of deterministic concepts yields a network service
curves that deteriorates with time. As a solution, the authors
of [5] formulated a probabilistic service curve that takes the
form of Eq. (1), however, this service curve is difficult to
apply in numerical examples. In [2], a probabilistic network
service curve was derived under the assumption that each
node drops traffic that locally violates a given delay guarantee.
This dropping policy requires that packets in each buffer are
sorted according to a deadline computed from the arrivals
envelope and the service curve. Another network service
curve expression, developed in [18], assumes that a bound
is available which limits the busy period over multiple nodes.
Such a bound, however, is difficult to obtain.

Until now, the derivation of a network service curve for a
stochastic network calculus that does not depend on implicit
or explicit a priori upper limits on delay, backlog, or busy
periods has remained an open problem. The main contribution
of this paper is the construction of a probabilistic network
service curve that does not rely on a priori bounds. We show
that the network service curve derived here is applicable to a
broad class of arrival and service distributions. The presented
probabilistic service curve formulation is based on a definition
introduced in [12]. A recent study [20] also attempts to
construct a network service curve with a service curve as
defined in [12], however, the presented network service curve
is not correct.1

We illustrate the benefits of the network service curve for a
statistical end-to-end analysis of multiplexed EBB traffic. By
contrasting end-to-end delay bounds obtained with our service
curve with bounds obtained by iterating single node results,
as proposed in [25], we show the improvements attainable
through our stochastic network calculus approach. We will
show that the calculus approach with network service curve
renders bounds for delay, backlog, and output burstiness of
the orderO (H log H) in the number of nodesH in the
network, as opposed toO (

H3
)

bounds obtained by adding
per-node results. Thus, this paper, for the first time, quantifies
the benefits of using network service curves in a probabilistic
setting. This presents a significant step forward towards the
goal of developing the stochastic network calculus into a
practical methodology for the analysis of networks. As a
remark, in the deterministic calculus, a network service curve
leads to end-to-end bounds that scale withO (H), while
summing up single-node results gives bounds that scale with
O (

H2
)

[17]. Thus, network service curves have comparable
benefits in a deterministic and a stochastic setting.

1The paper fails to account for the fact that the convolution of
probabilistic arrival functions with service curves over multiple nodes
requires a sample path view. This and other pitfalls in the stochastic
network calculus are discussed in [18].

The remainder of the paper is organized as follows. In Sec-
tion II, we define our notion of a statistical service curve, and
present our main result, i.e., a service curve that expresses the
service received by a flow in a network. In Section III we use
envelope functions for a probabilistic characterization of traffic
and, together with our notion of probabilistic service, obtain
performance bounds on backlog, delay and output burstiness.
In Section IV we discuss an application of our network service
curve to EBB traffic, and compare the resulting end-to-end
delay bounds with the bounds implied by existing single node
results. In Section V we present a numerical example with
Markovian On-Off traffic for illustration. We present brief
conclusions in Section VI.

II. N ETWORK SERVICE CURVES

The input and output traffic of a flow at a network node
is described by two stochastic processesA = (A(t))t≥0

and D = (D(t))t≥0 that are defined on a joint probability
space.A(t) represents the cumulative arrivals, andD(t) the
cumulative departures in[0, t). We require thatA andD are
nondecreasing, left continuous functions withA(0) = D(0) =
0, and thatD(t) ≤ A(t) for any timet ≥ 0. In this paper we
use a continuous-time framework. Extensions to a discrete-
time setting are discussed in remarks.

In a packet-switching network, the service available to
a flow at a node is determined by a scheduling algorithm
(e.g., FIFO, Fair Queueing) which sets the order of packet
transmissions. A service curve, first presented in [11], [21],
is an alternate method to describe the service received by a
flow in terms of a function which specifies a lower bound
on the service. In the min-plus algebra formulation of the
deterministic calculus, a service curve is a functionS(·), such
that D(t) ≥ A ∗ S(t) for all t ≥ 0, where theconvolution of
two real-valued functionsf and g is defined asf ∗ g(t) =
inf0≤s≤t{f(s) + g(t − s)} for all t ≥ 0.

Next we define our measure of a probabilistic service
guarantee for a flow. We adopt a variation of the definition of a
statistical service curve from [12], where we add a positivity
requirement. We use the notation[x]+ = max(x, 0) for the
positive part of a real numberx.

Definition 1: (STATISTICAL SERVICE CURVE). A function
S(t) is a statistical service curve for an arrival processA if
for every choice ofσ and for all t ≥ 0

P
(
D(t) < A ∗ [S − σ]+ (t)

)
≤ ε(σ) , (2)

whereε(σ) is a non-increasing function.
We refer to the boundε(σ) on the violation probability as

the error function. Note that the condition is void whenever
ε(σ) ≥ 1, and that Eq. (2) fort = 0 implies thatε(σ) ≥ 1
for all σ < S(0). We frequently require that the functionε(σ)
satisfies the integrability condition∫ ∞

0

ε(u) du < ∞ . (3)

Comparing Definition 1 to probabilistic service descriptions
in the literature, we see that for each choice ofσ, the function
[S − σ]+ is an effective service curve in the sense of [5],
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[18], [19]. Here, choosingσ large amounts to increasing the
latency and decreasing the violation probability of the service
guarantee. Compared to the service curve in [12], the enforced
positivity of the statistical service curve can lead to tighter
performance bounds on backlog and output burstiness. Lastly,
if ε(σ) = 0 for some value ofσ, then [S − σ]+ defines a
deterministic service curve almost surely.

In the continuous-time setting, we find it convenient to
replace Eq. (2) by

P
(
D(t) < A ∗ [S − σ]+ (t + τ0)

) ≤ ε(σ) (4)

for all t ≥ 0, and thatε(σ) ≥ 1 for all σ < S(τ0). Here,
τ0 > 0 is a parameter that specifies a discretization of the
time scale.

We emphasize that Eq. (2) does not present an additional
assumption, since it can be obtained from Eq. (4) by replacing
S(t) with S(t−τ0). The addition of the parameterτ0 simplifies
the derivations to follow in Lemma 1 and Lemma 2.

We now state the main result of this paper. Consider a
flow with a network path throughH > 1 nodes, as shown
in Figure 1. At each node, we assume that the flow receives a
probabilistic service guarantee in terms of a statistical service
curve. The following theorem provides an expression for an
end-to-end statistical network service curve in terms of the
per-node service curves. In the theorem, we use the notation
fδ(t) = f(t) + δt for a real functionf and a real numberδ.

Theorem 1: (STATISTICAL NETWORK SERVICE CURVE).
Consider a flow with traffic throughH nodes. LetAnet := A1

denote the arrivals to the first node,Ah+1(t) = Dh(t) for
h = 1, . . . , H − 1 the arrivals at the(h + 1)-th node, and
Dnet := DH the departures from the last node. Assume that
each nodeh = 1, . . . , H provides a service guarantee in form
of a statistical service curveSh satisfying Eq. (4) for some
τ0 > 0. Assume that for allh < H , the error functionsεh

satisfy the integrability condition in Eq. (3). Then, for every
choice ofδ > 0, the function

Snet = S1 ∗ S2
−δ ∗ · · · ∗ SH

−(H−1)δ (5)

is a network service curve in the sense of Eq. (4), with an
error function given by

εnet(σ) = inf
σ1+···+σH=σ

{
εH(σH) +

H−1∑
h=1

1
δτ0

∫ ∞

σh

εh(u) du
}

.

The formula for the network service curve in Eq. (5)
corresponds closely to the formulation of the deterministic
calculus given in Eq. (1). The difference is that in Eq. (5), the
service curve at theh-th node is reduced by a rate(h − 1)δ.
The convolution expression in the deterministic calculus from
Eq. (5) is recovered almost surely by settingε(σ) = 0 for all
σ and then takingδ, τ0, σ → 0.

We remark that parametersδ andτ0 are technical devices.
The parameterδ is a relaxation of the service that reduces
the guaranteed service by a small rate. The parameterτ0 is a
discretization parameter indicating a time step. Applications of
the theorem in numerical examples require to choose specific
values for these parameters. Large values of these parameters
lead to pessimistic performance bounds that hold with a

Node
1

Node
2

Node
H

...
S1 S2 SH

Anet=A1 D1=A2 D2 AH DH=Dnet

Fig. 1. Traffic of a flow through a set ofH nodes.

small violation probability, while smaller values increase the
violation probability. In our examples we optimize over the
values of these parameters. In addition, the parameterσ is
chosen so that the value of the errorεnet(σ) does not exceed
a desired violation probability, e.g.,10−6 or 10−9.

The proof of the theorem relies on sample path arguments
inspired by the deterministic calculus. To estimate the prob-
ability of departure events involving entire sample paths, we
need to transform Definition 1, which makes statements about
departuresD(t) at any given timet, into a sample path
expression. This crucial step is provided in the next lemma.
While it is known how to obtain related sample path bounds
for traffic arrivals (as discussed in the next section), this is
the first time that such a sample path bound is established for
service descriptions.

Lemma 1: Let S be a statistical service curve for an arrival
processA. Assume thatS satisfies Eq. (4) for someτ0 > 0,
and thatε(σ) satisfies Eq. (3). Then, for any real numberδ > 0
and all t, σ ≥ 0,

P

(
sup

0≤s≤t

{
A ∗ [S − δ(t + τ0 − s) − σ

]
+
(s) − D(s)

}
> 0

)

≤ 1
δτ0

∫ ∞

σ

ε(u) du . (6)

We have slightly abused notation in order to simplify the
statement of the lemma. The convolution term on the left hand
side of Eq. (6) should be read as

inf
0≤u≤s

{
A(u) +

[S(s − u) − δ(t + τ0 − s) − σ
]
+

}
. (7)

PROOF. Givent > 0, we discretize the event in Eq. (6) on a
time scaleτ0. Let 0 ≤ s ≤ t, and letj = � t−s

τ0
� be the integer

part of t−s
τ0

. SinceA, S, andD are nondecreasing, we have

A ∗ [S − δ(t + τ0 − s) − σ
]
+
(s)

≤ A ∗ [S − δ(j + 1)τ0 − σ
]
+
(t − jτ0)

and
D(s) ≥ D

(
[t − (j + 1)τ0]+) .

It follows that

P

(
sup

0≤s≤t

{(
A ∗ [S − δ(t+τ0−s) − σ

]
+

)
(s) − D(s)

}
> 0

)

≤ P
(

max
j=0,...,� t

τ0
�

{
A ∗ [S − δ(j + 1)τ0 − σ

]
+
(t − jτ0)

−D
(
[t − (j + 1)τ0]+

)}
> 0

)

≤
� t

τ0
�∑

j=0

P
(
A ∗ [S − δ(j + 1)τ0 − σ

]
+
(t − jτ0)

> D
(
[t − (j + 1)τ0]+

))
,
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where we have applied Boole’s inequality in the last step. By
Eq. (4), the last sum is bounded by

∞∑
j=0

ε
(
σ + (j + 1)δτ0

) ≤ 1
δτ0

∫ ∞

σ

ε(u) du . �

PROOF OFTHEOREM 1. Let t > 0, δ > 0 and σ > 0 be
given, and chooseσ1, . . . , σH with

∑
σh = σ. Suppose that

for a particular sample path, the inequalities

Dh(s) ≥ Ah ∗ [Sh − δ(t + τ0 − s) − σh
]
+

(s) (8)

hold for all 0 ≤ s ≤ t andh = 1, . . . , H − 1, and that

DH(t) ≥ AH ∗ [SH − σH
]
+

(t + τ0) . (9)

Inserting the bound forAH = DH−1 from Eq. (8) into Eq. (9)
and expanding the convolutions yields with Eq. (7)

Dnet(t) ≥ inf
0≤u≤s≤t

{
AH−1(u) +

[
SH−1(s − u)

−δ(t + τ0 − s) − σH−1
]
+

+
[
SH(t + τ0 − s) − σH

]
+

}
.

Note that our definition ofS justifies the restriction of the
infimum to s ≤ t. Collecting terms and using that[x]+ +
[y]+ ≥ [x + y]+, we obtain

Dnet(t) ≥ AH−1 ∗
[
SH−1 ∗ SH

−δ − (σH−1 + σH)
]
+
(t + τ0) .

Iterating the argument for the remaining values ofh and using
the definition ofSnet, we arrive at

Dnet(t) ≥ Anet ∗
[
Snet −

H∑
h=1

σh
]
+
(t + τ0) .

Using Lemma 1 forh = 1, . . . , H − 1 and Eq. (4) for
h = H , we bound the violation probability by

P
(
Dnet(t) < Anet ∗

[
Snet −

H∑
h=1

σh
]
+

(t + τ0)
)

≤
H−1∑
h=1

P
(
Eq. (8) fails forSh for somes ≤ t

)

+P
(
Eq. (9) fails

)

≤
H−1∑
h=1

1
δτ0

∫ ∞

σh

εh(u) du + εH(σH) .

The proof is completed by minimizing overσ 1, . . . , σH . �
In a discrete time setting, there is no need for the parameter

τ0 appearing in Eq. (4), and we use the definition of the
statistical service curve in Eq. (2). If each node provides a
service curveSh in the sense of Eq. (2) with an error function
εσ, then for any choice ofδ > 0

Snet = S1 ∗ S2
−δ ∗ · · · ∗ SH

−(H−1)δ

is a network service curve which again satisfies Eq. (2), with
error function

εnet(σ) = inf
σ1+···+σH=σ

{
εH(σH) +

H−1∑
h=1

∞∑
k=0

εh(σh + kδ)
}

.

III. PERFORMANCEBOUNDS

The derivation of the statistical network service curve in
Theorem 1 does not make assumptions on the arrival functions
A at a node, and holds for all deterministic or probabilistic
descriptions of traffic. However, applying the network service
curve to compute performance bounds for a traffic flow
requires a characterization for the arrivals from the flow. In
the deterministic network calculus, it is generally assumed that
the arrivals from a traffic flowA are bounded or regulated by
an arrival envelope A∗, such thatA(t + τ) − A(t) ≤ A∗(τ)
for all t, τ ≥ 0. A frequently used envelope isA∗(t) = σ+ρt,
which corresponds to a leaky bucket with rateρ and burst size
σ. In a stochastic network calculus, traffic arrivals are usually
described in terms of probabilistic extensions [4], [24], [25] of
this envelope concept. The following definition specifies such
an extension.

Definition 2: (STATISTICAL ENVELOPE). A nondecreasing
functionG(t) is said to be astatistical envelope for an arrival
processA if, for all σ and all0 ≤ s ≤ t

P
(
A(t) − A(s) > G(t − s) + σ

)
≤ ε(σ) , (10)

whereε(σ) is a nonnegative, nonincreasing function.
Note that Eq. (10) is formulated for negative as well as positive
values ofσ. If Eq. (10) is only known to hold for nonnegative
values ofσ, we setε(σ) = max

{
1, ε(0)

}
for σ < 0.

Definition 2 is inspired by the Exponentially Bounded
Burstiness (EBB) model [25], which is the special case where
G(t) = ρt is a constant-rate function and the error function
decays exponentially. The Stochastically Bounded Burstiness
(SBB) model [24] is a generalization of the EBB model where
the condition that the error function decays exponentially is
relaxed and replaced by the assumption that it decays faster
than polynomially. These decay conditions are used to bound
the violation probability of events involving entire arrival
sample paths.

An alternate approach, introduced in [26], requires that the
arrivals satisfy an a priori sample path bound, leading to
the generalized Stochastic Bounded Burstiness (gSBB) model.
It is shown in [26] that an arrival process which conforms
to the SBB traffic model is also gSBB, though with more
pessimistic bounds. More generally, gSBB can accommodate
any arrival model satisfying a tail estimate analogous to
Eq. (3). The corresponding result in our paper is provided
by Lemma 2. Several recent studies [3], [20], [26] have
established performance bounds for the gSBB arrival model
with both deterministic and statistical service descriptions. At a
single node these bounds take an especially appealing, concise
form. However, in order to bound delay and backlog along a
path through a network, these results need to be combined
with a network service curve, which is not provided in [3],
[26] and incorrect in [20].

Let us comment briefly on the scope of the various traffic
models. The EBB model includes important classes such as
multiplexed regulated traffic, Markovian On-Off traffic, and
the Poisson process, but does not include distributions with
heavy tails or long-range correlations. In particular, fractional
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Brownian motion traffic belongs to SBB but not EBB, sat-
isfying Eq. (10) withG(t) = (ρ + δ)t and ε(σ) ∼ e−σα

,
whereρ is the average traffic rate,δ > 0 is arbitrarily small,
and0 < α < 1 is related to the Hurst parameter. The gSBB
model was shown to contain an even richer category of traffic
patterns [26], in particular, heavy-tailed distributions where
the error function decays as a power lawε(σ) ∼ σ−α with
1 < α ≤ 2.

Definition 2 allows statistical envelopes to be given by
arbitrary nondecreasing functions, which can provide a tighter
description of arrivals than the linear envelopes used in the
EBB, SBB, and gSBB traffic models. Still, linear envelopes
provide an important class of examples, for two reasons. First,
to imply any bounds on the delay and backlog at a link
which provides a constant service rate, a statistical envelope
cannot grow faster than linearly. Second, linear envelopes lend
themselves to efficient computations.

Definition 2 is also closely related to other probabilistic
envelope characterizations of traffic used in the literature.
In [12], an arrival process satisfying Eq. (10) is calledG-
smooth with overflow profile ε. For each value ofσ, the
function G + σ provides an effective envelope, as defined in
[4], with violation probabilityε(σ). Finally, as shown in [6],
[18], statistical envelopes can be connected with the notion of
effective bandwidth [14].

We next describe statistical performance guarantees on the
backlogB(t) = A(t) − D(t) and the delayW (t) = inf{d ≥
0 : A(t) ≤ D(t+d)}, where arrivals are bounded by statistical
envelopes satisfying Definition 2, and service is expressed in
terms of statistical service curves satisfying Definition 1. We
also derive a bound on output burstiness in the form of a
statistical envelope forD(t) satisfying Definition 2. We point
out that similar bounds have been derived in other statistical
network calculus papers [2], [5], [18], [20] for a variety of
arrival and service characterizations. We state the following
results for completeness, since there are technical differences
between our definition of a statistical service curve in Eqs. (2)
and (4) and those used in the literature. The theorem uses
the deconvolution operator	, which is defined for two real
functionsf andg asf 	g(t) = sups≥0 {f(t + s) − g(s)} for
all t ≥ 0.

Theorem 2: (PERFORMANCE BOUNDS). Let A(t) and
D(t) denote the arrivals and departure processes at a node
which provides a service curveS(t) satisfying Eq. (4) with
someτ0 > 0 and an error functionεs(σ). Let the arrivals
be bounded by a statistical envelopeG with an error function
εg(σ) that satisfies the integrability condition from Eq. (3).
Fix δ, τ0 > 0, and define

ε (σ) = inf
σg+σs=σ

{
εs(σs) +

1
δτ0

∫ ∞

σg

εg(u) du

}
.

Then we have the following bounds:

1) OUTPUT BURSTINESS: G 	 S−δ provides a statistical
envelope forD, i.e.,

P
(
D(t) − D(s) > G 	 S−δ(t − s) + σ

) ≤ ε(σ) (11)

for all 0 ≤ s ≤ t.

2) BACKLOG BOUND: A statistical bound on the backlog
at a node is given, fort ≥ 0, by

P
(
B(t) > Gδ 	 S(0) + σ

) ≤ ε (σ) . (12)

3) DELAY BOUND: A statistical bound on the delay is
given, for t ≥ 0, by

P
(
W (t) > d(σ)

) ≤ ε(σ) , (13)

where

d(σ) = inf
{
d : S(s + d) ≥ Gδ(s) + σ for all s ≥ 0

}
.

(14)
In the theorem, the rate correction parameterδ may appear
either in the statistical envelope or in the statistical service
curve. In the above bounds, we have placedδ wherever it
gives the better performance bound.

The proof of the theorem relies on a sample path argument
analogous to the proof of Theorem 1. This is provided by the
following lemma.

Lemma 2: Assume thatG is a statistical envelope forA,
with an error functionε(σ) satisfying Eq. (3). Then, for every
choice ofδ, τ0 > 0,

P
(
A(t) > inf

0≤u≤s

{
A(u) + G(t+τ0−u) + δ(s+τ0−u) + σ

})

≤ 1
δτ0

∫ ∞

σ

ε(u) du (15)

for all 0 ≤ s ≤ t andσ ≥ 0.
An implication of Lemma 2 is that an arrival process which
has a linear statistical envelopeG(t) = ρt and an error function
satisfying Eq. (3) is of class gSBB, as in [26].

PROOF. Fix s ≤ t. As in Lemma 1, we discretize the event
in Eq. (15) on a time scaleτ0 by settingj = � s−u

τ0
�, for a

given u with 0 ≤ u ≤ s ≤ t. By the monotonicity ofA and
G, we have

A(u) ≥ A
(
[s − (j + 1)τ0]+

)
and

G(t + τ0 − u) + δ(s + τ0 − u)
≥ G(

t − [s − (j + 1)τ0]+
)

+ δ(j + 1)τ0 .

We estimate

P
(
A(t) > inf

0≤u≤s

{
A(u) + G(

t+τ0−u) + δ(s+τ0−u
)

+ σ
})

≤ P
(
A(t) > min

j=0,...,� s
τ0

�

{
A

(
[s − (j+1)τ0]+

)

+G(
t − [s − (j+1)τ0]+

)
+ δ(j+1)τ0 + σ

})

≤
� s

τ0
�∑

j=0

P
(
A(t) − A

(
[s − (j+1)τ0]+

)

> G(
t − [s − (j+1)τ0]+

)
+ δ(j+1)τ0 + σ

)
,

where we have used Boole’s inequality in the last step. Since
G is a statistical envelope forA by assumption andε(σ) is
nondecreasing, we can bound the last sum by

∞∑
j=0

ε(σ + (j+1)δτ0) ≤ 1
δτ0

∫ ∞

σ

ε(u) du . �
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PROOF OFTHEOREM 2. The argument follows the corre-
sponding derivations in the deterministic calculus (see, e.g.,
[1], [8], [16]). For given0 ≤ s ≤ t, assume that for a particular
sample path,

D(s) ≥ A ∗ [S − σs
]
+
(s + τ0) , (16)

with S(τ0) ≤ σs, and

A(t) − A(u) ≤ G(t + τ0 − u) + δ(s + τ0 − u) + σg (17)

for all 0 ≤ u ≤ s. Then

D(t) − D(s)

≤ A(t) − inf
0≤u≤s+τ0

{
A(u) + [S(s + τ0− u) − σs]+

}

≤ sup
0≤u≤s

{
G(t + τ0 − u) + δ(s + τ0 − u) + σg

−[S(s + τ0 − u) − σs
]
+

}
≤ G 	 S−δ(t − s) + σ .

In the first step, we have used thatD(t) ≤ A(t) and the
assumption in Eq. (17). Note that valuesu > s do not
contribute to the infimum sinceS(τ0) ≤ σs. In the second
step, we have takenA(t) into the infimum and used Eq. (16),
and in the last step we have collected terms and applied the
definition of the deconvolution.

Using Lemma 2 and the assumption thatS is a statistical
service curve, we conclude that

P
(
D(t) − D(s) > G 	 S−δ(t − s) + σ

)

≤ εs(σs) +
1

δτ0

∫ ∞

σg

εg(u) du . (18)

The proofs of the delay and backlog bounds proceed along the
same lines and are omitted. �

The proof actually shows that the output burstiness satisfies
the tighter bound

P
(
D(t) − D(s) > G 	 ([S − σs

]
+

)
−δ

(t − s) + σg
)

≤ ε(σg, σs) ,

whereεs(σg, σs) is given by the right hand side of Eq. (18).
This is a consequence of the positivity property of the sta-
tistical service curve in Definition 1. A similar bound can be
proven for the backlog,

P
(
B(t) > Gδ 	 [S − σs]+ (0) + σg

) ≤ ε (σg, σs) ,

but not for the delay. The improvement over Theorem 2
can be noticeable at low utilizations but disappears at high
utilizations.

Given a workconserving scheduler at an output link that
operates at a constant rate, we can describe the service
available to a tagged flow at a scheduler serving multiple flows
in terms of a service curve that expresses the capacity left
unused by other flows with traffic at this link. We refer to
such a service curve as aleftover service curve. This concept
has been applied in a deterministic setting in [9], [17], and in
a probabilistic setting in [18], [19], [22]. We point out that the

leftover service curve is a pessimistic estimate of the service
available to the flow, which amounts to serving the tagged
flow at a lower priority than all other flows. For particular
scheduling algorithms, less pessimistic estimates have been
obtained in [18], [22].

The following theorem shows that we can obtain a leftover
service curve compliant with Definition 1, whenever traffic
arrivals are characterized by statistical envelopes in the sense
of Definition 2. We will use the leftover service curve in
Section IV to determine the service available to a single flow
at a multiplexer with EBB traffic arrivals.

Theorem 3: (LEFTOVER SERVICE CURVE). Consider a
workconserving scheduler with constant rateC serving mul-
tiple flows. Fix a collection of flows and denote its aggregate
arrival and departure processes byA(t) andD(t). Let Ac(t)
andDc(t) denote the arrivals and departures of the aggregate
of the remaining flows. Assume thatGc is a statistical envelope
for the arrivalsAc that satisfies

lim sup
t→∞

Gc(t)
t

< C ,

with an error functionεg
c(σ) that satisfies the integrability

condition in Eq. (3). Then, for any choice ofδ > 0 andτ 0 > 0,

S(t) = C(t − τ0) − Gc,δ(t)

is a statistical service curve forA that satisfies Eq. (4) with
error function

εs(σ) =
1

δτ0

∫ ∞

σ

εg
c(u) du .

If the stronger integrability condition∫ ∞

0

σεg
c(σ) dσ < ∞ (19)

holds, thenεs(σ) satisfies Eq. (3).
In the theorem, we used the notationGc,δ(t) = Gc(t) + δt.

PROOF. Since the link provides a service curveR(t) = Ct
to the aggregate of through flows (described byA) and cross
flows (described byAc), andDc(t) ≤ Ac ∗ R(t), we have

D(t) ≥ (A + Ac) ∗ R(t) − Ac ∗ R(t)

= inf
0≤s≤t

{
A(s) + Ac(s) + R(t − s) − Ac ∗ R(t)

}
.

Inserting the inequality

Ac ∗ R(t) ≤ min
{
Ac(t), Ac(s) + R(t − s)

}
and collecting terms, we obtain

D(t) ≥ inf
0≤s≤t

{
A(s) +

[
Ac(s) − Ac(t) + R(t − s)

]
+

}
.(20)

Fix t ≥ 0 and δ, τ0 > 0. Suppose that, for a particular
sample path, we have

Ac(t) ≤ inf
0≤s≤t

{
Ac(s) + Gc,δ(t + τ0 − s) + σ

}
. (21)

Using this inequality in Eq. (20) yields

D(t) ≥ inf
0≤s≤t

{
A(s) +

[
R(t − s) − Gc,δ(t + τ0 − s) − σ

]
+

}

≥ A ∗ [S − σ]+(t + τ0) .
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By Lemma 2 withs = t, the violation probability is bounded
by

P
(
D(t) < A ∗ [S − σ

]
+

(t + τ0)
)

= P
(
Eq. (21) fails

)

≤ 1
δτ0

∫ ∞

σ

εg
c(u) du .

If σ < S(τ0), then

εs(σ) ≥ 1
δτ0

∫
−Gc(0)−δτ0

εg
c(u) du ≥ inf

Gc(0)+u<0
εg

c(u) ≥ 1 ,

as required for Eq. (4). We have used that the definition of the
statistical envelope in Eq. (10) implies, by settings = t, that
εg

c(σ) ≥ 1 for Gc(0) + σ < 0.
If the error functionεg

c satisfies Eq. (19), then∫ ∞

0

εs(σ) dσ =
1

δτ0

∫ ∞

0

∫ ∞

σ

εg
c(u) du dσ

=
1

δτ0

∫ ∞

0

u εg
c(u) du < ∞

by exchanging the order of integration. �
Finally, we note that a leftover service curve and perfor-

mance bounds can also be obtained in a discrete time setting.
As in the case of Theorem 1, the only modification needed in
Theorems 2 and 3 is that the statistical service curve needs
to satisfy Eq. (2) in place of Eq. (4), and that discrete sums∑∞

k=0 ε(σ + kδ) appear in place of the integrals in the error
functions.

IV. A N APPLICATION WITH EBB ARRIVALS

We now present an application that relates the network
service curve and the performance bounds developed in this
paper to the literature on statistical service guarantees from the
early 1990s. We demonstrate that statistical network service
curves can faithfully reproduce the single node results in [25]
which predate the service curve concept. In a multi-node
setting, we show the benefits of the statistical network service
curve by comparing statistical end-to-end performance bounds
computed with the techniques from [25] (without a network
service curve) to those obtained with the results of this paper.

The network scenario that we consider is shown in Figure 2.
We will refer to the flows which traverse the network as
the through flows, and the flows which transit the network
as thecross flows. We are interested in statistical multi-node
performance measures for the through flows, such as an output
envelope at the last node in the network and bounds on the total
delay experienced along the path through the network. Our
performance bounds hold for all work-conserving scheduling
algorithms that serve traffic from the same flow in the order
of arrival.

Network arrivals are described in terms of the exponentially
bounded burstiness (EBB) model defined in [25] which is
given for the arrival processA by the condition that

P (A(t) − A(s) > ρ(t − s) + σ) ≤ Me−θσ (22)

for any 0 ≤ s ≤ t. Here,ρ represents a bound on the long-
term arrival rate,θ is the decay rate of the error function, and
M ≥ 1 is a constant.

...

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Through
Flows

Through
Flows

Node HNode 2Node 1

Fig. 2. A network with cross traffic.

By choosing the EBB traffic model we can compare our
stochastic network calculus results with existing performance
bounds, specifically [25]. Moreover, the EBB model can
be used to describe arrival processes that have relevance
in practice, e.g., Markov-modulated On-Off processes and
multiplexed regulated arrivals. Finally, and most importantly,
the EBB model lends itself to simple, closed-form performance
bounds that permit us to gain insight into the scaling properties
of network-wide bounds obtained with the stochastic network
calculus.

A. Analysis at a single node

We will show that the network calculus developed in this
paper can recover the results of the EBB analysis for a
single node from [25]. This demonstrates that statistical service
curves are an adequate representation of the service received
by a flow with respect to cross traffic. Reproducing the EBB
analysis with a service curve approach may help to dispel
a myth that service curves necessarily lead to inaccurate
descriptions of service.

Consider the first node in the network from Figure 2.
We assume that the aggregate arrivals of the through flows,
denoted byA, and the aggregate arrivals of the cross flows,
denoted byAc, are each EBB arrival processes with bounds
ρ andρc on their long-term rates. For simplicity, both arrival
processes are assumed to have the same parametersθ > 0 and
M ≥ 1. Following [25], this subsection uses a discrete time
domain. In Subsection IV-B we will return to a continuous
time domain, as it results in simpler expressions for the desired
bounds.

It was shown in ([25], Theorem 2) that the output trafficD
has the EBB characterization

P
(
D(t) − D(s) > ρ(t − s) + σ

) ≤ 2M

1 − e−
θ
2 (C−(ρ+ρc))

e−
θ
2 σ

(23)
for all 0 ≤ s ≤ t.

The same output bound can be obtained in the network
calculus with a statistical service curve. The EBB characteri-
zation of the cross traffic says thatGc(t) = ρct is a statistical
envelope in the sense of Definition 2, with error function
εg

c(σ) = Me−θσ. To characterize the service available to the
through flows, we use a leftover service curve. As explained at
the end of Section III, the discrete-time version of Theorem 3
implies that for any choice ofδ > 0,

S(t) = (C − ρc − δ)t
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is a statistical service curve forA in the sense of Eq. (2), with
error function

εs(σ) =
∞∑

k=0

Me−θ(σ+kδ) =
M

1 − e−θδ
e−θσ .

Next we use thatG(t) = ρt is a statistical envelope for the
through flows. The discrete-time version of Theorem 2 implies
that, for δ ≤ C−(ρ+ρc)

2 , the function

G 	 S−δ(t − s) = ρ(t − s)

is a statistical envelope for the departure process of the through
flows, with error function

ε(σ) =
2M

1 − e−θδ
e−

θ
2 σ .

By setting δ = C−(ρ+ρc)
2 , we obtain Eq. (23). The backlog

bound of [25] can be similarly recovered, and the discrete
counterpart of Theorem 2 provides a stronger delay bound
than the one suggested in [25].

This example demonstrates that the separation of the sta-
tistical analysis of the through flows (in terms of a statistical
envelope) from those made for the service of the cross flows
(in terms of a statistical service curve) does not lead to
more pessimistic bounds than a direct analysis of the backlog
process.

B. Analysis of end-to-end delay bounds

We turn to the problem of deriving network performance
bounds for the through flows in the network from Figure 2.
The purpose of this section is to compare two strategies
for computing statistical end-to-end bounds. The technique
suggested in [25] is to analyze bounds at each node iteratively,
using the EBB characterization of the output in Eq. (23).
Network performance bounds are obtained by adding the per-
node delay bounds. This approach has also been used in
related works that compute statistical end-to-end delay bounds
for other traffic models, e.g., [6], [15], [24], [25]. Network
service curves offer an alternate technique of reducing the
analysis of a network to the analysis of a single node. In
the deterministic network calculus under worst-case traffic
scenarios it is known that network service curves render better
bounds than adding per-node delay bounds. This observation
is appropriately called ‘pay-bursts-only-once’ in [17]. The
results in this section establish the corresponding result in the
probabilistic EBB context. We note that the statistical network
service curves derived in [2], [5] share this property. However,
this is the first time that the benefit of the ‘pay-bursts-only-
once’ property in a stochastic context is established by a
direct comparison with results from the literature that rely on
summing up per-node bounds. (The assumptions on the service
curves in [2] and [5] make such a comparison difficult). Our
results will show that adding per-node delay bounds results in a
network delay bound that increases withO(H 3) in the number
of nodes, whereas the delay bounds with network service curve
grow with O(H log H).

All derivations in this subsection, including those of the
per-node service bounds, are done in the framework of the

network calculus, that is, we use statistical envelopes to
describe arrivals and service curves to describe service. This
is justified by the result of the previous subsection that our
network calculus can reproduce the input-output relation and
performance bounds obtained by a direct analysis of the
backlog process at a single node.

As shown in Figure 2, the network hasH workconserving
nodes arranged in series, with the capacity of each node set
to C > 0. We useAh and Dh to denote the arrivals and
departures of the through flows at theh-th node, withAh+1 =
Dh for h = 1, . . .H−1. As before, we assume that the through
and cross flows have EBB characterizations with the same
values forM andθ and long-term bounds on their rates given
by ρ andρc.

At each node, the service available to the through flows is
given by a leftover service curve. Since the cross flows at each
nodeh are described in terms of the EBB model, it follows
that

Gc(t) = ρct

is a statistical envelope for the cross flows with error function

εc(σ) = Me−θσ .

By Theorem 3, for any choice ofδ > 0, τ0 ≥ 0, the function

Sh(t) = (C − ρc − δ)t − Cτ0

is a statistical service curve for the through flows at node
h. The service curve can be formulated more elegantly by
replacingσ with σ − Cτ0, yielding

Sh(t) = (C − ρc − δ)t . (24)

The resulting error function is

εs,h(σ) =
eθCτ0

θδτ0
e−θσ .

1) Adding per-node bounds: Here, we calculate delay
bounds according to Theorem 2 for each node, and then add
the per-node delay bounds to obtain network bounds. The
service available to the through flows at each node is given
by Eq. (24). To apply the theorem we need to also have a
statistical envelope of the arrivals at each node. We will show
by induction that the arrivalsAh at each node are characterized
by a statistical envelope

Gh(t) = ρt (25)

in the sense of Definition 2, with error function

εg,h(σ) = M

(
Ce

δ

)h2+h−2
2h

e−
θ
h σ , (26)

whereδ ≤ C−(ρ+ρc)
2 is a free parameter. In other words, the

arrivals at each node comply with the EBB traffic model, with
identical rates at each node, but with a reduced decay rate and
an increased constant at subsequent nodes (h > 1).

For h = 1, there is nothing to show, since the arrivals of the
through flows at the first node are characterized by the EBB
traffic model from Eq. (22). To make the inductive step, we
will use the following lemma.
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Lemma 3: For any positive numbersMk, θk (k =
1, . . . , K) and anyσ ≥ 0,

inf
σ1+···+σK=σ

K∑
k=1

Mke−θkσk =
K∏

k=1

(Mkθkw)
1

θkw e−
σ
w ,

wherew =
∑K

k=1
1
θk

.
A proof of the lemma is given in the Appendix.

Assume that for someh ≥ 1, we already know that a
statistical envelope for the arrivals at nodeh is given by
Eqs. (25) and (26). Since the service of the through flows at
theh-th node is described by the service curveS h in Eq. (24),
Theorem 2.1 implies that

Gh+1(t) = Gh 	 Sh
−δ(t) = ρ(t − s)

is a statistical envelope for the output from theh-th node, with
error function

εh+1(σ) = inf
σ1+σ2=σ

M

θδτ0

{(Ce

δ

) h2+h−2
2h

he−
θ
h σ1+eθCτ0e−θσ2

}
.

Applying Lemma 3 withK = 2, θ1 = θ
h and θ2 = θ, and

then minimizing overτ0 by settingτ0 = h+1
Cθ , we conclude

that

εh+1(σ) = M

(
Ce

δ

) h2+3h
2(h+1)

e−
θ

h+1 σ , (27)

which completes the induction.
We next obtain a statistical bound for the delayW h(t) at

nodeh from Theorem 2.3. Set

d(σ) = inf
{
d : S(s + d) ≥ Gδ(s) + σ

}
=

σ

C − ρc − δ

according to Eq. (14). Then we get from Theorem 2.3 that

P
(
Wh(t) > d(σ)

) ≤ εh+1
(
σ
)

,

where the error functionεh+1 is given by Eq. (27). Replacing
σ by (C − ρc − δ)d gives

P
(
Wh(t) > d

) ≤ εh+1
(
(C − ρc − δ)σ

)
. (28)

To obtain a bound for the network delayW net, we add the
delay bounds at each node,

P
(
Wnet(t) > d

) ≤ inf
d1+···+dH=d

H∑
h=1

P
(
Wh(t) > dh

)
.

Inserting the bounds from Eq. (28) and using Lemma 3 to take
the infimum, we get

P
(
Wnet(t) > d

) ≤ Mnete−
2θ

H(H+3) (C−ρc−δ)d , (29)

with

Mnet =
H(H + 3)

2
M

(
Ce

δ

) (H+1)(H+5)
3(H+3) H∏

h=1

(h + 1)−
2(h+1)

H(H+3) .

(30)
The value of the free parameterδ that minimizes the violation
probability in Eq. (29) under the constraint0 < δ ≤ C−(ρ+ρc)

2
is given by

δ = min
{

H(H + 1)(H + 5)
6θd

,
C − (ρ + ρc)

2

}
. (31)

At this point, we can compute the probability that a given
delay bound is exceeded. In our numerical examples, we
determine a delay boundd so thatP

(
W (t) > d

) ≤ ε, where
ε is a given violation probability. Setting the right hand side
of Eq. (29) toε and solving ford gives

d =
1

C − ρc − δ

H(H + 3)
2θ

log
(

Mnet

ε

)
. (32)

Since the optimal value forδ depends ond by Eq. (31), this
is an implicit equation ford. In our numerical computations,
we obtain an explicit near-optimal bound by first setting
δ0 = C−(ρ+ρc)

2 and computing the corresponding delayd0

from Eq. (32). We then determineδ from Eq. (31) withd 0 in
place ofd, and finally obtain the desired delay bound from
Eq. (32).

From Eq. (30) it follows thatlog
(
Mnet

)
grows linearly

in the number of nodesH . Thus, with the quadratic term in
Eq. (32), we conclude that the delay bound in Eq. (32) scales
asO(H3).

2) Using the network service curve: We now derive net-
work delay bounds forW net for the same scenario using the
statistical network service curve from Section II.

Fix δ ≤ C−(ρ+ρc)
H+1 . Starting from the leftover service curves

in Eq. (24), we apply Theorem 1 to obtain the statistical
network service curve

Snet(t) = (C − ρc − Hδ)t ,

with error function

εs,net(σ) = M
HeθCτ0

(θδτ0)
2H−1

H

e−
θ
H σ ,

where we have again used Lemma 3 to compute the infimum
appearing in the formula forεnet from Theorem 1.

Recall the statistical envelope formulation of the through
flows at the first node, which is given byG(t) = ρt, with error
function εg(σ) = Me−θσ. Having an arrival characterization
and a network service curve, we can apply Theorem 2.3 to
obtain a bound on the network delay. From Eq. (14), we find
that

d(σ) =
σ

C − ρc − Hδ
.

It follows from Theorem 2 withσ replaced by(C−ρc−Hδ)d
that

P
(
Wnet(t) > d

) ≤ Mnete−
θ

H+1 (C−ρc−Hδ)d (33)

with

Mnet = Me(H + 1)
(

HC

(H + 1)δ

) 2H
H+1

, (34)

where we have once more used Lemma 3 and optimized
over the parameterτ0 in the formula for the error function
in Theorem 2. The minimizing value of the free parameterδ
for a given value ofd is given by

δ = min
{

2
θd

,
C − (ρ + ρc)

H + 1

}
. (35)
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Solving for the delay bound in Eq. (33) with the right hand
side set equal toε, we get

d =
1

C − ρc − Hδ

H + 1
θ

log
(Mnet

ε

)
. (36)

In our numerical example, we use the same two-step procedure
as for Eq. (32) to find a good value forδ. We computed 0 from
Eq. (36) withδ set equal toδ0 = C−(ρ+ρc)

H+1 , then insertd0 for
d into Eq. (35) for an improved value forδ, which we use
to determine the delay boundd from Eq. (36). It is apparent
from Eq. (34) thatM net grows polynomially in the number
of nodes, and hence the delay bound in Eq. (36) is of order
O(H log H).

The same techniques can be used to obtain statistical bounds
on the network backlog. Adding per-node bounds for the
backlog yields

P
(
Bnet(t) > σ

) ≤ Mnete−
2θ

H(H+3) σ, (37)

whereMnet is given by Eq. (30). Here, the optimal choice is
δ = (C − (ρ+ ρc))/2. Using the network service curve yields

P
(
Bnet(t) > σ

) ≤ Mnete−
θ

H+1 σ ,

with Mnet given by Eq. (34). In this case, the optimal choice
for δ is

δ =
C − (ρ + ρc)

H + 1
.

With this choice,Mnet evaluates to

Mnet = Me(H + 1)
(

HC

C − (ρ + ρc)

) 2H
H+1

.

So, a backlog boundb can be explicitly calculated as follows:

b ≤ H + 1
θ

log
Mnet

ε

≤ 2H

θ
log

(
HC

C − (ρ + ρc)

)
+

H + 1
θ

log
(

Me(H + 1)
ε

)
.

Remarks:
(a) We want to add that an explicit optimization forδ
may prove difficult if the error function is not exponential.
However, the delay bounds are not very sensitive to the choice
of δ in proximity to the optimum. Thus, an exact optimization
can often be replaced by an iterative procedure, as outlined
below Eqs. (32) and (36).
(b) If it can be assumed that cross traffic at subsequent nodes
is independent and arrival traffic has an effective bandwidth
characterization, other techniques are applicable that yield
exact expressions for the backlog. Specifically, as shown in
[7], the bound in Eq. (37) can be refined as

lim
σ→∞

log P (Bnet(t) > σ)
σ

= −θ ,

whereθ is related to an effective bandwidth equation. As re-
cently shown in [13], this leads to improved scaling properties.

V. NUMERICAL EXAMPLE

We next give a numerical example that illustrates the
benefits of using network service curves for the computation of
statistical end-to-end delay bounds. We consider the network
and arrival scenario shown in Figure 2. Arrivals of cross
flows and arrivals of through flows at the first node are each
described as an aggregate of independent Markov Modulated
On-Off processes. This type of process, which has been used
for modeling voice channels, falls into the category of the
EBB traffic model. We will show plots that compare the
delay bounds obtained through adding per-node bounds (from
Subsection IV-B.1) to those obtainable with a network service
curve (from Subsection IV-B.2).

On Off

µ

λ

P

Fig. 3. On-Off traffic model.

The Markov Modulated On-Off arrival process of an arrival
flow, illustrated in Figure 3, is a continuous time process with
support given by a homogeneous two-state Markov chainX(t)
which is described in terms of the generator matrix

G =
( −µ µ

λ −λ

)
.

Here,µ denotes the transition rate from the ‘On’ state to the
‘Off’ and λ to denote the transition rate from the ‘Off’ state to
the ‘On’ state. In the ‘On’ state, the arrival process transmits
at the peak rateP , and no arrivals occur in the ‘Off’ state.

We assume that there areN through flows andNc cross
flows at each node. Through flows at the first node and cross
flows are stochastically independent. For the sake of simplicity,
we assume that all arrival processes are homogeneous and
that there is an equal number of through and cross flows
(N = Nc). We want to emphasize that computing examples
for heterogeneous flows does not pose a problem, other than
increasing notation.

Next, following [6], we quickly derive an EBB characteriza-
tion of N independent On-Off flows. The moment-generating
function of a single On-Off flow is bounded byE[e θA(t)] ≤
eθtρ(θ), where

ρ(θ) =
1
2θ

(
Pθ − µ − λ +

(
(Pθ − µ + λ)2 + 4λµ

) 1
2
)

,

(see [14]). The quantityρ(θ) is called ‘effective capacity’ in
[23] and has the property thatρ(0) ≤ ρ(θ) ≤ P . The rate
ρ(0) = λ

λ+µP represents the average rate of the flow.
For N independent flows we can bound the moment gen-

erating function byeNθtρ(θ). By the Chernoff bound, we can
write

P
(
A(t) − A(s) > Nρ(θ)(t − s) + σ

)
≤ e−θ

(
Nρ(θ)(t−s)+σ

)
E

[
eθA(t−s)

] ≤ e−θσ .

For each choice ofθ > 0, this provides us with an EBB
characterization for the through flows and the cross flows in
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(a) T=10 (Adding Per-Node Bounds).
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(b) T=10 (Network Service Curve).
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(c) T=100 (Adding Per-Node Bounds).
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(d) T=100 (Network Service Curve).

Fig. 4. End-to-end delay bounds of Markov Modulated On-Off arrivals as a function of the number of flowsN +Nc (H = 1, 2, 5, 10, ε = 10−9, T = 10ms
(low burstiness),T = 100ms (high burstiness),N = Nc).

the network from Figure 2. Delay bounds for the through flows
are provided by Eqs. (29) and (33) from the previous section.
Finally, we numerically optimize the resulting delay bounds
over θ.

Bursti- T P ρ(0) λ µ
ness (ms) (Mbps) (Mbps) (ms−1) (ms−1)

low 10 1.5 0.15 0.11 1.0
high 100 1.5 0.15 0.01 0.1

TABLE I

PARAMETERS OFON-OFF SOURCES.

In the example, the capacity of each node in the network is
set toC = 100 Mbps, and time is measured in milliseconds.
The parameters of the flows are given in Table I. We consider
two types of flows, with identical peak rate (P = 1.5 Mbps)
and average rate (ρ(0) = 0.15 Mbps). We introduce a
parameterT = 1

µ + 1
λ to describe the burstiness of a flow.T is

the expected time for the Markov chain to change states twice.
For flows with given peak rateP and given mean rateρ(0),
a larger value ofT indicates a higher degree of burstiness.
In Table I, we useT = 10 for flows with low burstiness and
T = 100 for flows with high burstiness. Lastly, the violation
probability for the end-to-end delay bounds is set toε = 10−9.

In Figure 4 we show the probabilistic end-to-end delay

bounds of flows as a function of the number of flowsN +N c.
We consider networks where the number of nodes traversed by
the through flows is set toH = 1, 2, 5, and10. The maximum
number of flows at each node is given by� C

ρ � = 666 flows.
In Figures 4(a) and (b) we show the delay bounds obtained
by adding per-node bounds from Subsection IV-B.1 and by
using the network service curves from Subsection IV-B.2,
respectively. For a single node (H = 1), both techniques yield
the same delay bounds. The benefits of network service curves
become pronounced when the number of nodesH traversed
by the through flows is increased. Figures 4(c) and (d) show
similar plots for flows that are more bursty. Here, the delay
bounds are higher, underlining that bursty flows have a lower
statistical multiplexing gain.

In Figure 5 we present end-to-end delay bounds for the
same setting as in Figure 4. The delay bounds are represented
as a function of the number of nodesH . We set the number of
flows so that the node utilization level is set toU = 10%, 50%,
and90% of the capacity, whereN = Nc. We only consider
flows whereT = 10 ms. In Figure 5, we depict the delay
bounds obtained by adding per-node bounds as dashed lines,
and the bounds obtained with network service curves as solid
lines. The figure illustrates theO (H log H) bounds of end-to-
end delays with network service curves, and the polynomial
O (

H3
)

bounds seen when adding per-node results. When
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Fig. 5. End-to-end delay bounds for fixed network utilization levels ofU =
10%, 50%, and90% as a function of the number of nodesH in the network
(T = 10 ms,ε = 10−9, N = Nc).

the number of nodesH grows large, the scaling properties
dominate even the effects of the traffic load. ForH > 50,
the bounds obtained with network service curves on a highly
(90%) loaded link are smaller than the delay bounds obtained
without network service curves at a lightly (10%) loaded link.

VI. CONCLUSIONS

We have extended the state-of-the-art of the stochastic net-
work calculus by deriving a network service curve formulation
that is applicable to a broad class of traffic and service
characterizations. The formulation of such a service curve in
the presented general form has been a long-standing research
problem. Using the network service curve, we calculated
statistical end-to-end delay and backlog bounds which are
vastly superior to bounds obtained by adding delay bounds
of single nodes. For EBB traffic arrivals, we showed that for a
flow that traversesH nodes and encounters cross traffic at each
node, our network calculus with statistical network service
curves gives statistical end-to-end delays that are bounded by
O (H log H), as opposed toO (

H3
)

bounds rendered by the
method of adding per-node bounds. An immediate research
problem suggested by this paper relates to the tightness of
the O (H log H) bounds. Another extension is a systematic
investigation that studies the impact of traffic and service
assumptions on scaling properties of network bounds.
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APPENDIX: PROOF OFLEMMA 3

We need to minimize

f(σ1, . . . , σK) =
K∑

k=1

Mke−θkσk (38)

subject to the constraint thatg(σ1, . . . , σK) = σ1+· · ·+σK =
σ, whereσ > 0 is given. This problem has a unique solution
by the strict convexity off . The Lagrange multiplier condition
for the minimum takes the form

Mkθke−θkσk = λ , k = 1, . . . , K , (39)

where the Lagrange multiplierλ is determined by the con-
straint. Eq. (39) allows to express the minimizing values
σ1, . . . , σK in terms ofλ. Inserting these values into Eq. (38)
shows that the minimum off is given by

f(σ1, . . . , σK) =
K∑

k=1

λ

θk
. (40)

Let w be as in the statement of the lemma and setpk =
1/(θkw). Sincep1 + · · · + pK = 1, Eq. (39) implies

λ =
K∏

k=1

λpk =
K∏

k=1

( Mk

wpk

)pk

e−σ/w , (41)

where we have used the constraint and the definition ofw and
pk in the last line. Inserting Eq. (41) into Eq. (40) completes
the proof.
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