
Buffer Management and Scheduling for Enhanced
Differentiated Services�

Technical Report: University of Virginia, CS-2000-24

Jörg Liebeherr Nicolas Christin
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

Abstract

A novel framework, called JoBS (Joint Buffer Management and Scheduling), is presented for reason-
ing about relative and absolute per-class service differentiation in a packet network without information
on traffic arrivals. JoBS has two unique capabilities: (1) JoBS makes scheduling and buffer management
decisions in a single step, and (2) JoBS supports both relative and absolute QoS requirements of classes.
JoBS is presented in terms of the solution to an optimization problem. Numerical simulation examples,
including results for a heuristic approximation of JoBS, are presented to illustrate the effectiveness of
the approach and to compare JoBS to existing methods for loss and delay differentiation.

Key Words: Buffer Management, Scheduling, Service Curves, Quality-of-Service, Service Differentiation.

�This work is supported in part by the National Science Foundation through grants NCR-9624106 (CAREER), ANI-9730103,
and ANI-9903001.

1 Introduction

There are two important criteria for classifying Quality-of-Service (QoS) guarantees in packet networks.
The first criterion is whether guarantees are expressed for individual end-to-end traffic flows (per-flow QoS)
or for groups of flows with the same QoS requirements (per-class QoS). The second criterion is whether
guarantees are expressed with reference to guarantees given to other flows/flow classes (relative QoS) or if
guarantees are expressed as absolute bounds (absolute QoS).

Efforts to provision for QoS in the Internet in the early and mid-1990s, which resulted in the IntServ
model [4], focused on per-flow absolute QoS guarantees. However, due to scalability issues and a lagging
demand for per-flow absolute QoS, the interest in Internet QoS eventually shifted to relative per-class guar-
antees. An important argument in favor of relative per-class QoS is that it does not require admission control
or traffic policing. Since late 1997, theDifferentiated Services(DiffServ) [3] working group has discussed
several proposals for per-class relative QoS guarantees [6, 23, 24].

Most proposals for relative per-class QoS discussed within the DiffServ context define service differen-
tiation qualitatively, in the sense that some classes receive lower delays and a lower loss rate than others, but
without quantifying the differentiation. Recently, research studies have tried to strengthen the guarantees
of relative per-class QoS, and have proposed new buffer management and scheduling algorithms which can
support stronger relative QoS notions [9, 10, 21, 22]. Probably the best known such effort is theproportional
service differentiationmodel [8], proposed by Dovrolis, Stiliadis, and Ramanathan, which enforces that the
ratios of delays [10] or loss rates [9] of successive priority classes are roughly constant. For two priority
classes such a service could specify that the delays of packets from the higher-priority class be half of the
delays from the lower-priority class, but without specifying an upper bound on the delays.

In this paper, we express the provisioning of relative per-class QoS within a formal framework inspired
by Cruz’s service curves [7]. Using this approach, we present a scheduling/dropping algorithm, calledJoint
Buffer Management and Scheduling (JoBS), which is capable of supporting a wide range of relative, as well
as absolute, per-class guarantees for loss and delay, without assuming admission control or traffic policing.
JoBS operates as follows. After each arrival, JoBS predicts delays of the currently backlogged traffic, and
then adjusts the service rate allocation to classes and the amount of traffic to be dropped. A unique feature
of JoBS is that it considers scheduling and buffer management (dropping) together in a single step.

This paper is organized as follows. In Section 2 we give an overview of the state-of-the-art of relative
per-class QoS guarantees. Then, in Sections 3 and 4, we specify the JoBS framework. In Section 5 we
present a heuristic approximation of JoBS. In Section 6 we present simulation scenarios to evaluate the
effectiveness of JoBS. In Section 7 we present brief conclusions.

2 Related Work

Due to the amount of literature on service differentiation, we limit our discussion to the relevant work on
scheduling and buffer management algorithms on per-class relative guarantees. This discussion focuses on
techniques devised to improve Best Effort or DiffServ services.

With one notable exception [9], the related work on relative per-class service differentiation treats delay
and loss differentiation as orthogonal issues. The common approach is to use scheduling algorithms for
achieving delay differentiation, and to use buffer management algorithms for achieving loss differentiation.

2

2.1 Scheduling Algorithms

The majority of work on per-class relative QoS suggests to use existing fixed-priority, e.g., [24], or rate-
based schedulers, e.g., [13]. The number of new scheduling algorithms that have been specifically designed
for relative delay differentiation is small.

The Proportional Queue Control Mechanism (PQCM) [21] and Backlog-Proportional Rate (BPR) [10]
are variations of the GPS algorithm [26]. Both schedulers dynamically adjust service rate allocations of
classes to meet relative QoS requirements. The service rate allocation is based upon the backlog of classes
at the scheduler. The main difference between PQCM and BPR is the specific method used to calculate the
service rates. JoBS bears similarity to PQCM and BPR in that JoBS dynamically calculates the service rate
allocation. However, the rate allocation in JoBS takes into consideration many more parameters, in addition
to the current backlog.

Waiting-Time Priority (WTP) [10] implements a well-known scheduling algorithm with dynamic time-
dependent priorities ([15], Ch. 3.7). Each packet is assigned a time-dependent priority as follows. Consider
a tagged packet from classi, which arrives at time� . If the packet is backlogged at timet > � , then
WTP assigns this packet a priority of(t � �) � si, wheresi is a class-dependent priority coefficient [15].
WTP packets are transmitted in the order of their priorities. In [10], the coefficientssi are chosen so that
s1 = k � s2 = k2 � s3 = : : : = kQ � sQ, resulting in the following delay differentiation under high loads:
Class-(i+ 1) Delay� k�Class-i Delay.

The Mean-Delay Proportional scheduler (MDP, [22]) has a dynamic priority mechanism similar to WTP,
but uses estimates of the average delay of a class to determine the priority of that class. Thus, the priority of
a class-i packet is set todi(t) � si, wheredi(t) is the estimated average delay for class-i, averaged over the
entire up-time of the link. As in WTP, the coefficientssi are set tos1 = k � s2 = k2 � s3 = : : : = kQ � sQ to
ensure Class-(i+ 1) Delay� k�Class-i Delay under high loads.

An important difference of JoBS to the PQCM, BPR, WTP, and MDP schedulers discussed above is that
the rate allocation in JoBS is not limited to the current state and past history of the link. In addition, JoBS
makes predictions on future delays, thereby strengthening the guarantees provided by the scheduler.

Finally, we briefly discuss the relation of our work to the recently proposed Scalable-Core (SCORE)
approach [30]. SCORE provides end-to-end delay guarantees to flows without requiring per-flow state
information at network routers. The basic idea for meeting end-to-end delay requirements is to keep track
of the delays experienced by packets along the path from the source to the destination, by storing the values
of the experienced delays in the packet headers. The stored information is used for adjusting the priority of
packets so that end-to-end requirements are met. The CoreLite architecture [22] is an extension of this work
which couples per-hop proportional delay differentiation with end-to-end delay guarantees. Different from
the above schedulers, JoBS does not store any state information in packets.

2.2 Buffer Management Algorithms

The key mechanisms of a buffer management algorithm are thebacklog controller, which specifies the time
instances when traffic should be dropped, and thedropper, which specifies the traffic to be dropped. We
briefly discuss the related work on these two mechanisms. We refer to a recent survey article [17] for an
extensive discussion of buffer management algorithms proposed for IP and ATM networks.

3

Backlog Controllers Initial proposals for buffer management (also called active queue management) in
IP networks [11, 12] were motivated by the need to improve TCP performance, without considering service
differentiation. More recent research efforts [6, 20, 25, 28] enhance these initial proposals in order to provide
service differentiation.

Among backlog controllers for IP networks, Random Early Detection (RED, [12]) is probably the best
known algorithm. RED was motivated by the goal to improve TCP throughput in highly loaded networks.
RED operates by probabilistically dropping traffic arrivals, when the backlog at a node grows large. RED
has two threshold parameters for the backlog at a node, denoted asTHsmall andTHlarge. RED estimates
the average queue size,Qest and compares the estimate to the two thresholds. IfQest < THsmall, RED does
not drop any arrival. IfQest > THlarge, RED drops all incoming traffic. IfTHsmall � Qest � THlarge,
RED will drop an arrival with probabilityP (Qest), where0 � P (Qest) � 1 is a function which increases
in Qest.

Several algorithms that attempt to improve or extend RED have been proposed, e.g., [2, 6, 11, 20, 25, 28].
For example, BLUE [11] uses different metrics to characterize the probability of dropping an arrival. Instead
of the backlog, this algorithm uses the current loss ratio and link utilization as input parameters.

RIO [6] and multiclass RED [28] are extensions to RED specifically targeted for class-based service
differentiation. Both schemes have different dropping thresholds for different classes, in order to ensure
differentiation at the packet loss level. A similar approach, in an IntServ context, is pursued for Flow-RED
(FRED, [20]), which uses different threshold values for the different flows sharing a link, identified by their
source-destination address pairs.

Random Early Marking (REM, [2]) is close in spirit to the dropping algorithm in JoBS, since it treats
the problem of marking (or dropping) arrivals as an optimization problem. The objective is to maximize
a utility function subject to the constraint that the output link has a finite capacity. In [2], this problem is
reduced to the REM algorithm, which marks packets with a probability exponentially dependent on the cost
of a link. The cost is directly proportional to the buffer occupancy.

Droppers The simplest and most widely used dropping scheme is Drop-Tail, which drops incoming traffic
when the buffer is full. Recent implementation studies [31] demonstrated that other, more complex dropping
schemes, which discard packets that are already present in the buffer (push-out), are viable design choices
even at high data rates.

The simplest push-out technique is called Drop-from-Front [18]. Here, the oldest packet in the trans-
mission queue is discarded. In comparison to Drop-Tail, Drop-from-Front lowers the queueing delays of all
packets waiting in the system. Note that with Drop-Tail, dropping of a packet has no influence on the delay
of currently queued packets.

Other push-out techniques include Lower Priority First (LPF, [16, 19]), Complete Buffer Partitioning
(CBP, [19]), and Partial Buffer Sharing (PBS, [16]). LPF always drops packets from the lowest backlogged
priority queue. As shown in [9], LPF does not provide any mechanism for proportional loss differentia-
tion. Likewise, CBP assigns a dedicated amount of buffer space to each class, and drops traffic when this
dedicated buffer is full. PBS is similar to CBP, but the decision to drop is made after having looked at the
aggregated backlog of all classes. The static partitioning of buffers in LPF, CBP, and PBS is not suitable
to support relative per-class service differentiation, since noa priori knowledge of the incoming traffic is
available.

Early Packet Discard (EPD, [27]) and Partial Packet Discard (PPD, [1]) are dropping algorithms which

4

have been developed specifically for ATM networks. Here, whenever a cell from a certain (AAL5) packet is
dropped, these algorithms ensure that all remaining cells from that packet will be dropped as well.

The Proportional Loss Rate (PLR) dropper [9] has been specifically designed to support relative per-
class QoS with a proportional service differentiation [8]. PLR enforces that the ratio of the loss rates of two
successive classes remains roughly constant at an assigned value. There are two variants of this scheme.
PLR(M) uses only the lastM packets for estimating the loss rates of a class, whereas PLR(1) has no such
memory constraints.

The majority of related work regards delay and loss differentiation as orthogonal issues. A notable ex-
ception is the most recent revision of theProportional Differentiated Servicesmodel [9], which provides
mechanisms for both proportional loss and delay differentiation. However, in [9], the scheduling and drop-
ping decisions are made independently, by separate algorithms. In the remainder of this paper, we will show
that performing scheduling and dropping in a single algorithm, we can provide stronger service guarantees
without sacrificing the scalability benefits of a DiffServ architecture.

3 The Joint Buffer Management and Scheduling Framework

In this section, we introduce our framework ofJoint Buffer Management and Scheduling(JoBS), for schedul-
ing and buffer management at the output link of a router. We will first give an informal discussion of the
operations of JoBS and then provide a detailed description.

3.1 Overview of JoBS

JoBS assumes per-class buffering of arriving traffic and serves traffic from the same class in a First-Come-
First-Served order. JoBS allocates to each traffic class a guaranteed service rate. The service rate guarantees
are adjusted over time and may be changed as often as after each traffic arrival. Within the context of JoBS,
there is no admission control and no policing of traffic.

The set of relative or absolute performance requirements are given to the JoBS algorithms as a set of
per-class QoS constraints. As an example, for three classes, the QoS constraints could be of the form:

� Class-2 Delay� 2 � Class-1 Delay,

� Class-2 Loss Rate� 10�1 � Class-3 Loss Rate, or

� Class-3 Delay� 5ms.

Here, the first two constraints are relative constraints and the last one is an absolute constraint. The set of
constraints given to JoBS can be any mix of relative and absolute constraints. Note that absolute constraints
may render a system of constraints infeasible. Then, some constraints may need to be relaxed. We assume
that JoBS is provided with an order in which constraints are to be relaxed in case of an infeasible state.

The JoBS algorithm operates as follows. For every arrival, JoBS makes a prediction on the delays of
the backlogged traffic, and modifies the service rates so that all QoS and system constraints will be met. If
changing the service rates is not sufficient for meeting all constraints, JoBS will drop either the arrival or it
will drop queued traffic.

5

time

Bi(t)

Ai

Rin

Rout
Dropped

t1 t2 t3 t

C
la

ss
-

i T
ra

ffi
c

Di(t)

t4

i

i

Figure 1:Delay and backlog.

We find it convenient to view the operation of JoBS in terms of an optimization problem. The constraints
of the optimization problem are relative or absolute bounds on the loss and delay as given in the example
above (QoS constraints) and constraints on the link and buffer capacity (system constraints). The objective
function of the optimization is such that the amount of dropped traffic and changes to the current service
rate allocation are minimized. The first objective prevents traffic from being dropped unnecessarily, and the
second objective tries to avoid frequent fluctuations of the service rate allocation. Clearly, the solution of
the optimization problem yields a service rate allocation of classes and determines how much traffic must
be dropped. The optimization is performed for each arrival to the link.

The computational complexity of JoBS is determined by the number and the type of constraints and by
the frequency of running the above optimization. To explore the principal properties of JoBS, we will, for
now, assume that infinite computing resources are available. In a later section, we will approximate JoBS
with a heuristic which incurs less computational overhead.

3.2 Formal Description of JoBS

Next we describe the basic operations of the algorithms for service rate adjustment and dropping algorithms
at a JoBS link with capacityC and total buffer spaceB.

We assume that all traffic is marked to belong to one ofQ traffic classes. In general, we expectQ to be
small, e.g.,Q = 4. Classes are marked by an index. We use a convention, whereby a class with a smaller
index requires a better level of QoS. Letai(t) and`i(t) denote the traffic arrivals and amount of dropped
(‘lost’) traffic from classi at timet.

Let ri(t) denote the service rate allocated to classi at timet. We assume thatri(t) is nonzero only if

6

there is a backlog of class-i traffic in the buffer, and we assume that scheduling in JoBS is workconserving,
that is,

P
i ri(t) = C, if the backlog at timet is nonzero.

Remark: Throughout this paper, we take a fluid-flow interpretation of traffic, that is, the output link is
regarded as serving simultaneously traffic from several classes. Since actual traffic is sent in discrete-sized
packets, a fluid-flow interpretation of traffic is idealistic. On the other hand, packet-level scheduling algo-
rithms that closely approximate fluid-flow schedulers with rate-guarantees are readily available [26].

We now introduce the notions ofarrival curve, input curve, andoutput curvefor a traffic classi in the
time interval[0; t]. The arrival curveAi and the input curveRin

i of classi are defined as

Ai(t) =

Z t

0
ai(x)dx ; (1)

Rin
i (t) = Ai(t)�

Z t

0
`i(x)dx : (2)

So, the difference between the arrival and input curve is the amount of dropped traffic. The output curve
Rout
i of classi is the transmitted traffic in the interval[0; t], given by

Rout
i (t) =

Z t

0
ri(x)dx : (3)

We refer to Figure 1 for an illustration. In the figure, the service rate is adjusted at timest1, t2, andt4, and
packet drops occur at timest2 andt3.

The vertical and the horizontal distance between the input and output curves from classi, respectively,
are the backlogBi and the delayDi. This is illustrated in Figure 1 for timet. The delayDi at timet is the
delay of an arrival which is transmitted at timet. Backlog and delay at timet are defined as

Bi(t) = Rin
i (t)�Rout

i (t) ; (4)

Di(t) = max
x<t
fx j Rout

i (t) � Rin
i (t� x)g : (5)

Upon a traffic arrival, say at times, JoBS sets new service ratesri(s) and the amount of traffic to be
dropped`i(s) for all classes, such that all QoS and system constraints can be met at timest > s. To
determine the rates, JoBS projects the delays of all queued traffic. For the projections, JoBS assumes that
the current state of the link will not change after times. Specifically, JoBS makes the following assumptions
on the service, the arrival, and the drops (we indicate projected values by a “tilde”) for timest > s:

1. Service rates remain as they are:~ri(t) = ri(s),

2. There are no further arrivals:~ai(t) = 0,

3. There are no further packet drops:~̀
i(t) = 0.

With these assumptions, we now define the notions of projected input curve~Rin
i;s, projected output curve

~Rout
i;s , and projected backlog~Bi;s, for t > s as follows:

~Rin
i;s(t) = Rin

i (s) ; (6)
~Rout
i;s (t) = Rout

i (s) + (t� s)ri(s) ; (7)
~Bi;s(t) = ~Rin

i;s(t)� ~Rout
i;s (t) : (8)

7

C
la

ss
- i

 T
ra

ffi
c

time

Di,s(t5)

s t5 t6

Di,s(t6)

Ti,s

~

Rin~

Rout~
~

~

i,s

i,s

Figure 2: Projected input curve, projected output curve, and projected delays.The projection is per-
formed at times for the time interval[s; s+ ~Ti;s].

We refer to theprojected horizonfor classi at times, denoted as~Ti;s, as the time when the projected backlog
becomes zero, i.e.,

~Ti;s = min
x>0
fx j ~Bi;s(s+ x) = 0g : (9)

With this notation, we can make predictions for delays in the time interval[s; s + ~Ti;s]. We define the
projected delay~Di;s(t) at timet 2 [s; s+ ~Ti;s] as

~Di;s(t) = max
t�s<x<t

fx j ~Rout
i;s (t) � Rin

i (t� x)g : (10)

If there are no arrivals after times, the delay projections are correct.
In Figure 2, we illustrate the projected input curve, projected output curve, and projected delays for

projections made at times. In the figure, all values fort > s are projections and are indicated by dashed
lines. The figure includes the projected delays for timest5 andt6.

3.3 Drop-Tail vs. Drop-from-Front

JoBS only specifies the amount of traffic which should be dropped from a particular class, but JoBS does
not select the position in the queue from which to drop traffic. For example, drops may occur from the head
of the queue (Drop-from-Front, [18]) or from the tail (Drop-Tail). Note that such a policy has an impact on
the shape of the input curve. Drop-from-Front drops traffic that was admitted in the past, and has therefore
an influence onpastvalues ofRin

i . More formally, without the assumption that there will not be any future

8

drops, and a Drop-from-Front policy, Eqn. (10) does not hold anymore and shall be replaced by

~Di;s(t) = max
t�s<x<t

fx j ~Rout
i;s (t) � Rin

i (t� x)�

Z t

s

`(�)d�g : (11)

In the case of a Drop-Tail policy, Eqn. (10) holds even if some drops are performed in the future. In the
case of a Drop-from-Front policy, Eqn. (11) imposes knowledge of future drops in order to be able to make
a meaningful projection. Since it is practically difficult to evaluate how much traffic will be dropped in the
future, we will consider a Drop-Tail policy in the present report.

3.4 Per-Class Delay and Loss Metrics

When defining relative QoS guarantees as in Subsection 3.1, e.g., Class-2 Delay� 2 � Class-1 Delay or
Class-2 Loss Rate� 10�1 � Class-3 Loss Rate, we have assumed that a single metric is available to specify
the ‘delay’ or the ‘loss’ of a class. In general, since there are several packets backlogged from a class, each
likely to have a different delay, the notion of ‘delay of classi’ needs to be further specified. Likewise, the
notion of ‘loss rate of classi’ requires further clarification.

3.4.1 Delay Metrics

Beginning with the delay metricDi(s) from Eqn. (5), we provide the rationale for our choices of per-class
delay metrics.

Instantaneous Delay. The measureDi(s), given by Eqn. (5) describes the delay of the class-i packet that
is in transmission at times. Di(s) is a good measure for the delay of class-i traffic, only if Di(s) is roughly
constant.

Average Delay. Averaging the instantaneous delayDi(s) over a time window of length� provides a simple
measure for the history of delays experienced by ‘typical’ class-i packets. We obtain

Davg
i;s (�) =

1

�

Z s

s��

Di(x)dx : (12)

Alternatively, one may want to give more weight to the most recent delays. Using an exponentially weighted
moving average, denoted byDewma

i;s , one obtains

Dewma
i;s = Dewma

i;s�� + w � (Di(s)�Dewma
i;s��) ; (13)

where� defines the window size of the moving average, and0 � w � 1 is the smoothing factor.
Average delay metrics as defined above only take into consideration the history of delays. Since the

recent history of delays may not be a good indicator for the delays to be experienced by currently backlogged
traffic, using Eqs. (12) and (13) may lead to poor predictions of delay guarantee violations. Note that
Eqs. (12) and (13) may be appropriate metrics if the service rate allocation is formulated in terms of a
closed-loop control problem, i.e., if the service rate allocation to classes is regarded as taking corrective
actions to an ‘error’ in the current rate allocation.

9

Different from the above, the per-class delay metrics used in this paper attempt to measure the delay for
the currently backlogged traffic. Our per-class delay metrics take advantage of the notion of predicted delay
~Di;s(t) as defined in Eqn. (10). Under the assumption that there are no arrivals and no losses after times,
and using the service rate allocation from times, the predicted delay~Di;s(t) provides the delay of the packet
in transmission at timet. We define two delay metrics for the backlog from classi at times, one for the
worst-case delay and one for the ‘typical’ delay.

Maximum Projected Delay. As a metric for projecting the worst-case delay of the currently backlogged
traffic from classi, we define themaximum projected delayat times, as

~Dmax
i;s = max

s<t<s+~Ti;s

~Di;s(t) : (14)

If there are no arrivals and no changes to the rate allocation after times, then ~Dmax
i;s is an upper bound of

the future delays of traffic which is backlogged at times.

Average Projected Delay. We define theaverage projected delayDi;s as the time average of the projected
delays from a class, averaged over the horizon~Ti;s. We obtain

Di;s =
1
~Ti;s

Z s+~Ti;s

s

~Di;s(x)dx : (15)

Note that this metric takes into account both the time that has already been spent in the scheduler, and the
projected time before the packet is serviced.

3.4.2 Loss Metrics

Similar to delays, there are several sensible choices for defining ‘loss’. We present here two possible choices.
We will use the first metric in the present paper. The second metric could be used in order to express
algorithms such as RED [12] or RIO [6] within our framework.

Current Loss Ratio with Finite Memory. For this paper, we select one specific loss measure, denoted
by pi;s, which expresses the fraction of lost traffic since the beginning of the current busy period at timet0.1

So,pi;s expresses the fraction of traffic that has been dropped in the time interval[t0; s], that is,2

pi;s =

R s
t0
`i(x)dxR s

t0
ai(x)dx

(16)

= 1�
Rin
i (s� t0; s

�) + ai(s)� `i(s)

Ai(s� t0; s)
: (17)

1A busy period is a time interval with a positive backlog of traffic. For timex with
P

iBi(x) > 0, the beginning of the busy
period is given bymaxy<xf

P
i
Bi(y) = 0g.

2s� = s� h, whereh > 0 is infinitesimally small.

10

Drop Probability. As detailed in Section 2, backlog controllers inspired by or derived from RED [12] use
a probabilistic factor for determining whether or not an arrival shall be dropped. Assuming that each class
of traffic has a time-dependent probabilistic factorPi(s) characterizing the probability of dropping the next
arrival after times, one could think of using the history of the values ofPi(:) as a loss metric. For instance,

pi;s =
1

s� t0

Z s

t0

Pi(x)dx ; (18)

is the average drop probability over the current busy period. Similarly, one could define the worst-case drop
probability since the beginning of the current busy period as

pi;s = max
t0<x<s

Pi(x) : (19)

In the present paper, we will only use Eqn. (17) as our definition for the ‘loss rate of classi’.

4 Service Rate Adaptation and Drop Algorithm in JoBS

In this section we discuss how JoBS adjusts the service rates of classes and decides if and how much traffic
to drop. The algorithm will be expressed in terms of an optimization problem.

Each times, when an arrival occurs, a new optimization is performed. The optimization variable is
a time-dependent vectorxs which contains the service ratesri(s) and the amount of traffic to be dropped
`i(s),

xs = (r1(s) : : : rQ(s) `1(s) : : : `Q(s))
T : (20)

The optimization problem has the form

Minimize F (xs)
Subject to gj(xs) = 0; j = 1; : : : ;M

hj(xs) � 0; j = M + 1; : : : ; N:

(21)

whereF (:) is an objective function, and thegj ’s andhj ’s are constraints.
The objective function of JoBS will be stated such that JoBS minimizes the amount of dropped traffic,

and keeps the changes to the current service rate allocation small. The constraints are QoS constraints and
system constraints. The optimization at times is done with knowledge of the system state before timess,
that is, the optimizer knowsRin

i andRout
i for all timest < s, andAi for all timest � s.

In the remainder of this section we discuss the constraints and the optimization function. The optimiza-
tion can be used as a reference system that provides a benchmark, against which practical scheduling and
dropping algorithms can be compared.

4.1 System and QoS Constraints

Next, we discuss the constraints in our system. There are two types of constraints:system constraints
describe constraints and properties of the output link, andQoS constraintsdefine the desired service differ-
entiation.

11

4.1.1 System Constraints

The system constraints specify physical limitations and properties at the output link.

� Buffer size: The total backlog cannot exceed the buffer sizeB, that is,
P

iBi(t) � B for all timest.

� Workconserving property: At a workconserving link
P

i ri(t) = C, holds for all timest whereP
iBi(t) > 0. This constraint is stronger than the limit given by the link capacityC, i.e.,

P
i ri(t) �

C.

� Other bounds: Rates and packet drops are non-negative. Also, the amount of traffic that can be
dropped is bounded by the current backlog. So, we obtainri(t) � 0 and0 � `i(t) � Bi(t) for all
timest.

4.1.2 QoS Constraints

JoBS allows two types of QoS constraints, relative constraints and absolute constraints. QoS constraints
can be expressed for delays and for loss rates. One could also think of providing constraints on the rates
assigned to each class of traffic. Since JoBS directly controls the variablexs, and thus the ratesri(s), JoBS
could handle such rate guarantees if desired, but we will not address this issue in the present paper.

The number and type of QoS constraints is not limited by JoBS. However, absolute QoS constraints may
result in an infeasible system of constraints. In such a situation, one or more constraints must be relaxed
or eliminated. We assume that the set of QoS constraints is assigned some total order, and that constraints
are relaxed in the given order until the system of constraints becomes feasible. QoS constraints for classes
which are not backlogged are simply ignored.

� Absolute Delay Constraints (ADC):These constraints enforce that the projected delays of classi

satisfy a worst-case bounddi. We obtain

~Dmax
i;s � di ; (22)

where ~Dmax
i;s is the worst-case metric defined in Eqn. (14). If this condition holds for alls, the delay

bounddi is never violated.

� Relative Delay Constraints (RDC):These constraints specify the proportional delay differentiation
between classes. As an example, for two classes1 and2, the proportional delay differentiation en-
forces a relationship

Delay of Class 2
Delay of Class 1

� constant:

We are interested in meeting this constraint for most of the packets present in the queue at times,
thus, we will use the average metric defined in Eqn. (15) for characterizing the ‘delay of classi’.

To provide some flexibility in the scheduling decision, we do not enforce relative delay constraints
strictly, but allow for some slack. So, the relative delay constraints are of the form

ki(1� ") �
Di+1;s

Di;s

� ki(1 + ") ; (23)

12

whereki > 1 is the target differentiation factor and" (0 � " � 1) indicates a tolerance level, andDi;s

is as defined in Eqn. (15). If relative constraints are not specified for some classes, the constraints are
adjusted accordingly.

Next we discuss constraints on the loss rate. Being interested in the current loss ratio, we will use the
metric defined in Eqn. (17). Note that, in Eqn. (17), all values except`i(s) are known at times.

� Absolute Loss Constraints (ALC):An ALC specifies that the loss ratio of classi, as defined above,
never exceeds a limitLi, that is,

pi;s � Li ; (24)

wherepi;s is as defined in Eqn. (17).

� Relative Loss Constraints (RLC):The RLCs specify the desired proportional loss differentiation
between classes. Similar to the RDCs, we provide a certain slack within these constraints. The RLC
for classesi+ 1 andi has the form

k0i(1� "0) �
pi+1;s

pi;s
� k0i(1 + "0) ; (25)

wherek0i > 1 is the target differentiation factor, and"0i (0 � "0 � 1) indicates a level of tolerance.

The constraints defined by Eqs. (22), (23), (24), and (25) are expressed in terms of delays and loss ratios,
but the only parameters the system can control at times are the components of the optimization variable
xs, that is, the service ratesri(t) and the packet drops̀i(t). Therefore, we need to express the constraints
defined by Eqs. (22), (23), (24), and (25) as functions of the service rates and the packet drops. We present
this derivation in Appendix A.

4.2 Objective Function

Provided that the QoS and system constraints can be satisfied, the objective function of JoBS selects a
solution forxs. Even though the choice of the objective function is a policy decision, we select two specific
objectives, which - we believe - have general validity:

� Objective 1: Avoid dropping traffic,

� Objective 2: Avoid changes to the current service rate allocation.

The first objective ensures that traffic is dropped only if there is no alternative way to satisfy the constraints.
The second objective tries to hold on to a feasible service rate allocation as long as possible. We give the
first objective priority over the second objective.

The formulation of the objective function expresses the above objectives in terms of a cost function.

F (xs) =
QX
i=1

(ri(s)� ri(s
�))2 + C2

QX
i=1

`i(s) ; (26)

13

whereC is the link capacity. The first term expresses the changes to the service rate allocation and the second
term expresses the losses at times. Note that, at times, ri(s) is part of the optimization variable, while
ri(s

�) is a known value. In Eqn. (26) we need to use the quadratic form(ri(s)�ri(s
�))2, since

P
i(ri(s)�

ri(s
�)) = 0 for a workconserving link with a backlog at times. Given that(ri(s)� ri(s

�))2 � C2, the
scaling factorC2 in front of the second sum of Eqn. (26) ensures that traffic drops are the dominating term
in the objective function.

This concludes the description of the optimization problem in JoBS. The discussion in Appendix A will
show that this is anon-linear optimization problem, which can be solved with available numerical algorithms
[29]. It is worth noting that the only non-linear constraints are the RDCs. Therefore, by linearizing the RDCs
using a first-order approximation, it is feasible to reduce the computational overhead of the optimization.
Such a linearization of the RDCs will be exploited in Section 5, where we provide a heuristic algorithm
which emulates the reference model with a low computational overhead.

5 Heuristic Approximation of JoBS

We next present a heuristic that approximates the JoBS algorithm, yet, which has significantly lower com-
putational complexity. Our goal is not to present an algorithm that is readily implementable and can operate
at line speeds. Instead, we want to demonstrate that it is feasible to find relatively simple algorithms that can
closely approximate the idealized JoBS system. The presented heuristic should be regarded as a first step
towards a router implementation. We first describe how we translate the reference fluid-flow model used
by the optimization into a packet-level architecture, then we detail how rate allocation and packet drops are
performed in this heuristic.

5.1 The Packetized Model

The translation of the fluid-flow service model of JoBS into a packet-level architecture is done using well-
known techniques of assigning virtual deadlines to packets which are computed from a rate allocation [26,
32].

The algorithm used in JoBS (heuristic) is similar to Virtual Clock [32]. Each class of traffic has its own
virtual clock VCi, used to determine the virtual deadline VDi of a packet from the same class. After the
beginning of the current busy period, when the first packet from classi enters the system, VCi is set equal
to the current time. From then on, every timet a class-i packet of sizez arrives at the node, the virtual clock
and the virtual deadline for classi are updated as follows:

1: VDi max ft;VCig ;

2: VCi VCi +
z

ri(t)
;

3: VDi VDi +
z

ri(t)
:

Each class-i packet entering the system at timet is then stamped with the virtual deadline VDi. The packets
are transmitted in the order of increasing virtual deadlines. A change to the service rate of a class may
require to update the virtual deadlines of already queued packets. Finally, at fixed time intervals, also called
checkpoints, the virtual clocks VCi are reset to the current timet if VC i < t.

14

Find li(s), ri(s)
subject to:
- ADCs
- ALCs
- ignore RDCs
 and RLCs

Done

Buffer
overflow ?

N packets
arrived since

last test?

ADCs
violated?

(*) If necessary relax the RLCs (RDCs) to
 obtain a feasible solution fo r the li(s) or ri(s)

No

No

Packet Arrival

Yes

Yes

RDCs
violated? No

Find li(s)
subject to:
- ALCs
- RLCs
- Eqn. (16) (*)

Buffer Overflow

Yes

Yes

No

ADC violation

Find ri(s)
subject to:
- ADCs
- RDCs

RDC violation

Figure 3:Outline of the Heuristic algorithm .

5.2 Rate Allocation and Packet Drops

Our heuristic algorithm completely avoids running the optimization from Section 4. Instead, the heuristic
maintains the current rate allocation until a buffer overflow occurs or a delay violation is predicted. At
that time, the heuristic picks a new feasible rate allocation. Unless there is a buffer overflow, the tests for
violations of ADCs and RDCs3 are not performed for every packet arrival, but only periodically.

A set of constraints, which contains absolute constraints (ALCs or ADCs), may be infeasible at certain
times. Then, some constraints need to be relaxed. In our heuristic algorithm, the constraints are prioritized
in the following order: system constraints have priority over absolute constraints, which in turn have priority
over relative constraints. If the system of constraints becomes infeasible, the heuristic relaxes the relative
constraints (RLCs or RDCs). If this does not yield a feasible solution, the heuristic relaxes one or more
absolute constraints.

A high-level overview of the heuristic algorithm is presented in Figure 3. The algorithm is broken up
into a number of smaller computations. We first separate the particular case when there is a buffer overflow.

3Recall:ADC = absolute delay constraint,RDC= relative delay constraint,ALC = absolute loss constraint, andRLC= relative
loss constraint.

15

5.2.1 Buffer Overflow

If an arrival at times causes a buffer overflow, one can either drop the arriving packet or free enough buffer
space to accommodate the arriving packets. Both cases are satisfied ifX

i

`i(s) = Size of arriving packet: (27)

The heuristic picks a solution for thèi(s) which satisfies Eqn. (27) and the RLCs in Eqn. (25), where"0

is set to zero to simplify the search for a solution. If the solution violates an ALC, the RLCs are relaxed
until all ALCs are satisfied. Once thèi(s)’s are determined the algorithm continues with a test for delay
constraint violations, as shown in Figure 3.

In Appendix B we discuss in detail how a solution is obtained. In the appendix, we also show that the
complexity of finding the solution isO(Q2), whereQ is the number of classes. If the number of classes is
small (e.g.,Q = 4), the process is reasonably fast.

5.2.2 Meeting the Delay Constraints

If there are no buffer overflows, the algorithm makes delay projections to test for delay violations (ADCs
and RDCs). The test for delay violations is not performed for every arrival, but only once for everyN packet
arrivals.4

The tests use the current service rate allocation to predict future violations. The heuristic performs two
tests. The first test checks whether the ADC will be met. In order to make this test, the heuristic starts with
a conservative estimate of the worst-case delay given by Eqn. (14) for the class-i backlog at times. For this,
the heuristic uses the following bound, which is easily verified by referring to Figures 1 and 2.

~Dmax
i;s � Di(s) +

Bi(s)

ri(s)
: (28)

This conservative bound is then used as a worst-case delay estimate in Eqn. (22) for testing potential ADC
violations.

The second test checks if the RDC will be met. This test is only performed if the first test was successful,
i.e., no ADC violation was predicted. Instead of using the definition of the average projected delay given by
Eqn. (15), the heuristic uses the following estimate of the average delay:

Di;s �
Di(s) + maxx�0 fx j R

in
i (s) = Rin

i (s� x)g

2
+

Bi(s)

2ri(s)
: (29)

The first term on the righthand side of Eqn. (29) is an estimate for the average time already spent in the
queue, averaged over all currently backlogged class-i packets. The second term is an estimate of the average
remaining waiting time, averaged over all currently backlogged class-i packets as well. Different from
Eqn. (15) which considered the delays of all backlogged class-i packets, the estimate in Eqn. (29) only
requires to compute the delay of two packets: the oldest class-i packet still present in the queue, and the last
class-i packet to have entered the queue. The estimate in Eqn. (29) is used in Eqn. (23) for testing potential
RDC violations.

4The parameterN should be properly tuned. IncreasingN increases the risk of violating some constraints. DecreasingN

increases the overall computational overhead.

16

Depending on the outcome of the two tests described above (ADC violation and RDC violation), the
heuristic distinguishes the following three cases.

1. No violations are predicted. In this case, the service rate allocation remains unchanged.

2. RDC violation predicted. If the violation of some RDC (but no ADC) is predicted, the heuristic
algorithm determines new rate values.

Here, the RDCs as defined in Eqn. (23) are first transformed into equations by setting" = 0. The
heuristic uses then a set of estimates in order to make the RLC linear. Together with the workcon-
serving property,

P
i ri(s) = C, one obtains a system of equations, for which the algorithm picks a

solution. If the solution violates an ADC, the RDCs are relaxed until the ADCs are satisfied. We give
a detailed expression of this system of equations in Appendix B.

3. ADC violation predicted. Resolving an ADC violation is not entirely trivial as it requires to recalculate
theri(s)’s, and, if traffic needs to be dropped to meet the ADCs, the`i(s)’s. To simplify the task, our
heuristic simply ignores all relative QoS constraints (RLCs, RDCs) when an ADC violation occurs,
and only tries to satisfy ALCs and ADCs.

The heuristic starts with the conservative estimate of the worst-case delay given by Eqn. (28) for the
class-i backlog at times. Then, usingBi(s) = Bi(s

�) + ai(s) � `i(s), the following is a sufficient
condition for satisfying the ADC of classi with delay bounddi at times.

1

ri(s)

Bi(s
�) + ai(s)� `i(s)

di �Di(s)| {z }
�i

� 1 : (30)

The heuristic algorithm will select theri(s) and`i(s) such that Eqn. (30) is satisfied for alli. Initially,
rates and traffic drops are set tori(s) = ri(s

�) and`i(s) = 0. Since at least one ADC is violated,
there is at least one class with�i > 1, where�i is defined in Eqn.(30).

Now, we apply a greedy method which tries to redistribute the rate allocations until�i � 1 for all
classes. This is done by reducingri(s) for classes with�i < 1, and increasingri(s) for classes
with �i > 1. The algorithm starts by reducingri(s) in the lowest priority class that has�i < 1 and
increases accordinglyri(s) in the highest priority class with�i > 1. The process is then iterated until
the redistribution of rates is complete. The computational complexity of this operation isO(Q).

If, after the redistribution of rates, there are still classesi with �i > 1, the`i(s) are increased until
�i < 1 for those classes. The worst-case complexity of this operation is alsoO(Q), yielding a
worst-case complexity ofO(Q) as well for the entire algorithm. To minimize the number of dropped
packets,̀ i(s) is never increased to a point where an ALC is violated.

6 Evaluation

We present an evaluation of the JoBS algorithm via simulation. Our goals are (1) to determine if and how
well JoBS provides the desired service differentiation; (2) to determine how well the heuristic algorithm
from Section 5 approximates the optimization of JoBS; and (3) to compare JoBS with existing proposals for
proportional differentiated services.

In the simulations, we compare the performance of the following four schemes.

17

4 62

140

120

100

80

60

40

20

0
Simulation Time (s)

20181614121080O
ff

er
ed

 lo
ad

 in
 %

 o
f

lin
k

ca
pa

ci
ty

Figure 4:Offered Load.

� JoBS (optimization): This is the optimization described in Section 4.

� JoBS (heuristic): This is the heuristic algorithm discussed in Section 5. Unless there is a buffer
overflow, tests for delay violations are performed once for everyN = 100 packet arrivals.

� WTP/PLR(1) [9]: The dropping and scheduling algorithm WTP/PLR(N) and WTP/PLR(1) from
[9] are discussed in Section 2. Since WTP/PLR(1) provides a better service differentiation, we only
include results for WTP/PLR(1). Note that WTP/PLR(1) does not support absolute guarantees to
traffic classes.

� MDP[22]/Drop-Tail: The MDP scheduler presented in [22] was discussed in Section 2. Since MDP
does not provide mechanisms for loss differentiation, we assume a simple Drop-Tail algorithm for
discarding packets. As WTP/PLR(1), MDP does not support absolute QoS guarantees.

We present two simulation experiments. In the first experiment, we compare and contrast the relative
differentiation provided of JoBS (optimization), JoBS (heuristic), WTP/PLR(1), and MDP/Drop-Tail with-
out specifying absolute constraints. In the second experiment, we augment the set of constraints by absolute
delay constraints on the highest priority class, and show that JoBS can effectively provide both relative and
absolute differentiation.

6.1 Experimental Setup

We consider a single output link with capacityC = 1 Gbps and a buffer size of 6.25 MByte. We haveQ = 4

classes. We use the same load curve in all experiments. The length of each experiment is 20 seconds of
simulated time, starting at time0 with an empty system and an idle scheduler.

The incoming traffic is composed of a superposition of Pareto sources with a parameter� = 1:2 and an
average interarrival time of 300�s. These sources generate packets with a fixed size of 125 Byte. As offered

18

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

Classes:
4
3
2
1

(a) JoBS (optimization) - Packet Delays

1

3

Classes:
4

2

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(b) JoBS (heuristic) - Packet Delays

4

1

Classes:

2
3

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(c) WTP/PLR(1) - Packet Delays

2

Classes:
4

1

3

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(d) MDP/Drop-Tail - Packet Delays

Class-2 Delay / Class-1 Delay

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

D
el

ay
s

R
at

io

(e) JoBS (optimization) - Ratios of delays

Class-2 Delay / Class-1 Delay

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

D
el

ay
s

R
at

io

(f) JoBS (heuristic) - Ratios of delays

Class-2 Delay / Class-1 Delay

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

D
el

ay
s

R
at

io

(g) WTP/PLR(1) - Ratios of delays

Class-2 Delay / Class-1 Delay

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

D
el

ay
s

R
at

io

(h) MDP/Drop-Tail - Ratios of delays

Figure 5:Experiment 1: Delay Differentiation. The graphs show the absolute delay values (a)-(d) and the
ratios of the delays for successive classes (e)-(h). The target value for the ratios isk = 4.

19

Class 1

Class 3
Class 2

Class 4

0.001

0.01

0.1

1

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
ra

te
 (

*)

(a) JoBS (optimization) - Loss Rates

Class 1

Class 3
Class 2

Class 4

0.001

0.01

0.1

1

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
ra

te
 (

*)

(b) JoBS (heuristic) - Loss Rates

Class 1

Class 3
Class 2

Class 4

0.001

0.01

0.1

1

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
ra

te
 (

*)

(c) WTP/PLR(1) - Loss Rates

Class 1

Class 3
Class 2

Class 4

0.001

0.01

0.1

1

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
ra

te
 (

*)

(d) MDP/Drop-Tail - Loss Rates

1

4

3

p /p
2 1

0

5

2

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

L
os

s
R

at
es

 R
at

io

4 3
23p /p

p /p

(e) JoBS (optimization) - Ratios of loss rates

3

4

1

p /p
2 1

0

5

2

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

L
os

s
R

at
es

 R
at

io

4 3
23p /p

p /p

(f) JoBS (heuristic) - Ratios of loss rates

3

4

1

p /p
2 1

0

5

2

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

L
os

s
R

at
es

 R
at

io

4 3
23p /p

p /p

(g) WTP/PLR(1) - Ratios of loss rates

3

4

1

p /p
2 1

0

5

2

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

L
os

s
R

at
es

 R
at

io

4 3
23p /p

p /p

(h) MDP/Drop-Tail - Ratios of loss rates

Figure 6:Experiment 1: Loss Differentiation. The graphs show the loss rates (a)-(d) and the ratios of loss
rates for successive classes (e)-(h). The target value for the ratiosk0 = 2. (*) The loss rate of classi is expressed as

a fraction of the arrival rate of classi.

20

load, we generate a time-varying load curve, where the number of active sources follows a sinusoidal pattern
with periodT = 10s. The offered load used in our experiments is plotted in Figure 4. Between 200 and 550
sources are active at the same time, resulting in an offered load comprised between 75% and 145% of the
link capacity. The load from the classes is symmetric, that is, at each time, each class generates 25% of the
aggregate load.

6.2 Experiment 1: Relative Differentiation Only

The first experiment focuses on relative service differentiation, and does not include absolute constraints.
The objective for the relative differentiation are

Delay of Class(i+ 1)=Delay of Classi � 4 ;

Class-(i+ 1) Loss Rate=Class-i Loss Rate� 2 :

Thus, for JoBS, the parameters in the RDCs and RLCs are set toki = 4 andk0i = 2 for all i. The tolerance
levels are set to" = 0:001 and"0 = 0:05 in JoBS (optimization), and to" = 0:01 and"0 = 0:05 in JoBS
(heuristic). The results of the experiment are presented in Figures 5 and 6, where we graph the delays of
packets on Figures 5(a)-(d), the ratios of delays of successive classes on Figures 5(e)-(h), the loss rates on
Figures 6(a)-(d), and the ratios of loss rates of successive classes for JoBS (optimization), JoBS (heuristic),
WTP/PLR(1) and MDP/Drop-Tail on Figures 6(e)-(h). The plotted ratios of delays and ratios of loss rates
present averages over moving time windows of size 0.1s 5, while the absolute delay values are plotted for
each packet traversing the system.

When the link load is above 90% of the link capacity, that is, in time intervals[0 s; 6 s] and[10 s; 15 s],
all methods provide the desired service differentiation. The oscillations around the target values in JoBS
(optimization) and JoBS (heuristic) are mostly due to the tolerance values" and"0. Note that the selection
of the tolerance values" and"0 in JoBS presents a tradeoff: smaller values for" and"0 reduce oscillations,
but incur more work for the algorithm.

When the system load is low, that is, in time intervals[6 s; 10 s] and[16 s; 20 s], JoBS (heuristic) is not
effective for providing a delay differentiation. Here, JoBS (optimization) and WTP/PLR(1) still manage to
achieve some delay differentiation, albeit far from the target values. MDP/Drop-Tail, plotted in Figure 5(h),
provides some differentiation, but the system seems unstable, particularly after a transient change in the
load. One should note, however, that at an underloaded link, the absolute values of the delays are very small
for all classes, regardless of the scheduling algorithm used, as shown on Figures 5(a)-(d). Figures 5(a)-(d)
also show that the absolute values for the delays are comparable in all schemes.

In Figures 6(e) and 6(g), we observe that both WTP/PLR(1) and JoBS (optimization) show some
transient oscillations with respect to loss differentiation when the link changes from an overloaded to an
underloaded state, while JoBS (heuristic) does not seem to suffer from this problem as much. Without
offering an explanation, we speculate that during a transition between an overloaded and an underloaded
system, a perfect relative loss differentiation is not achievable without violating the workconserving property
or without dropping packets even if the buffer is not full. MDP/Drop-Tail does not exhibit these transient
oscillations since it does not provide any loss differentiation, as shown on Figure 6(h).

Finally, the total loss rate is of interest, as a scheme may provide excellent proportional loss differen-
tiation, but have an overall high loss rate. Figures 6(a)-(c) prove that in the simulations, the loss rates of

5This measure is adopted from [9].

21

WTP/PLR(1) and JoBS (optimization and heuristic) are very similar. With both WTP/PLR(1) and JoBS
(optimization and heuristic), the average of the per-class loss rates is equal to the loss rate obtained with a
Drop-Tail policy, plotted on Figure 6(d). This shows that, in this experiment, all schemes only drop packets
when a buffer overflow occurs.

6.3 Experiment 2: Relative and Absolute Differentiation

In this experiment, we evaluate how well JoBS can satisfy a mix of absolute and relative delay con-
straints. In this experiment, we only present results for JoBS (optimization) and JoBS (heuristic). Note
that WTP/PLR(1) and MDP/Drop-Tail do not support both relative and absolute guarantees, and are there-
fore not included.

We consider the same simulation setup and the same relative constraints (RDCs and RLCs) as in Exper-
iment 1, but add an absolute delay constraint (ADC) for Class 1 with a delay bound of

d1 = 1; 000�s :

We call this scenario “with ADC, all RDCs”. Note that, with the given relative delay constraints from
Experiment 1, the other classes have implicit absolute delay constraints, which are approximately6 4,000�s
for Class 2, 16,000�s for Class 3, and 64,000�s for Class 4.

These ‘implicit’ absolute constraints can be avoided, by removing the RDC which governs the ratio of
the delays between Class2 and Class1. The resulting constraint set, referred to as “with ADC, one RDC
removed”, is included in this experiment. For reference purposes, we also include the results for JoBS
(heuristic) from Experiment 1. We refer to this constraint set as “no ADC, all RDCs”. Figures 7(e-f) show
that, without the ADC, the delays for Class 1 are as high as5; 000�s.

In Figures 7, 8, 9 and 10 we respectively plot the absolute delays of all packets, the ratios of the delays
for successive classes, the loss rates of each class, and the ratios of the loss rates for successive classes. The
plots on Figures 8, 9, and 10 use once again averages over a sliding window of size0:1s.

Based on this set of plots, one can make three observations. The first observation is that, as shown
on Figures 7(a-d), the absolute delay constraints, either explicit (in the case of Class 1) or implicit (in the
case of Classes 2, 3 and 4 in the scenario “With ADC, all RDCs”), are enforced. The second observation
is that the optimization model seems to be less stable than the heuristic model in the experiment “With
ADC, all RDCs”. In Figure 7, one can notice some oscillations in the time intervals[2s; 4s] and[13s; 14s].
These oscillations are due to the fact that the set of constraints is infeasible during the time intervals[2s; 5s]

and [13s; 15s], and thus needs to be relaxed. In that respect, JoBS (optimization) and JoBS (heuristic)
behave quite differently. As shown on Figures 9(a) and 10(a), JoBS (optimization) relaxes the relative loss
constraints only when the system is infeasible. However, Figure 9(a) also shows that this relaxation is
performed suddenly. Since one of the objectives of the optimizer is to minimize the changes applied to the
system, despite this relaxation of the RLCs, the set of constraints might still be infeasible due to the current
state of the system. This happens in the time intervals[2s; 4s] and [13s; 14s]. In such a case, the relative
delay constraints are also relaxed, as shown on Figure 8(a).

Conversely, JoBS (heuristic) does not take into account the relative loss constraints when resolving an
ADC violation. During the times when the link is overloaded, ADC violations for all classes are predicted

6Due to the tolerance value" the exact values are not multiples of 1,000: the inferred ADC are respectively 4040�s for Class 2,
16322�s for Class 3, and 65940�s for Class 4 when" = 0:01, for instance.

22

3
2
1

Classes:
4

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(a) With ADC, all RDCs - JoBS (optimization)

2
1

Classes:
4
3

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(b) With ADC, all RDCs - JoBS (heuristic)

4
3
2
1

Classes:

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(c) With ADC, one RDC removed - JoBS (optimization)

2
3
4
Classes:

1

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(d) With ADC, one RDC removed - JoBS (heuristic)

Classes:
4
3
2
1

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(e) No ADC, all RDCs - JoBS (optimization)

1

3

Classes:
4

2

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(f) No ADC, all RDCs - JoBS (heuristic)

Figure 7:Experiment 2: Delay Differentiation. The graphs show the absolute delay values.

23

Class-2 Delay / Class-1 Delay

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

D
el

ay
s

R
at

io

(a) With ADC, all RDCs - JoBS (optimization)

Class-2 Delay / Class-1 Delay

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

D
el

ay
s

R
at

io

(b) With ADC, all RDCs - JoBS (heuristic)

10

100

1000

1 8420 12 14 16 20

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay
Class-2 Delay / Class-1 Delay

Simulation Time (s)
6 10 18

D
el

ay
s

R
at

io

(c) With ADC, one RDC removed - JoBS (optimization)

10

100

1000

1 8420 12 14 16 20

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay
Class-2 Delay / Class-1 Delay

Simulation Time (s)
6 10 18

D
el

ay
s

R
at

io

(d) With ADC, one RDC removed - JoBS (heuristic)

Class-2 Delay / Class-1 Delay

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

D
el

ay
s

R
at

io

(e) No ADC, all RDCs - JoBS (optimization)

Class-2 Delay / Class-1 Delay

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

D
el

ay
s

R
at

io

(f) No ADC, all RDCs - JoBS (heuristic)

Figure 8: Experiment 2: Delay Differentiation. The graphs show the ratios of delays for successive
classes. The target value isk = 4.

24

Class 1

Class 3
Class 2

Class 4

0.001

0.01

0.1

1

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
ra

te
 (

*)

(a) With ADC, all RDCs - JoBS (optimization)

Class 1

Class 3
Class 2

Class 4

0.001

0.01

0.1

1

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
ra

te
 (

*)

(b) With ADC, all RDCs - JoBS (heuristic)

Class 1

Class 3
Class 2

Class 4

0.001

0.01

0.1

1

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
ra

te
 (

*)

(c) With ADC, one RDC removed - JoBS (optimization)

Class 1

Class 3
Class 2

Class 4

0.001

0.01

0.1

1

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
ra

te
 (

*)

(d) With ADC, one RDC removed - JoBS (heuristic)

Class 1

Class 3
Class 2

Class 4

0.001

0.01

0.1

1

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
ra

te
 (

*)

(e) No ADC, all RDCs - JoBS (optimization)

Class 1

Class 3
Class 2

Class 4

0.001

0.01

0.1

1

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
ra

te
 (

*)

(f) No ADC, all RDCs - JoBS (heuristic)

Figure 9:Experiment 2: Loss Differentiation. The graphs show the loss rates of all classes.(*) The loss rate

of classi is expressed as a fraction of the arrival rate of classi.

25

1

4

3

p /p
2 1

0

5

2

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

L
os

s
R

at
es

 R
at

io

4 3
23p /p

p /p

(a) With ADC, all RDCs - JoBS (optimization)

2

4

1

p /p
2 1

0

5

3

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

L
os

s
R

at
es

 R
at

io

4 3
23p /p

p /p

(b) With ADC, all RDCs - JoBS (heuristic)

1

4

3

p /p
2 1

0

5

2

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

L
os

s
R

at
es

 R
at

io

4 3
23p /p

p /p

(c) With ADC, one RDC removed - JoBS (optimization)

3

4

1

p /p
2 1

0

5

2

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

L
os

s
R

at
es

 R
at

io
4 3

23p /p
p /p

(d) With ADC, one RDC removed - JoBS (heuristic)

1

4

3

p /p
2 1

0

5

2

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

L
os

s
R

at
es

 R
at

io

4 3
23p /p

p /p

(e) No ADC, all RDCs - JoBS (optimization)

3

4

1

p /p
2 1

0

5

2

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

L
os

s
R

at
es

 R
at

io

4 3
23p /p

p /p

(f) No ADC, all RDCs - JoBS (heuristic)

Figure 10:Experiment 2: Loss Differentiation. The graphs show the ratios of loss rates for successive
classes. The target value isk0 = 2.

26

Experiment
Time to complete
(FIFO/Drop-Tail)

Time to complete
(optimization)

Time to complete
(heuristic)

With ADC, all RDCs 13 min 1428 min 34 min
With ADC, one RDC
removed

13 min 8039 min 26 min

No ADC, all RDCs 13 min 7983 min 36 min

Table 1:Comparison of the computational overhead of JoBS (optimization) and JoBS (heuristic).

each time the system is checked. Since this test is performed as soon as a buffer overflow occurs (see
Section 5), ADC violations are predicted upon each arrival in such cases, and JoBS ignores the RLCs for
resolving them. The amounts of traffic dropped due to a buffer overflow comply to the RLCs, but become
negligible compared to the amount of traffic dropped for satisfying the ADCs. Thus, JoBS (heuristic) drops
mostly from Class 1, as shown on Figures 9(b) and 10(b). When the RLCs are ignored, the set of constraints
is reduced to relative and absolute delay constraints only, and is feasible. Hence, JoBS (heuristic) does not
suffer from these delay oscillations, at the expense of violating the relative loss constraints.7 To a lesser
extent, Figures 7(c)-(f) also show that even when the relative delay constraint between Classes 1 and 2
is removed, JoBS (optimization) presents more oscillations as far as Class-1 delays are concerned. Here,
JoBS (optimization) changes the rate allocation upon each arrival, while JoBS (heuristic) changes the rate
allocation everyN arrivals only. Since there are no requirements on the delay variations (jitter), JoBS
(optimization) tries to minimize Class-1 delays as much as it can, which explains these oscillations.

The third observation is that in the second experiment, removing the RDC between classes 1 and 2 is
sufficient for ensuring that the set of constraints is feasible. Hence, the relative loss constraints are respected,
as shown on Figures 9(c-d) and 10(c-d). Figures 8(c-d) show that, in absence of this RDC, the ratio of Class-
2 delays over Class-1 delays exceeds a factor of 30 under high loads, and even reaches 500 in the case of the
optimization model.

6.4 Computational Overhead

We conclude by giving some comparative values of the computational overheads of both JoBS (optimization)
and JoBS (heuristic). All simulations were performed on Sun Ultra-SPARC 250, running Solaris 2.7, with
a 400 MHz CPU. The simulations were the only load on the processor. On Table 1, we present the time
to complete the three cases of Experiment 2. We use the time to complete the same experiments with
a FIFO/Drop-Tail queue as a benchmark. Since such a queue does not provide any support for service
guarantees, the time to complete is the same in all three cases.

Based on these results, one can make three observations. First, in the case of JoBS (optimization), the
experiment that completed the fastest is ‘With ADC, all RDCs’, which is the most constrained system we
tested. In such a case, the solution space is smaller, and consequently, the search for the optimal solution is
easier.

Second, the optimization model is computationally expensive. The time to complete the experiments is
two orders of magnitude larger than our benchmark in all cases. This confirms that JoBS (optimization) is

7The delay values for Classes 2, 3, and 4 in Figures 7(b) and (d) appear similar, especially since we use a log-scale. We
emphasize that the values arenot identical, and that the results are consistent.

27

too slow for a practical implementation at high speeds.
Third, JoBS (heuristic) runs one or two orders of magnitude faster than JoBS (optimization). The re-

sults presented earlier showed that the heuristic closely approximates the optimization model in terms of
service guarantees provided. Thus, even if the heuristic is slower by a factor of 2-3 than a FIFO/Drop-Tail
implementation, one can infer that a close approximation of the optimization model is achievable at high
speeds.

7 Discussion and Conclusions

The main contribution of this paper is a new framework, referred to as JoBS (Joint Buffer Management and
Scheduling), for reasoning about relative and absolute per-class service differentiation in a network without
information on traffic arrivals. JoBS reconciles scheduling and buffer management into a single algorithm,
thus, acknowledging that scheduling and buffer management are not orthogonal issues, but should be dealt
with in concert. JoBS makes predictions on the delays of backlogged traffic, and uses the predictions to
update the service rates of classes and the amount of traffic to be dropped. A unique capability of JoBS is
its ability to provide relative and absolute per-class service differentiation for delays and loss rate. We have
demonstrated the effectiveness of JoBS in a set of simulation experiments.

As future work, we are interested in extending the JoBS approach to support TCP congestion control.
As a point of departure, we conjecture that many active queue management algorithms, e.g., RED [12] and
RIO [6], can be expressed within the JoBS framework. We are also working towards an implementation
of JoBS-style algorithms on PC-based IP routers, running the Alternate Queueing Framework (ALTQ, [5])
under the FreeBSD operating system [14].

References

[1] G. Armitage and K. Adams. ATM adaptation layer packet reassembly during cell loss.IEEE Network, 7(10):26–
34, September 1993.

[2] S. Athuraliya, D. Lapsley, and S. Low. An enhanced random early marking algorithm for internet flow control.
In Proceedings of IEEE INFOCOM 2000, pages 1425–1434, Tel-Aviv, Israel, April 2000.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for differentiated services.
IETF RFC 2475, December 1998.

[4] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architecture: an overview. IETF RFC
1633, July 1994.

[5] K. Cho. A framework for alternate queueing: Towards traffic management by PC-UNIX based routers. In
Proceedings of USENIX 1998 Annual Technical Conference, New Orleans, LA, June 1998.

[6] D. Clark and W. Fang. Explicit allocation of best-effort packet delivery service.IEEE/ACM Transactions on
Networking, 6(4):362–373, August 1998.

[7] R. Cruz, H. Sariowan, and G. Polyzos. Scheduling for quality of service guarantees via service curves. In
Proceedings of the International Conference on Computer Communications and Networks (ICCCN), pages 512–
520, Las Vegas, NV, September 1995.

[8] C. Dovrolis and P. Ramanathan. A case for relative differentiated services and the proportional differentiation
model. IEEE Networks, 13(5):26–34, September 1999. Special issue on Integrated and Differentiated Services
on the Internet.

28

[9] C. Dovrolis and P. Ramanathan. Proportional differentiated services, part II: Loss rate differentiation and packet
dropping. InProceedings of IWQoS, pages 52–61, Pittsburgh, PA., June 2000.

[10] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional differentiated services: Delay differentiation and
packet scheduling. InProceedings of ACM SIGCOMM ’99, pages 109–120, Boston, MA., August 1999.

[11] W. Feng, D. Kandlur, D. Saha, and K. Shin. Blue: A new class of active queue management algorithms. Technical
Report CSE-TR-387-99, University of Michigan, April 1999.

[12] S. Floyd and V. Jacobson. Random early detection for congestion avoidance.IEEE/ACM Transactions on
Networking, 1(4):397–413, July 1993.

[13] S. Floyd and V. Jacobson. Link-sharing and resource management models for packet networks.IEEE/ACM
Transactions on Networking, 3(4):365–386, August 1995.

[14] The FreeBSD project. http://www.freebsd.org.

[15] L. Kleinrock. Queueing Systems. Volume II: Computer Applications. John Wiley & Sons, New York, NY, 1976.

[16] H. Kroner, G. Hebuterne, P. Boyer, and A. Gravey. Priority Management in ATM Switching Nodes.IEEE
Journal in Selected Areas in Communications, 9(3):418–427, April 1991.

[17] M. A. Labrador and S. Banerjee. Packet dropping policies for ATM and IP networks.IEEE Communications
Surveys, 2(3), 3rd Quarter 1999. http://www.comsoc.org/pubs/surveys.

[18] T.V. Lakshman, A. Neidhardt, and T. Ott. The Drop from Front Strategy in TCP and in TCP over ATM. In
Proceedings of IEEE INFOCOM ’96, pages 1242–1250, San Francisco, CA, 1996.

[19] A.-M. Lin and J.A. Silvester. Priority Queueing Strategies and Buffer Allocation Protocols for Traffic Control
at an ATM Integrated Broadband Switching System.IEEE Journal on Selected Areas in Communications,
9(9):1524–1536, December 1991.

[20] D. Lin and R. Morris. Dynamics of random early detection. InProceedings of ACM SIGCOMM ’97, pages
127–137, Cannes, France, September 1997.

[21] Y. Moret and S. Fdida. A proportional queue control mechanism to provide differentiated services. InProceed-
ings of the International Symposium on Computer and Information Systems (ISCIS), pages 17–24, Belek, Turkey,
October 1998.

[22] T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Barghavan. Delay differentiation and adaptation in core
stateless networks. InProceedings of IEEE INFOCOM 2000, pages 421–430, Tel-Aviv, Israel, April 2000.

[23] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the differentiated services field (DS field) in the IPv4
and IPv6 headers. IETF RFC 2474, December 1998.

[24] K. Nichols, V. Jacobson, and L. Zhang. Two-bit differentiated services architecture for the Internet. IETF RFC
2638, July 1999.

[25] R. Pan, B. Prabhakar, and K. Psounis. CHOKe: A stateless active queue management scheme for approximating
fair bandwidth allocation. InProceedings of IEEE INFOCOM 2000, pages 942–951, Tel-Aviv, Israel, April
2000.

[26] A. K. Parekh and R. G. Gallagher. A generalized processor sharing approach to flow control in integrated services
networks: The single-node case.IEEE/ACM Transactions on Networking, 1(3):344–357, June 1993.

[27] A. Romanow and S. Floyd. Dynamics of TCP traffic over ATM networks.IEEE Journal on Selected Areas in
Communications, 13(4):633–641, May 1995.

[28] S. Sahu, P. Nain, D. Towsley, C. Diot, and V. Fioroiu. On achievable service differentiation with token bucket
marking for TCP. InProceedings of ACM SIGMETRICS 2000, pages 23–33, Santa Clara, CA, June 2000.

29

[29] K. Schittkowski. NLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems.An-
nals of Operations Research, 5:485–500, 1986. Edited by Clyde L. Monma.

[30] I. Stoica and H. Zhang. Providing guaranteed services without per-flow management. InProceedings of ACM
SIGCOMM’99, pages 81–94, Boston, MA., August 1998.

[31] B. Suter, T.V. Lakshman, D. Stiliadis, and A.K. Choudhury. Buffer Management Schemes for Supporting TCP
in Gigabit Routers with Per-Flow Queueing.IEEE Journal on Selected Areas of Communications, 17(6):1159–
1170, September 1999.

[32] L. Zhang. Virtual clock: A new traffic control algorithm for packet switched networks.IEEE/ACM Trans.
Comput. Syst., 9(2):101–125, May 1991.

30

A Expressing the Constraints in Function of xs

The objective of this appendix is to give a full specification of the constraintsgj(xs) andhj(xs) as stated in
the general form of the optimization problem given in Eqn. (21), wheregj(xs) denotes equality constraints
andhj(xs) denotes inequality constraints.

The work to be done is to express the constraints defined by Eqs. (22), (23), (24), in terms of the
optimization variablexs, that is, in terms of theri(s)’s and`i(s)’s.

Throughout this appendix, we will use the following shorthand notation:

8(t1; t2) ;

(
Rin
i (t1; t2) = Rin

i (t2)�Rin
i (t1)

Ai(t1; t2) = Ai(t2)�Ai(t1)
: (31)

In addition to this, it will become clear that most constraints have the same form for all classes. Thus, we
will usehij to denote thej-th constraint applied to classi.

A.1 Equality Constraints

There is only one equality constraint, which is the work- conserving property
PQ

i=1 ri(s) = C. Thus,

g1(xs) =
QX
i=1

ri(s)� C : (32)

A.2 Inequality Constraints

We will use the convention thathij denotes thej-th inequality constraint, applied to classi.

A.2.1 General Bounds

For each classi, we haveri(s) � 0, `i(s) � 0 and`i(s) � Bi(s). Thus, we get

hi2(xs) = ri(s) ; i = 1; : : : ; Q ;

hi3(xs) = `i(s) ; i = 1; : : : ; Q ;

hi4(xs) = Bi(s)� `i(s) ; i = 1; : : : ; Q :

(33)

A.2.2 Buffer Size

At time s, we need to have
P

iBi(s) � B. Since

Bi(s) = Bi(s
�) + ai(s)� `i(s); 8i ; (34)

the buffer size constraint can be rewritten asX
i

�
Bi(s

�) + ai(s)� `i(s)
�
� B ; (35)

where the only variable is̀i(s). This gives us

h5(xs) = B �

QX
i=1

�
Bi(s

�) + ai(s)� `i(s)
�
: (36)

Note that the finite buffer size constraint translates into a single constraint for the whole system, which is
the reason why we do not use a superscript here.

31

A.2.3 Absolute Delay Constraints (ADC)

Here, we need to express Eqn. (22) in terms of the optimization variable. We have derived a sufficient
condition for meeting the ADC for classi in Eqn. (30), which immediately gives:

Bi(s
�) + ai(s)� `i(s)� ri(s)(di �Di(s)) � 0 : (37)

Here, the only variables areri(s) and`i(s), and we obtain

hi6(xs) = (di �Di(s))ri(s)� (Bi(s
�) + ai(s)� `i(s)) ; i = 1; : : : ; Q : (38)

A.2.4 Relative Delay Constraints (RDC)

We start from Eqn. (23). This equation usesDi;s, which is defined in Eqn. (15) and solely depends on the
projected horizon and on the values of~Di;s(:). As soon as a class is backlogged, the projected horizon is
defined. We obtain:

~Ti;s =
Bi(s)

ri(s)

=
Bi(s

�) + ai(s)� `i(s)

ri(s)
; (39)

which shows that the projected horizon is a function of`i(s) andri(s). This implies that~Di;s, as defined in
Eqn. (10), is also a function ofxs. This, in turn, implies thatDi;s is a function ofxs as well. We finally get(

hi7(xs) = Di+1;s � ki(1� ")Di;s ; i = 1; : : : ; Q� 1 ;

hi8(xs) = ki(1 + ")Di;s �Di+1;s ; i = 1; : : : ; Q� 1 :
(40)

According to Eqs. (15), (10), and (39), in Eqn. (40), the only variables areri(s), ri+1(s), `i(s) and
`i+1(s). Note that the functionshi7(xs) andhi8(xs) are not linear, given thatDi;s is not a linear function of
xs.

A.2.5 Absolute Loss Constraints (ALC)

The ALCs at times are defined by Eqn. (24). Using our definition of loss, given by Eqn. (17), and denoting
the beginning of the current busy period byt0, Eqn. (24) reduces to

1�
Rin
i (s� t0; s

�) + ai(s)� `i(s)

Ai(s� t0; s)
� Li ; (41)

which immediately gives

`i(s) � (Li � 1)Ai(s� t0; s) +Rin
i (s� t0; s

�) + ai(s) ; (42)

where the only variable is̀i(s). This translates into:

hi9(xs) = (Li � 1)Ai(s� t0; s) +Rin
i (s� t0; s

�) + ai(s)� `i(s) ; i = 1; : : : ; Q : (43)

32

A.2.6 Relative Loss Constraints (RLC)

At time s, the relative loss constraints are specified by Eqn. (25). From Eqn. (17),pi;s can be expressed as a
function of`i(s). Therefore, the RLCs can be expressed as a function ofxs. We finally get:

hi10(xs) = pi+1;s � k0i(1� "0)pi;s ; i = 1; : : : ; Q� 1 ;

hi11(xs) = k0i(1 + "0)pi;s � pi+1;s ; i = 1; : : : ; Q� 1 :
(44)

A.3 Summary

This concludes the derivation of the constraints in function of the optimization variablexs. At time s, all of
the QoS and system constraints are expressed in terms ofri(s) and`i(s), therefore in terms of the vectorxs.
Among this set of constraints, the RDCs are non-linear, which makes this problem solvable by non-linear
programming methods only. In summary, the optimization problem described by Eqn. (21) is fully defined
by Eqs. (26), (32), (33), (36), (38), (40), (43), and (44):

Minimize
PQ

i=1(ri(s)� ri(s
�))2 + C2

PQ
i=1 `i(s)

Subject to
PQ

i=1 ri(s)� C = 0 ;

ri(s) � 0 ; i = 1; : : : ; Q ;

`i(s) � 0 ; i = 1; : : : ; Q ;

Bi(s)� `i(s) � 0 ; i = 1; : : : ; Q ;

B �
PQ

i=1 (Bi(s
�) + ai(s)� `i(s)) � 0 ;

(di �Di(s))ri(s)� (Bi(s
�) + ai(s)� `i(s)) � 0 ; i = 1; : : : ; Q ;

Di+1;s � ki(1� ")Di;s � 0 ; i = 1; : : : ; Q� 1 ;

ki(1 + ")Di;s �Di+1;s � 0 ; i = 1; : : : ; Q� 1 ;

(Li � 1)Ai(s� t0; s) +Rin
i (s� t0; s

�) + ai(s)� `i(s) � 0 ; i = 1; : : : ; Q ;

pi+1;s � k0i(1� "0)pi;s � 0 ; i = 1; : : : ; Q� 1 ;

k0i(1 + "0)pi;s � pi+1;s � 0 ; i = 1; : : : ; Q� 1 :

(45)

33

B Systems of Equations Used in JoBS (heuristic)

In this appendix, we fully specify the systems of equations that is solved by the JoBS heuristic in Section 5
in the case of a buffer overflow or an RDC violation. We will also discuss the run-time complexity of the
computation of the solutions to these systems of equations.

B.1 Buffer Overflow

We denote the size of the arriving packet byz, and the beginning of the current busy period byt0. Using
Eqn. (17) as the definition of the loss in the RLCs given by Eqn. (25) (with"0 = 0), we get

Ai+1(s� t0; s)�
�
Rin
i+1(s� t0; s

�) + ai+1(s)� `i+1(s)
�

Ai(s� t0; s)�
�
Rin
i (s� t0; s�) + ai(s)� `i(s)

� �
Ai(s� t0; s)

Ai+1(s� t0; s)
= k0i ; 8i 2 (1; : : : ; Q� 1) ;

(46)

This gives us a system ofQ � 1 equations. If we add to this system the relationship giving the amount of
traffic to drop, we then get the following system:8<

:
Ai+1(s�t0;s)�(Rin

i+1(s�t0;s
�)+ai+1(s)�`i+1(s))

Ai(s�t0;s)�(Rin
i (s�t0;s�)+ai(s)�`i(s))

� Ai(s�t0;s)
Ai+1(s�t0;s)

= k0i ; 8i 2 (1; : : : ; Q� 1) ;PQ
i=1 `i(s) = z ;

(47)

that we can rewrite in terms of a matrix equality:

M0
sz }| {0

BBBB@
�01(s) �01(s) (0)

.

(0) �0Q�1(s) �0Q�1(s)

1 : : : : : : 1

1
CCCCA �
0
BBBB@

`1
...
...
`Q

1
CCCCA =

0
BBBB@

01(s)
...

0Q�1(s)

z

1
CCCCA ; (48)

where

�0i(s) = �k0iAi+1(s� t0; s) ;

�0i(s) = Ai(s� t0; s) ;

0i(s) = k0
i
(Ai(s� t0; s)�Rin

i
(s� t0; s

�)� ai(s))Ai+1(s� t0; s)

�(Ai+1(s� t0; s)�Rin

i+1(s� t0; s
�)� ai+1(s))Ai(s� t0; s) ;

(49)

are known at times.
We ensure that�0i(s) 6= 0 and�0i(s) 6= 0 by only considering RLCs between backlogged classes. In case

some classes are not backlogged at times, we set their̀ i to zero and use the solution of the subproblem
taking into account only the backlogged classes. The derivation is similar to the general case we present in
this paragraph. Thus,M0

s always has an inverse, which can be precomputed if the number of classes,Q, is
known. Then, the general solution of the system is also knowna priori. The runtime operation then reduces
to multiplyingM0�1

s by the righthand vector, which can be done inO(Q2) in the worst case.

34

B.2 RDC Violation

In the context of a heuristic approximation that can only perform simple operations, the system used in the
optimization model for enforcing the RDCs, as described by Eqn. (40), is too complex. First, since the
system is not linear, there is no general method for finding an exact solution easily. Second, the computation
of the average delay requires to look up the delays of all packets present in the queue. We work around both
of these problems using the four following estimates:

(E1) The average delay is given by Eqn. (29) ;

(E2)Rin
i (s) � Rin

i (s�) ;

(E3)Bi(s) � Bi(s
�) ;

(E4) ri(s)ri+1(s) � ri(s
�)ri+1(s

�) + ri(s
�)(ri+1(s)� ri+1(s

�)) + ri+1(s
�)(ri(s)� ri(s

�)) :

(50)

The first estimate, (E1), detailed in Section 5, is an estimate of the average delay in the system that
only requires to look up two packets. The second and third estimates, (E2) and (E3), express the fact that
the input curve and the backlog shall not be affected in the search of a solution meeting the relative delay
constraints. This also helps minimizing the losses. The fourth estimate, (E4), enables us to make the system
linear by stating that the rate variations are small compared to the actual rates and that the second-order terms
are negligible. Given that the system tries to minimize those rate variations, this last assumption generally
holds, and the error due to this estimate is indeed negligible.

With the first three estimates (E1), (E2) and (E3), and" = 0, we get the following set ofQ�1 equations:

Di+1(s) + maxx�0 fx j R
in
i+1(s

�) = Rin
i+1(s� x)g+

Bi+1(s�)
ri+1(s)

Di(s) + maxx�0 fx j Rin
i (s�) = Rin

i (s� x)g+ Bi(s�)
ri(s)

= ki : (51)

The fourth estimate (E4) enables us to rewrite the RDC as

�i(s)ri(s) + �i(s)ri+1(s) = i(s) ; (52)

where

�i(s) = Bi+1(s
�)� ri+1(s

�)!i(s) ;

�i(s) = �kiBi(s
�)� ri(s

�)!i(s) ;

i(s) = �ri(s
�)ri+1(s

�)!i(s) ;

(53)

and

!i(s) = ki
�
Di(s) + maxx�0 fx j R

in
i (s�) = Rin

i (s� x)g
�

�
�
Di+1(s) +maxx�0 fx j R

in
i+1(s

�) = Rin
i+1(s� x)g

�
:

(54)

Together with the workconserving property,
P

i ri(s) = C, one obtains a system ofQ equations, which
can also be written in terms of a matrix equality:

Msz }| {0
BBBB@

�1(s) �1(s) (0)
.

(0) �Q�1(s) �Q�1(s)

1 : : : : : : 1

1
CCCCA �
0
BBBB@

r1
...
...
rQ

1
CCCCA =

0
BBBB@

1(s)
...

Q�1(s)

C

1
CCCCA ; (55)

35

for which the algorithm picks a solution. This system of equations always has the same form, the matrix
M s that characterizes it is always invertible since we only consider the backlogged classes, and its inverse
can be precomputed. Therefore, at runtime, the algorithm simply picks the solution by multiplying the
precomputed inverseM�1

s by the righthand vector. The worst-case complexity order of this operation is
quadratic in function of the number of classes. If the solution violates an ADC, the RDCs are relaxed until
the ADCs are satisfied.

36

