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Abstract

Recent research on statistical multiplexing has provided many new insights into the achievable mul-
tiplexing gain in QoS networks, however, generally only in terms of the gain experienced at a single
switch. Evaluating the statistical multiplexing gain in a general network remains a difficult challenge.
In this paper we describe two distinct network designs for statistical end-to-end delay guarantees, re-
ferred to as class-level aggregation and path-level aggregation, and compare the achievable statistical
multiplexing gain. Each of the designs presents a particular trade-off between the attainable statistical
multiplexing gain and the ability to support delay guarantees. The key characteristic of both designs is
that they do not require, and instead, intentionally avoid, consideration of the correlation between flows
at multiplexing points inside the network. Numerical examples are presented for a comparison of the
two designs. The presented class-level aggregation design is shown to yield very high achievable link
utilizations while simultaneously achieving desired statistical guarantees on delay.
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1 Introduction

In recent years a lot of effort has gone into devising algorithms to support deterministic or statistical QoS
guarantees in packet networks. Deterministic services [15], which guarantee worst-case end-to-end delay
bounds for traffic [7, 9, 28, 29], are known to lead to an inefficient use of network resources [39]. Statistical
services [15], which make guarantees of the form

Pr[Delay > X] < " ; (1)

i.e. services which allow a small fraction of traffic to violate QoS specifications, can significantly increase
the achievable utilization of network resources. Taking advantage of the statistical properties of traffic, a
statistical service can exploit statistical multiplexing gain, expressed as0
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Ideally, the statistical multiplexing gain of a statistical service increases with the volume of traffic so that
with a high enough level of aggregation the amount of resource allocated per flow is nearly equal to the
average resource requirements for a single flow.

Recent research on statistical QoS has attempted to exploit statistical multiplexing gain by taking ad-
vantage of knowledge about deterministic bounds on arrivals from individual flows, with limited knowledge
about their statistical properties [3, 10, 12, 17, 18, 20, 25, 26, 31, 32, 33]. Under a very general set of traffic
assumptions, which are sometimes referred to as ‘regulated adversarial traffic,’ one merely assumes that (1)
traffic arrivals from a flow are constrained by a deterministic regulator, e.g., a leaky bucket, and (2) traffic
arrivals from different flows are statistically independent. With these general assumptions it has been shown
that even if the probability of QoS violations is small, e.g., " = 10�9, the statistical multiplexing gain at a
network node can be substantial [3].

In this paper we are concerned with end-to-end statistical QoS guarantees in a multi-node network un-
der adversarial regulated traffic assumptions. The difficulty of assessing the multiplexing gain in a network
environment is that traffic inside the network becomes correlated, and, therefore, the assumption of inde-
pendence, as made by the regulated adversarial traffic model, no longer holds.

1.1 Networks with Statistical End-to-End Guarantees

We consider a packet network such as the one shown in Figure 1. The network has two types of nodes, edge
nodes and core nodes. Edge nodes are located at the boundary of the network and have links to core nodes
or other edge nodes. Core nodes have no links that cross the network boundary. The network distinguishes a
fixed number of traffic classes, and flows from the same class have the same characteristics and the same QoS
requirements. We assume that the traffic from each indivudual flow is bounded according to a prescribed
traffic profile. This could be accomplished by conditioning flows at their ingress points. In this way, traffic
which conforms to its profile is allowed into the network, whereas traffic which does not conform to its
profile is discarded or perhaps marked and subsequently treated with lower priority. Finally, we assume that
nodes execute a scheduling algorithm which can provide rate guarantees to groups of flows [35, 41].

Within this framework, we develop and compare two approaches, referred to as class-level aggregation
and path-level aggregation, for provisioning a network with end-to-end statistical QoS guarantees. Our
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discussions will investigate the trade-offs presented by the two schemes. A comparison of the approaches
will allow us to make recommendations on the design of QoS networks with statistical QoS guarantees.

Overall, we consider statistical QoS guarantees made to traffic on a per-class basis, and not on a per-flow
basis. By making QoS guarantees to the aggregate flows from a class and not for specific flows within a
class, the design of the core network can be greatly simplified since no per-flow information is required
inside the network. The disadvantage of per-class guarantees is that individual flows may experience a
service which is worse than the service guaranteed to the class as a whole.

1.2 Related Work

The available literature on statistical QoS is extensive. We refer to [21, 34] for summaries of the state of the
art. Here we highlight only a small subset of related literature that focuses on end-to-end statistical QoS.

The main difficulty of provisioning statistical QoS for a multi-node network lies in addressing the com-
plex correlation of traffic at downstream multiplexing points. One group of work on end-to-end statistical
QoS, attempts to achieve a characterization of correlated traffic inside a network [5, 22, 36, 40]. An alterna-
tive approach, which we adopt in Section 3, is to reconstruct traffic characteristics inside the network so that
arrivals to core nodes satisfy the same properties as the arrivals to an edge node. There are two approaches
to reconstruct characteristics of traffic: per-node traffic shaping [16, 42], or per-node delay jitter control
[37, 38]. In Section 3 we take the latter approach.

Another method to achieve statistical end-to-end guarantees is to allocate network capacity for each path
or ‘pipe’ between a source-destination pair in the network, and only exploit the multiplexing gain between
the flows on the same path. This method for allocating resource has been considered for use in Virtual
Private Networks (VPN) [11] and ATM Virtual Paths [34]. We take such an approach in Section 4.

There are only a few previous studies which apply the traffic model of adversarial regulated arrivals
to multiple node networks. The lossless multiplexer presented in [32] bears similarity to our design for
class-level aggregation in Section 3, but assumes that routes are such that traffic arrivals at core nodes from
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different flows are always independent. We relax this assumption in our work, and instead, enforce indepen-
dence by adding appropriate mechanisms within the network. Probabilistic bounds for end-to-end delays
have been derived for networks with coordinated schedulers [2, 23]. This class of scheduling algorithms
addresses end-to-end provisioning of QoS, by taking into consideration the time that a packet has already
spend in the network at previous nodes.

This paper makes use of results from a recent study [3] which presented a general method to calculate
the statistical multiplexing gain at a single node. In particular, we exploit the notion of effective envelopes,
which are functions that provide bounds on traffic arrivals with high certainty. In addition, previous work on
rate-based scheduling algorithms with statistical service guarantees in single-node networks is very relevant
to our work [16, 30, 43, 44].

The remainder of this paper is structured as follows. In Section 2 we state our assumptions on traffic
arrivals and we introduce the notion of effective envelopes. In Sections 3 and 4, respectively, we present
our two designs for end-to-end statistical QoS and analyze their ability to exploit statistical multiplexing
gain. In Section 5 we evaluate and compare the two designs through a computational study. In Section 6 we
present our conclusions and discuss future research directions.

2 Traffic Arrivals and Effective Envelopes

In this section we present the details of our assumptions for the traffic arrivals. Throughout this paper we
will use a fluid-flow interpretation of traffic. We define a function, called an effective envelope, which is with
high certainty an upper bound on the traffic of multiplexed traffic flows. The concept of effective envelopes
will be applied extensively in Sections 3 and 4. The discussion in this section is based on [3].

2.1 Regulated Adversarial Traffic

As in all arrival models for a statistical service, the arrivals of a flow are viewed as a random process.
Consider a set C of flows which are partitioned into Q classes, where Cq denotes the subset of flows from
class q. The traffic arrivals from flow j in the interval [t1; t2) are denoted by a random variable Aj(t1; t2)
with the following properties:

(A1) Additivity. For any t1 < t2 < t3, we have Aj(t1; t2) +Aj(t2; t3) = Aj(t1; t3).

(A2) Subadditive Bounds. Aj is bounded by a deterministic subadditive envelope A�j as Aj(t; t + �) �

A�j (�) for all t � 0 and for all � � 0.1

(A3) Stationarity. The Aj are stationary so that for all t; t0 � 0 we have Pr[Aj(t; t + �) � x] =

Pr[Aj(t
0; t0 + �) � x].

(A4) Independence. The Ai and Aj are stochastically independent for all i 6= j.

(A5) Homogeneity within a Class. Flows in the same class have identical deterministic envelopes. More-
over, individual flows within a class have the same nominal delay bound requirements. These individ-
ual delay requirements are translated in Sections 3 and 4 into nominal delay bounds for the aggregate
of flows within the class at each node.

1A function f : < 7! < is subadditive if f(t1 + t2) � f(t1) + f(t2), for all t1; t2 � 0:

4



These or similar assumptions are used in many recent works on statistical QoS [3, 10, 12, 17, 18, 20, 25,
26, 31, 32, 33]. The assumptions are very general. Specifically, no assumptions are made on the distribution
of flow arrivals, other than that each flow satisfies a worst-case constraint.

Within the constraints of assumptions (A1)–(A5), we consider arrival scenarios where each flow exhibits
its worst possible (‘adversarial’) behavior. Traffic which obeys the above assumptions is referred to as
regulated adversarial traffic. Note that even if flows individually behave in a worst-case fashion, as allowed
by assumption (A2), the independence assumption (A4) prevents the flows from ‘conspiring’ to yield a
combined or joint worst case behavior.

2.2 Effective Envelopes of Aggregate Arrivals

For the calculation of statistical multiplexing gain we will take advantage of the notion of effective envelopes,
which was recently presented in [3]. Effective envelopes are functions that are, with high probability, upper
bounds on multiplexed traffic from a set of flows satisfying the assumptions of adversarial regulated traffic.
Effective envelopes have been shown to be a useful tool for calculating the statistical multiplexing gain at a
network node.2

Consider the set of flows Cq from a given class q. We use ACq to denote the aggregate arrivals from class
q, that is, ACq (t; t + �) =

P
j2Cq

Aj(t; t + �). Also, let Nq denote the number of flows in set Cq. Due to
assumption (A5), all flows in the same class have the same subadditive bound. Thus, we use A�q to denote
the bound of class q with A�j(�) = A�q(�) for all j 2 Cq.

Definition 1 An effective envelope for ACq (t; t+ �) is a function GCq with:

Pr

�
ACq (t; t+ �) � GCq (� ; ")

�
� 1� "; 8 t; � � 0 : (2)

Due to assumption (A3), an effective envelope provides a bound for the aggregate arrivals ACq for all time
intervals of length � , which is violated with probability ".

Explicit expressions for effective envelopes can be obtained with large deviation results. In this paper,
we will use a bound from [3] which is established via the Chernoff Bound. The Chernoff bound for the
arrivals ACq from Cq is given by (see [27])

Pr[ACq (0; �) � Nqx] � e�NqxsMCq (s; �) ; (3)

where MCq is the moment generating function of ACq defined as

MCq (s; �) = E[eACq (t;t+�)s] :

In [3], the following bound on the moment generating functions was proven.

Theorem 1 (Boorstyn, Burchard, Liebeherr, Oottamakorn [3]) Given a set of flows Cq from a single class
that satisfies assumptions (A1)–(A5). Then,

MCq (s; �) �

�
1 +

�q �

A�q(�)

�
esA

�
q(�) � 1

��Nq

; (4)

where �q := lim�!1A�q(�)=� .

2In [3] two notions of effective envelopes are introduced, called local effective envelope and global effective envelope. In this
paper, we only use local effective envelopes and refer to them as effective envelopes.
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Using this bound it is possible to show [3] that

GCq (� ; ") := Nq min(x;A�q(�)) ; (5)

is an effective envelope for ACq , when x is the smallest number satisfying the inequality

��q�
x

� x
A�q (�)

�
A�q(�)� �q�

A�q(�)� x

�1� x
A�q (�)

� "1=Nq : (6)

We will use the effective envelope given by Eqs. (5) and (6) in all our numerical examples in Section 5.

3 Networks with Class-Level Aggregation (“Jitter Control Method”)

In this section we discuss the first of our two approaches to achieve statistical delay guarantees in a multi-
node network with regulated adversarial traffic. The key difficulty for analyzing statistical QoS in a network
is that, without some kind of intervention, the flows are no longer independent after they have been multi-
plexed at the edge node. In this section we pursue a solution where each core node has a delay jitter control
mechanism that ensures a lower bound on delays [38]. Specifically, if traffic at a node experiences delay
which is X seconds shorter than the assigned maximum delay, a delay jitter controller at the next node holds
the traffic for X seconds before permitting it to be scheduled. Loosely, the delay jitter controllers ensure
that the traffic arriving at each node is bounded by a virtual arrival process whose statistical properties are
no worse than the traffic arriving at the network edge.

All network nodes run a rate-based scheduling algorithm which guarantees a minimum bandwidth to
each traffic class, and each node has a separate buffer of finite size for each traffic class. Traffic which
arrives to a full buffer is dropped. The length of the buffer is provisioned such that traffic is dropped only if
it violates a given delay bound. Since each network node performs buffering and scheduling on a per-class
basis, we refer to this approach as class-level aggregation. Figure 2 illustrates how traffic is processed in the
network with class-level aggregation, showing the buffers and jitter controllers for some of the nodes. The
conditioners ensure that all traffic flows which arrives to the network satisfy assumption (A2).

We will be able to show that networks with class-level aggregation can guarantee that (1) traffic which
is not dropped in the finite-sized buffers meets a given end-to-end delay guarantee, and (2) the drop rate of
traffic at each node is bounded.

3.1 Per Class Delay Jitter Control

As shown in Figure 2, core nodes have a delay jitter control mechanism which ensures that traffic ex-
periences its maximum allocated per-node delay. More precisely, if the route of a flow traverses nodes
m1;m2; : : : ;mn, with per-node delay bounds dm1 ; dm2 ; : : : ; dmn , then the delay jitter controller at node
mk (1 < k � n) holds traffic until the delay of the traffic has a delay equal to dm1 + dm2 + : : : + dmk�1

.
The implementation of delay jitter control may require time-stamping of packets, and may incur additional
buffer requirements [38].

The jitter control at core nodes ensures that all packets from the same flow experience the same fixed
delays (with the exception of delays at the last node). As a consequence, traffic from a flow departing from
the delay jitter controller is no worse than the traffic which arrive to the network entrance. Specifically,
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Figure 2: Network with class-level aggregation. At each edge node and each core node, there is one finite-length

buffer for each class. Each buffer is served at a fixed rate, and arrivals to a full buffer are dropped. Core nodes have a

delay jitter controller, labeled JC in the graph, which buffers traffic until it satisfies the maximum allocated per-node

delay at the previous node. The figure illustrates the buffers and jitter controllers of nodes 4 – 7. Bmq indicates the

buffer size and cmq indicates the rate at which the buffer for class q at node m is served.

assuming that there are no losses due to buffer overflows, traffic which satisfies assumptions (A1) – (A5)
at the network entrance also satisfies these assumptions at downstream nodes after passing through the
corresponding delay jitter controllers. Although losses introduce correlations between flow arrivals, even
when jitter control is used, we will show that this traffic can be bounded by virtual arrival processes in
the network which assume that no traffic is lost and all traffic satisfies assumptions (A1)–(A5). Since the
provisioning is done with respect to these virtual processes, the corresponding delay bounds also apply for
the actual traffic with losses.

Due to the delay jitter control mechanism, the schedulers are non-workconserving. We note that it is
feasible to eliminate the delay jitter control, thus, making the schedulers workconserving, and still meet
the assumptions (A1) – (A5) for the traffic. Instead of holding the traffic at a delay jitter controller for X
seconds before sending it to a scheduler, one can add X seconds to the maximum delay of the traffic at the
node and immediately send the traffic to the scheduler [2, 15, 24, 37]. As a result, the traffic arrivals are
assigned the same maximum delay at a node as if the delay jitter controllers were employed. If the arrivals
are scheduled according to their deadlines, then without delay jitter control the traffic will be served in the
same order as with delay jitter control. Since, without delay jitter control, the scheduler can send the traffic
whenever the link is idle, we can possibly achieving lower end-to-end delays [2]. However, the absence of
delay jitter control may increase the burstiness of traffic, and, hence, result in larger buffer requirements.

3.2 Rate-Based Scheduling with Per-Class Buffering

As already discussed, we assume that the scheduling algorithm at both edge and core nodes provides per-
class queueing and per-class rate guarantees. Class-q traffic which arrives to a scheduler, say at node m,
is inserted into a finite buffer with length Bmq. Arrivals to a full buffer are dropped and considered lost.
The buffer for a class is served at a guaranteed minimal rate, denoted by cmq . Let Cmq denote the set of
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flows from class q with traffic at node m and with delay bound dmq . We use ACmq (s; t) to denote the total
amount of class-q traffic that would arrive at node m in the interval [s; t) if there were no losses at upstream
nodes. If we ignore upstream losses at upstream nodes in such a fashion, then the delay jitter controllers
ensure that the individual flows that comprise ACmq have the same statistical properties as the exogenous
arrival processes Aj . In particular, assumptions (A1) – (A5) hold true for the set of flows in ACmq .3 Thus,
an effective envelope GCmq for the traffic from flows in Cmq can be obtained from Eqs. (5) and (6), where
we set Nq = jCmqj and A�q is the deterministic envelope of Aj(t) (j 2 Cmq). We will use A�Cmq

to denote
the aggregate worst-case envelope of the traffic in Cmq, that is, A�Cmq

(�) = jCmqj � A
�
q(�).

Next, we use the effective envelope GCmq and the delay bound dmq for provisioning the data rate cmq

and the buffer size Bmq for class q at node m. We select cmq as the smallest number which satisfies

sup
�>0

�
GCmq (� ; ") � cmq�

�
� cmqdmq ; (7)

and we set Bmq to

Bmq = cmqdmq : (8)

The rate cmq in Eqn. (7) is set such that all class-q traffic at node m satisfies delay bound dmq , as long as the
arrivals comply to GCmq , that is, GCmq (�) � ACmq (t; t + �) for all t and � . Likewise, Bmq is set such that
traffic is dropped if the delay bound dmq is violated.

The next theorem states the statistical service guarantees that are attained with the above selection of
cmq and Bmq.

Theorem 2 Given a set of flows Cmq at node m where each Aj with j 2 Cmq satisfies assumptions (A1) –
(A5), and given a scheduler with per-class buffering and guaranteed service rate for each class, the cmq and
Bmq are selected as in Eqs. (7) and (8), respectively, then

1. Traffic which is not dropped meets its delay bound dmq .

2. The rate at which traffic is dropped at node m due to a full buffer is bounded by

" � sup
�>0

n
A�Cmq

(�)� Gmq(�)
o
; (9)

under the assumption that

Pr

�
sup
�>0

�
ACmq (t� �; t)� GCmq (�)

	
> 0

�
� inf

�>0
Pr
��
ACmq (t� �; t)� GCmq (�)

	
> 0

�
: (10)

The assumption in Eqn. (10) is similar to an assumption made in [3], as well as in related work [6, 19,
20, 21, 22]. A theoretical justification for this assumption is made in [21], and the assumption has been
supported by numerical examples [3, 6, 21].

Proof: The first part of the theorem follows from the construction of the queue size Bmq. Since the queue is
serviced at a rate of at least cmq , and since we set Bmq = cmqdmq , traffic in the buffer cannot have a delay

3In the proof of Theorem 2, we use ACmq as an upper bound for the actual arrivals at node m.
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larger than dmq . The second part of the theorem is a result of Eqn. (7) and the definition of the effective
envelope, as we now argue. Consider an arbitrary time t with a traffic arrival to the buffer. By Eqs. (7)
and (8), an arrival will find a full buffer only if for some � > 0,

~ACmq (t� �; t) > GCmq (� ; ") ; (11)

where ~ACmq (s; t) is the class-q traffic that arrives at node m in the interval [s; t). Thus, the probability that
an arrival from class q at node m is dropped is

Pr
�
9� > 0 : ~ACmq (t� �; t) > GCmq (� ; ")

�
: (12)

Using LCmq (s; t) to denote the class-q traffic that would have arrived at node m but was dropped at upstream
nodes, we have

~ACmq (t� �; t) = ACmq (t� �; t)� LCmq (t� �; t) : (13)

Thus, the probability that an arrival from class q at node m is dropped at time t is

Pr
�
9� > 0 : ACmq (t� �; t)� LCmq (t� �; t) > GCmq (� ; ")

�

� Pr
�
9� > 0 : ACmq (t� �; t) > GCmq (� ; ")

�
(14)

= Pr

�
sup
�>0

�
ACmq (t� �; t)� GCmq (� ; ")

	
> 0

�
(15)

� sup
�>0

Pr
�
ACmq (t� �; t)� GCmq (� ; ") > 0

�
(16)

� ": (17)

Eqn. (15) is merely a different formulation of the right hand side of Eqn. (14). Eqn. (16) uses the assumption
in Eqn. (10). Eqn. (17) follows from the definition of the effective envelope.

Next, we turn to the question of how much traffic is lost when an arrival finds a full queue. By construc-
tion of the buffer size, when traffic which complies to GCmq arrives to the buffer, the most amount of traffic
that may be dropped is bounded by sup�>0

�
ACmq (t� �; t)� GCmq (� ; ")

	
. So, we have

(Amount of dropped traffic at time t) � sup
�>0

�
ACmq (t� �; t)� GCmq (� ; ")

	
(18)

� sup
�>0

n
A�Cmq

(�)� GCmq (� ; ")
o
: (19)

The second part of the theorem now follows from Eqs. (17) and (19).

3.3 Discussion

There are a number of discussion points to address regarding networks with class-level aggregation as pre-
sented in this section.

1. Loss rate on a path: Our analysis assumes that the arrivals from a flow j at each node on its path
are characterized by ACmq , independent of previous losses. So, our bounds do not quantify the losses
that occur at consecutive nodes. As a consequence, we conservatively assume that losses on a path of
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nodes occur independent of losses upstream on the path. Consider a sequence of nodes m1 ! m2 !

: : :! mL, with Cmlq the set of class-q flows at each node ml. With the assumptions from Theorem 2,
the loss rate for class q on this path is bounded by:

LX
l=1

" � sup
�>0

n
A�Cmlq

(�)� Gmlq(�)
o
: (20)

2. Calculation of cmq and signaling overhead: The calculation of cmq and Bmq is dependent on the
cardinality of the set Cmq. Each time a new flow is added to the network, the allocation of cmq and
Bmq must be modified at all nodes on the route of the new flow. However, compared to traditional
QoS approaches which maintain per-flow state information, e.g., IntServ [4] and ATM UNI 4.0 [1],
the signaling overhead is small.

3. Dynamic Routing: In our discussion we have assumed that all traffic of a given class, traveling from
specific network ingress to network egress points, traverses the network on the same fixed route. The
assumption of fixed routes can be relaxed if mechanisms such as PATH messages in RSVP [13] are
used.

4. Maximum delay bound is incurred at each node: The delay jitter control mechanisms at the nodes
enforce per-node worst-case delays at all but the last node on a route. Note that the enforced end-
to-end delay bounds in a network with class-level aggregation are dependent on the number of nodes
traversed.

5. Discrete packet size: Our formal framework uses a fluid-flow interpretation of traffic. Since traffic is
sent in discrete-sized packets, performance guarantees given to fluid flow traffic must be matched to
guarantees for actual traffic. For rate-based scheduling algorithms the issues involved in transforming
guarantees on fluid flow traffic for packet-level traffic are well understood [28, 29, 41]. For example,
fluid flow guarantees have been used in the IETF to specify a guaranteed service class for packet-level
traffic in the Integrated Services architecture [35].

4 Networks with Path-Level Aggregation (“Pipe Model”)

One possible disadvantage of a network with class-level aggregation, as presented in Section 3, is the re-
quirement for delay jitter-control at each node, which seems counterintuitive from the perspective of QoS
provisioning. In this section we present an alternative approach, called path-level aggregation, which ag-
gregates traffic at a finer level of granularity. Here, flows are multiplexed in the same buffer only if they
are in the same traffic class and if they traverse the network on an identical end-to-end route. We call an
end-to-end route in the network which carries flows from a particular traffic class, a path or ‘pipe’.

Figure 3 illustrates a network with path-level aggregation. The figure depicts six paths (“pipes”) for
two classes. At the network entrance, there is one traffic conditioner for each pipe. The traffic conditioner
discards that portion of the aggregate traffic which does not comply to a given policing function. At each
network node there is a separate buffer for each pipe with traffic at this node. Thus, flows in the same
class are only multiplexed in the same buffer if they have the same end-to-end path. That is, networks
with path-level aggregation perform traffic control separately for each ‘pipe’, and, hence, exploit statistical
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Figure 3: Network with path-level aggregation. An end-to-end path for a traffic class defines a path or ‘pipe’.

The figure depicts a total of six pipes, and depicts the buffers of four of the pipes, labeled, p2, q1, r1, r2. For each

pipe, the aggregate traffic is policed at the network entrance by a conditioner. At each node there is a separate buffer

for each pipe with traffic at this node. Node buffers are dimensioned such that no overflows occur.

multiplexing gain only for flows in the same pipe. In contrast to networks with class-level aggregation,
network nodes in the path-level scheme do not perform delay jitter control.

4.1 Traffic Policing at Traffic Conditioners

We use Cpq to denote the set of class-q flows which travel on a path p of nodes, where a path is a unique
loop-free sequence of nodes which starts and ends with edge nodes. We may compute an effective envelope
GCpq for this aggregate from Eqs. (5) and (6), where we set Nq = jCpqj and A�q is the deterministic envelope
of Aj(t) (j 2 Cpq).

An important aspect of path-level aggregation is that the aggregate traffic from Cpq which arrives to
the network is conditioned using the effective envelope GCpq (:; �) as policing function. In other words, if
ACpq (t; t + �) denotes the aggregate traffic from class Cpq that is admitted into the network in the time
interval [t; t+ �), the policing function GCpq ensures that

ACpq (t; t+ �) � GCpq (�) 8t � 0;8� � 0 : (21)

Traffic in excess of GCpq is discarded by the conditioner or at least marked with a lower priority, e.g., as best
effort traffic.

For this architecture, Theorem 3 below provides a bound for the traffic from a pipe which is dropped at
the network entrance.

Theorem 3 Given a set of flows Cpq, let Aj(t; t + �) for j 2 Cpq satisfy assumptions (A1) – (A5). If the
arrivals ACpq are policed according to Eqn. (21), then the rate of dropped traffic is bounded by

" � sup
�>0

n
A�Cpq (�)� GCpq(�)

o
; (22)
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with the assumption that

Pr

�
sup
�>0

�
ACpq (t� �; t)� GCpq (�)

	
> 0

�
� inf

�>0
Pr
��
ACpq (t� �; t)� GCpq (�)

	
> 0

�
: (23)

Proof: The assumption in Eqn. (23) is the same as in Eqn. (10). The proof is conducted in a similar fashion
as the proof of Theorem 2. The probability that an arrival results in dropped traffic is given by

Pr
�
9� > 0 : ACpq (t� �; t) > GCpq (�)

�
= Pr

�
sup
�>0

�
ACpq (t� �; t)� GCpq (�)

	
> 0

�
(24)

� sup
�>0

Pr
��
ACpq (t� �; t)� GCpq (�)

	
> 0

�
(25)

� " : (26)

The maximum amount of traffic that is lost at any instant in time t is given by

sup
�>0

�
ACpq (t� �; t)� GCpq (�)

	
:

Since

sup
�>0

�
ACpq (t� �; t)� GCpq (�)

	
� sup

�>0

n
A�Cpq (t� �; t)� GCpq (�)

o
; (27)

the theorem follows from Eqn. (26).

4.2 Scheduling at Edge Nodes and at Core Nodes

With path-level aggregation, allocation of bandwidth and buffer space at a node is done separately for each
‘pipe.’ At each node on the route of a pipe, the same buffer size and bandwidth is allocated. We use cpq
to denote the rate which is allocated at each node on the route of the pipe, and we use Bpq to denote the
reserved buffer space. We set cpq as the smallest number which satisfies

sup
�>0

�
GCpq (� ; ") � cpq�

�
� cpqdpq ; (28)

where dpq is the end-to-end delay bound for Cpq, and we set the buffer space Bpq according to

Bpq = cpqdpq : (29)

The next theorem states properties for the end-to-end performance of flows in Cpq with end-to-end delay
bound dpq.

Theorem 4 Given a set of flows Cpq where each Aj with j 2 Cpq satisfies assumptions (A1) – (A5), and
assuming the existence of policing functions at network ingress points that enforce Eqn. (21), if cpq and Bpq

are allocated as given in Eqs. (28) and (29) at each node on the route taken by flows in Cpq, then

1. No traffic is dropped inside the network.

2. The end-to-end delay of traffic satisfies delay bound dpq.
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dq

dq / 3 dq / 3 dq / 3

dq

Figure 4: Comparison of the class-level and path-level design, with a common end-to-end delay bound.

Proof: The proof is done using Cruz’s service curves [8]. Assume the flows in Cpq take the route k = m1 !

m2 ! : : :! mK = l. Allocating a capacity of cpq to Cpq is equivalent to guaranteeing a service curve of

Smi
(�) = cpq � 8� � 0; 8i (1 � i � K) : (30)

If we use Sp to denote the network service curve we obtain:

Sp(�) = Sm1 ? Sm2 ? : : : ? SmK
(�) (31)

= cpq � ; (32)

where ‘?’ in Eqn. (31) is the convolution operator defined asG?H(t) = inf� fG(�) +H(t� �)g. Eqn. (32)
follows from repeated application of the convolution operator. According to Theorem 4 in [8], the maximum
end-to-end delay bound, denoted as Dmax, is bounded by the network service curve Sp and the bound on
the arrivals GCpq by

Dmax � sup
�>0

inf
��0

�
� j GCpq (� ; ") � cpq(� +�)

	
: (33)

Now, the theorem follows from Eqs. (28) and (29).

4.3 Comparing Class-level Aggregation versus Path-level Aggregation

We conclude this section with a comparison of class-level aggregation and path-level aggregation. Class-
level aggregation and path-level aggregation instantiate a fundamentally different trade-off between the abil-
ity to provision low delay bounds and the ability to yield a high multiplexing gain. Class-level aggregation
accounts for multiplexing of all flows from the same class, whereas path-level aggregation merely accounts
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for the multiplexing of flows in the same ‘pipe’. Hence, we expect the multiplexing gain of class-level
aggregation to be better than that of path-level aggregation. On the other hand, class-level aggregation re-
quires a jitter control mechanism at each node, which holds packets which are ‘too early’ with respect to the
per-node delay bounds. The delay jitter control enforces that traffic experiences the maximum node delay at
each node (except the last node on the path), may contribute to higher end-to-end delays.

In Figure 4 we present a comparison of the two approaches. We illustrate a network with three nodes. We
set the end-to-end delay bound to dq in both networks. With class-level aggregation (Figure 4(a)), the delay
jitter controllers at the second and the third node ensure that all packet arrivals to these nodes experience the
same delays. Assuming that the per-node delay bounds are set such that the end-to-end delay bound dq is
distributed evenly across all nodes, the jitter controller at the second node enforces that all traffic which is
forwarded to the scheduler has a delay of dq=3. Likewise, the jitter controller at the third node enforces a
delay of 2=3dq . Thus, the end-to-end delay of all traffic sent over the three-node network has a lower bound
of 2=3dq and an upper bound of dq.

In Figure 4(b), we show the same example for a network with path-level aggregation. The path, referred
to as ‘path pq’, consists of the class-q flows on the route 1 ! 2 ! 3. The allocation of buffers and
bandwidth for the path is identical at all nodes. As in Figure 4(a), the end-to-end delay bound is set to dq.
Note that due to [29] it is not necessary to specify per-node delay bounds with path-level aggregation.

For provisioning QoS guarantees in a general network, the trade-off presented by the class-level and
path-level approaches is not immediately obvious. Thus, a numerical evaluation of the approaches is needed
to determine which of the two presented approaches is more effective.

5 Numerical Evaluation

In this section, we present numerical examples to compare the ability of class-level and path-level aggrega-
tion to support statistical end-to-end delay guarantees. Class-level aggregation considers the multiplexing of
larger groups of flows than the path-level approach and is thus expected to yield a better multiplexing gain.
On the other hand, delay jitter control in networks with path-level aggregation may result in better delay
bounds. In the numerical examples in this section, we will contrast the results for four different approaches
for provisioning QoS.

� Statistical QoS with class-level aggregation: The bandwidth and buffer allocation is as given in
Eqs. (7) and (8). The QoS guarantee for class-q is as stated in Theorem 2. The calculation of the
effective envelope is done as discussed in Section 2.2.

� Statistical QoS with path-level aggregation: The bandwidth and buffer allocation is as given in
Eqs. (28) and (29). The QoS guarantee for class-q is as stated in Theorems 3 and 4.

� Deterministic QoS: In our context, a service with deterministic QoS satisfies an end-to-end delay
bound of dq for all class-q traffic. Let Cmq be the set of class-q flows at node m. Select cmq as

the smallest value such that sup�>0
n
A�Cmq

(�)� cmq�
o
� cmqdq , where A�Cmq

(�) = jCmqj � A
�
q(�).

From [29] we know that, if all nodes m allocate a bandwidth of cmq, an end-to-end delay bound of dq
can be guaranteed for all class-q traffic.

14



Class Type Burst Size Mean Rate Peak Rate End-to-End
Delay Bound

burstiness delay �q (bits) �q (Mbps) Pq (Mbps) dq (msec)

1 low low 10000 0.15 6.0 10
2 low high 10000 0.15 6.0 40

3 high low 100000 0.15 6.0 10
4 high high 100000 0.15 6.0 40

Table 1: Parameters of four traffic classes.

� Average Rate Allocation: This scheme allocates bandwidth equal to the average traffic rate for flows.
So, if Cmq is the set with class q flows at node m, node m allocates a rate equal to jCmqj�q for class
q. (Recall that �q = lim�!1A�q(�)=� ). Average rate allocation only guarantees finite delays and
average throughput, but no per-flow or per-class QoS.

As an admission control condition, we require for all schemes above that the total allocated bandwidth
on a link must not exceed the link capacity.

We consider four classes of traffic, and assume that traffic flows in each class are regulated by a peak-rate
constrained leaky bucket with parameters (�q; �q; Pq), and deterministic envelope A�q(�) = min (Pq�; �q + �q�)

for class q. The parameters for the flow classes are given in Table 1. We set " = 10�6 in all our examples.
The parameters are similar to those used in other studies on regulated adversarial traffic [12, 25, 31].

5.1 Maximum Number of Admissible Flows

In Figures 5(a)-(d) we plot the maximum number of flows which can be provisioned with QoS on a link in
the network, as a function of the link capacity. We vary the link capacity in the range 1 Mbps – 622 Mbps.

For class-level aggregation, first recall from our discussions in Section 3.3 and Section 4.2 that, due to
delay-jitter control, the end-to-end delay bound is dependent on the number of links. So, if the end-to-end
delay bound is given by dq = 10 msec, and the path length is given by L, the per-node delay bound is given
by 10=L msec (Here, we divide the end-to-end delay bound evenly among all nodes). Thus, the longer the
route of a flow, the smaller the per-node delay bound, and, consequently, the smaller the total number of
flows that can be accommodated on a link. In Figures 5(a)-(d), we consider path lengths equal to L = 1; 5,
and 10 nodes. As the figures show, class-level aggregation yields a significant multiplexing gain, even for
longer path lengths. For traffic classes 1 and 2, which exhibit lower burstiness, the number of admissible
flows with class-level aggregation is close to that of the admissible number of flows with an average rate
allocation, even when the length of the route grows as large as 10 nodes.

For path-level aggregation, the achievable multiplexing gain is dependent on the number of paths (pipes)
that extend from a given ingress point. In our examples, we only consider one class at a time, so the number
of paths at a node is given by the number of different end-to-end routes. In a network with M edge nodes,
the maximum number of paths at any core node is given by O(M2). Since path-level aggregation only
performs multiplexing of flows on the same path, the number of flows which can be multiplexed on a link
decreases with M . In Figures 5(a)-(d), we show the results for path-level aggregation with 1; 10; 50, and 100

paths. (Note that the maximum number of flows that can be supported with path-level aggregation with only
1 path is identical to class-level aggregation with a 1 hop route.) Figures 5(a)-(d) show that the maximum
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Figure 5: Maximum number of admissible flows.

number of flows which can be provisioned with QoS quickly deteriorates as the number of paths increases.
For 100 paths in the network, we observe for all traffic classes that path-level aggregation accommodates
the same number of flows as deterministic QoS.

In summary, the performance of path-level aggregation quickly decreases as the number of paths in-
creases. Since the number of paths grows (in the worst case) with the square of the number of edge nodes
in a network, path-level aggregation appears to be a viable technique only in small networks. Class-level
aggregation, on the other hand, even though it is sensitive to the length of the routes, yields a high statistical
multiplexing gain throughout.

5.2 Comparison of the Traffic Loss Rate

Next, we compare the expected loss rate of flows. Recall that the loss rate as given in Eqs. (20) and (22)
is for traffic classes, and not for single flows. Making QoS guarantees to aggregate flows yields a simple
network core, since no per-flow information is required. On the other hand, single flows may experience a
service which is worse than the service guaranteed to the class as a whole. To obtain a measure on the loss
rate, we normalize the loss rate of a class by the long time average of the expected traffic in the class. (We
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Table 2: Normalized loss rate per flow. (For class-level aggregation, the loss rate is dependent on the path length.)

Class-level Aggregation Path-level
1 node 2 nodes 10 nodes Aggregation

Classes 1, 2 6:7 � 10
�8

1:3 � 10
�7

6:7 � 10
�7

6:7 � 10
�8

Classes 3, 4 6:7 � 10
�7

1:3 � 10
�6

6:7 � 10
�6

6:7 � 10
�8

point out that this ‘normalization’ does not give a precise loss rate.) Under the assumption that Cmq is the
set of class-q flows at all nodes, we obtain with Eqn. (20) a (normalized) loss rate of

Loss Rateclass <
1

�q � jCmqj
� L � " � sup

�>0

n
A�Cmq

(�)� Gmq(�)
o
: (34)

In our example, since A�Cmq
(�) = jCmqj �min (Pq�; �q + �q�) and with Gmq(�) � �q� � jCmqj we obtain the

bound

Loss Rateclass <
�q
�q
"L : (35)

The same consideration for the path-level scheme yield

Loss Ratepath <
�q
�q
" : (36)

In Table 2 we give the results for bounds on the normalized loss rate for all classes used in our examples.
The total loss rate is small in all cases, and is of the same order as ".

5.3 Sensitivity of Path-Level Aggregation to the Number of Paths

In Figure 5 we saw that path-level aggregation resulted in relatively poor achievable utilization at a link,
when the number of paths (routes) in the network was high. Here we provide more insight into the sensitivity
of path-level aggregation towards an increase of the number of paths.

We use as performance measure the rate that is allocated per flow to support the desired QoS level
on a saturated link. We call this measure the effective rate of a flow. The effective rate is determined by
first calculating the maximum number of flows which can be provisioned on a link with a desired QoS
level (deterministic, statistical with class-level aggregation, statistical with path-level aggregation), and then
dividing the link capacity by the number of flows.

Figures 6(a)-(d) show the results for traffic classes 1 through 4. For illustrative purposes, we plot the
values of 1=(effective rate) as a function of the link capacity and as a function of the number of paths.

Figures 6(a)-(d) show the results for deterministic QoS and for the two statistical QoS schemes consid-
ered here. A larger value of 1=(effective rate) indicates a better statistical multiplexing gain. The effective
rate of a flow with deterministic QoS is not sensitive to increases in link capacity or in the number of paths.
For QoS with class-level aggregation, the statistical multiplexing gain increases with the link capacity, but
does not increase with the number of paths. However, as discussed earlier, the achievable statistical multi-
plexing gain is dependent on the length of a route. In Figures 6(a)-(d) we include plots for route lengths of
1, 2, and 10.
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Figure 6: Results for 1=ceff , where ceff is the effective rate of a flow as a function of the link capacity and
the number of paths in the network.

The results for path-level aggregation are perhaps the most interesting aspect of Figures 6(a)-(d). We
see that a high level of statistical multiplexing gain is achievable only if the link capacity is high, and the
number of paths is small. Since the number of paths can grow as fast as the square of the number of edge
nodes, the multiplexing gain achievable in network deteriorates quickly as the number of paths grows large.

6 Discussion and Conclusions

In this paper we have studied two designs for networks with end-to-end statistical service guarantees: class-
level aggregation (Section 3) and path-level aggregation (Section 4). The class-level approach can achieve
a very high level of aggregation, resulting in a good statistical multiplexing gain; however, this comes at
the expense of requiring delay jitter control for restoring the statistical independence of the flows at each
node. Thus, it is required in this scheme to assign a maximum allowable delay to each node on the path for
an end-to-end flow. The need for jitter control is admittedly a counterintuitive notion which we believe is
justified by the high level of achievable statistical multiplexing gain. In the alternative, path-level scheme,
there is no need for delay jitter control, since flows in this design are multiplexed only if they are of the
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same class and they share the same path through the network. Consequently, statistical multiplexing gain
is perceived only at the network ingress points, at a much lower level of aggregation. The tradeoff between
the two designs is one of enforced delay (and design complexity) in the form of delay jitter control for high
levels of achievable statistical multiplexing gain.

Our numerical results indicate that the increased statistical multiplexing gain achievable with class-level
aggregation is worth the price paid in terms of enforced delay. In the path-level aggregation design, as the
number of paths in the network increases, the achievable statistical multiplexing gain quickly diminishes to
the achievable multiplexing gain in making deterministic (worst-case) QoS guarantees. Thus, we assert that
the class-level scheme is the preferred approach for implementing statistical end-to-end delay guarantees,
especially considering the possibility of a work-conserving implementation of the model as discussed briefly
at the end of Section 3.1.

There are a number of important issues that have to be addressed before the class-level design can be
implemented in a real network. First, we must reconcile our assumption of fixed routes with dynamic routing
which is prevalent in the Internet today. We need to develop appropriate data structures and algorithms that
allow rapid computation of guaranteed rates and buffer allocations within the network. We need to formulate
a packet-level version of our fluid-model constructs, in order for a real implementation to be possible. Here,
we expect that the well-known approach from [29] will be sufficient. Finally, we plan to address the issue
of how to characterize traffic flows in terms of worst-case bounding functions. Our development so far has
rested on the assumption that a worst-case, subadditive bounding function is available for each traffic flow.
If bounding functions for flows are not available a priori, it becomes essential to estimate these bounds from
data.
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