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Abstract

Scalability concerns of QoS implementations have stipulated service architectures where QoS is not
provisioned separately to each flow, but instead to aggregates of flows. This paper determines stochastic
bounds for the service experienced by a single flow when resources are managed for aggregates of flows
and when the scheduling algorithms used in the network are not known. Using a recently developed
statistical network calculus, per-flow bounds can be calculated for backlog, delay, and the burstiness of
output traffic.
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1 Introduction

Concerns about the scalability of Quality-of-Service architectures which offer service guarantees to indi-
vidual network flows have led to the development of network services, in which service guarantees are
provisioned to collections (‘aggregates’) of flows and where the network core does not perform any per-flow
operations. The services defined in the Differentiated Services (DiffServ) architecture fall into this category.
If at all, per-flow operations are performed only at the network entrance, for example, by regulating the
amount of traffic from a flow that can enter the network.

Scenarios where core switches do not perform per-flow operations, and where the switch treats flows
from an aggregate in a uniform fashion are sometimes referred to as ‘aggregate scheduling’. Some deter-
ministic bounds for aggregate scheduling at a single node are summarized in [5]. The general problem of
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stability with aggregate scheduling, that is, finiteness of delays and backlog, in a network where per-flow
regulation is only performed at the network edge has been studied in [2, 17] and under a broader set of
assumptions in [4]. The authors of [8] derive bounds on the utilization such that end-to-end delay bounds
in a network with FIFO scheduling are finite, when the total number of flows in the network is known and
when leaky-bucket regulators control the traffic from each flow at the network entrance. These bounds are
extended to deadline-based scheduling algorithms in [20].

We are interested in computing statistical lower bounds on the service given to a flow in a network
with aggregate provisioning, but where the scheduling algorithms at the nodes are unknown. We assume
that traffic is regulated at the entrance by per-flow conditioning algorithms, and that there is no per-flow
processing of traffic after it has entered the network. Service is provisioned at network nodes to aggregates
of flows, however, we assume no information is available on how the provisioned capacity is distributed to
the flows. Particularly, we only assume that each node is workconserving and we do not assume that the
scheduling algorithms of the nodes are known. When calculating the service experienced by a single flow
we therefore need to assume that the flow has lower priority than any other flow in the network. Thus, the
service given to a single flow is computed from the service allocated to the aggregate that is left unused by
the other flows. In a deterministic worst-case setting, the unused capacity that is available to a single flow
will be small. However, by considering statistical multiplexing of flows, we observe that even under these
pessimistic assumptions the lower bound on the service given to a single flow is considerable, especially
if the number of flows is large. The statistical service seen by an individual flow is much higher than the
aggregate service divided by the number of flows.

The results in this paper can be used for verification of service level agreements with network service
providers. If a network customer can measure its aggregate input to the network and the throughput of
only a single flow, the customer can determine if the network service provider has provisioned the resources
specified in the agreement. If the service seen by the single measured flow is worse than the statistical lower
bound paper, the network service provider is likely to have underprovisioned network resources.

We derive our results within the context of a recently developed statistical network calculus. Statistically
multiplexed arrivals from flows are presented in terms of effective envelopes [3], which are bounds on
aggregate traffic that hold with high probability. Service guarantees to the flow aggregate are expressed
in terms of service curves, which provide deterministic lower bounds on service guarantees. The service of
a single flow is presented in terms of an effective service curve, which provides a lower bound on the service
received by a single flow that holds with high probability. Specifically, we will be able to bound the service
experienced by a single flow in terms of an effective service curve of the form

S"1+"2j =
�
SC �HT "1 ; "2

C
�
+

where SC is the service provisioned to the flow aggregate andHT "1 ; "2
C expresses a (strong) effective envelope

of the statistically multiplexed arrivals from all flows in the aggregate. The parameters "1 and "2 are violation
probabilities and are generally small, e.g., "1; "2 = 10�9.

If one is interested in statistical delay, backlog, or loss bounds to the aggregate as a whole (as opposed
to lower bounds for a single flow), we refer to the rich literature on multiplexed regulated traffic e.g., [3,
11, 12, 14, 16, 18, 19]. However, generally, the results focus on the analysis of a single node, and do not
consider a multi-node network.

The remaining sections of this paper are structured as follows. In Section 2, we review needed results
from the statistical network calculus in terms of effective service curves, as presented in [6]. In Section 3
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we discuss the arrivals and service provisioning of the flow aggregate. We extend the notion of effective
envelopes from [3] to heterogeneous arrivals. In Section 4 we present an effective service curve for a single
flow at a node in which service is allocated to an aggregate of flows. In Section 5, we discuss numerical
examples for single node and multi-node networks and evaluate the service guarantees achievable with the
constructed effective service curves.

2 Network Calculus with Statistical Service Guarantees

Consider the traffic arrivals from a flow to a network node. The arrivals and departures, respectively, of
a flow in the time interval [0; t) are given in terms of random processes A(t) and D(t) with non-negative
increments, which are defined over a joint probability space and which satisfy D(t) � A(t) for all t � 0.
We assume a continuous time model with fluid left-continuous traffic arrival functions. Packetization delays
and other effects of discrete-sized packets, such as the non-preemption of packet transmissions, are ignored.
The backlog of a flow at time t, denoted by B(t), is given by B(t) = A(t) � D(t). The delay at time t,
denoted as W (t), is the delay experienced by an arrival which departs at time t, given by W (t) = inffd �
0 j A(t � d) � D(t)g: We will use A(x; y) and D(x; y) to denote the arrivals and departures in the time
interval [x; y), with A(x; y) = A(y) � A(x) and D(x; y) = D(y) � D(x). Moreover, we assume that
A(t) = D(t) = 0 for t < 0. When analyzing delays in a network we ignore processing and propagation
delays.

We make the following assumptions on the arrival functions.

(A1) Regulated arrivals. The arrivals A of a flow are bounded by a function A�, called the arrival enve-
lope,1 such that A(t + �) � A(t) � A�(�) for all t; � � 0. We assume that arrival envelopes are
subadditive, that is, A�(x+ y) � A�(x) +A�(y), for all x; y � 0.

The assumption of an arrival envelope translates into a requirement for per-flow traffic regulation at the
network ingress. For example, a peak-rate constrained leaky bucket regulator enforces that traffic from a
flow adheres to the envelope A�(t) = min(Pt; �+�t) for a peak rate parameter P , an average rate parameter
�, and a burstiness parameter �.

Before we discuss the service guarantees we introduce the convolution and deconvolution operators.
The convolution f � g of two functions f and g, is defined as f � g(t) = inf�2[0;t] ff(t� �) + g(�)g ; and
the deconvolution f � g is defined as f � g(t) = sup��0 ff(t+ �)� g(�)g.

Service guarantees to a flow at a network node are given in terms of service curves [9]. A minimum
service curve is a function S which specifies a lower bound on the service given to a flow by D(t) �
A � S(t) ;8t � 0 : A maximum service curve for a flow is a function S which specifies an upper bound on
the service by D(t) � A � S(t) ;8t � 0 : In this paper, when service is allocated to flow aggregates we
assume that the service curves are strict [5], in the sense that they guarantee the minimum service whenever
a flow is backlogged, that is, D(t1; t2) � S(t2 � t1) whenever B(x) > 0 for each x 2 (t1; t2).

To express probabilistic service guarantees, following [6], we define a (minimum) effective service
curve2 for an arrival process A, as a nonnegative function S" that satisfies for all t > 0,

Pr
�
D(t) � A � S"(t)	 � 1� " : (1)

1 A function E is called an envelope for a function f if f(t+ �)� f(�) � E(t) for all t; � � 0.
2Henceforth, following the literature, the term ‘service curve’ refers to a minimum service curve, unless stated otherwise.
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Given an effective service curve at a node, one can derive probabilistic bounds on backlog, delay, and the
output process for effective service curves [6]. Specifically, the function A� � S" is a probabilistic bound
for the departures on [0; t], in the sense that, for all t; � > 0,

Pr fD(t; t+ �) � A� � S"(�)g � 1� " : (2)

Similarly, S" provides a backlog bound as

Pr fB(t) � A� � S"(0)g � 1� " : (3)

Finally,

dmax = inf fd � 0 j 8t � 0 : A�(t� d) � S"(t)g ; (4)

is a probabilistic delay bound that is violated with probability at most ". By setting " = 0, the above bounds
correspond to the bounds of the deterministic calculus from [1].

If a flow passes through several nodes, each node guaranteeing an effective service curve, then the
service offered by all nodes as a whole can be expressed as a convolution of the individual service curves.

Theorem 1 Effective Network Service Curve [6]. Consider a flow that passes through H network nodes in
series. Let Ah and Dh denote the arrival and departures at the h-th node, with A1 = A, Ah = Dh�1 for
h = 2; : : : ;H and DH = D. Assume that effective service curves are given by nondecreasing functions
Sh;" at each node (h = 1; : : : ;H). Further, assume that there exists a number T � 0 such that

Pr

�
Dh(t) � inf

x2[0;T ]

�
Ah(t� x) + Sh;"(x)	�

� 1� " : (5)

for h = 1; : : : ;H . Then, for any choice of a > 0,3

Snet;"0 = S1;" � : : : � SH;" � �(H�1)a (6)

is an effective network service curve, with violation probability bounded by

"0 � H"

�
1 + (H�1)

T + a

2a

�
: (7)

This theorem depends on a time scale T . The time scale can be established from a (deterministic or proba-
bilistic) bound on the length of a busy period at a node, or from a priori backlog or delay bounds. Another
issue is that the given effective network service curve deteriorates with the number of nodes H . We refer to
[6] (cf. Theorem 5), which discusses when the assumption on the time scale T can be relaxed, and what the
implications are of such a relaxation.

3�� is the impulse function with �� (t) =1 if t > � , and �� (t) = 0 if t � � .
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3 Statistical Multiplexing of Flows

The fact that bursty or variable-rate traffic sources require less resources per flow when multiple flows
are multiplexed is widely exploited for capacity provisioning of network traffic. In this paper, we express
statistical multiplexing of flows using the notion of effective envelopes from [3]. Effective envelopes are
functions that express probabilistic upper bounds for the traffic from an aggregate of flows. A desirable
feature of effective envelopes as compared with other methods that express statistical multiplexing gain,
e.g., effective bandwidth [7, 13], is that effective envelopes are easily related to the envelope functions used
in the deterministic network calculus.

Let us now consider a set C of flows at a node, and let Aj and Dj , respectively, denote the arrival
and departure processes for each flow j 2 C. We will refer to the set of flows as an aggregate of flows.
Let AC and DC denote the aggregate arrivals and departures from the set C at a network node, that is,
AC(t) =

P
j2C Aj(t) and DC(t) =

P
j2CDj(t).

3.1 Effective Envelopes for a Flow Aggregate

A deterministic arrival envelope for the aggregate is simply given by A�C(t) =
P

j2C A
�
j(t). However,

such an envelope is pessimistic, and generally overestimates the bandwidth requirements of the aggregate.
Therefore, we describe the traffic arrivals from an aggregate with a probabilistic bound, namely the effective
envelope [3].

Given a set C of flows with arrival process AC , an effective envelope for AC is a function G"C such that

Pr
n
AC(t; t+ �) � G"C(�)

o
� 1� " 8t; � :

A strong effective envelope for AC for intervals of length ` is a subadditive function H`; "C such that for each
interval I` of length `,

Pr
n
8[t; t+ � ] � I` : AC(�) � H`; "

C (�)
o

� 1� " : (8)
Thus, an effective envelope provides a stationary bound for arrivals, which is violated with probability at

most ". A strong effective envelope is, in addition, a uniform bound for all subintervals in a larger interval.4

Strong effective envelopes are used in our construction of effective service curves for a single flow with
aggregate provisioning, and are constructed from the effective envelope.

3.2 Constructing Effective Envelopes for Heterogeneous Traffic

To construct effective envelopes for an aggregate of flows we consider an adversarial traffic model [11],
where arrivals of flows to the network can individually exhibit a worst-case arrival pattern as allowed by
assumption (A1), but sources do not conspire to construct a joint worst-case. In addition to assumption (A1)
from Section 2, we assume that the following hold for the arrival processes.

(A2) Stationarity.5 For all t � 0; t0 � 0 and for any � > 0 and any x � 0, PrfAi(t; t + �) � xg =

PrfAi(t
0; t0 + �) � xg.

4In [3], the effective envelope is called local effective envelope and the strong effective envelope is called global effective
envelope.

5We only need the stationary bound E[Aj(�; � + t)] � �i� where �j := lim�!1A�j (� )=� . This bound follows from (A1)
and (A2).
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(A3) Independence. The arrivals from two flows i; j 2 C, Ai and Aj , are stochastically independent.

We emphasize that these assumptions only hold for the arrivals to the first node of a flow’s route through
the network. Since buffering and scheduling distort traffic and introduce correlations between flows, as-
sumptions (A1)–(A3) may not hold after traffic has passed through a node. Therefore, we assume that
assumptions (A1)–(A3) only hold at the network ingress.

The following construction extends the derivations in [3] to an aggregate of flows with heterogeneous
arrival envelopes, and is based on an application of the Chernoff bound [15]. By heterogeneity, we mean
that the arrival envelopes A�i of flows can be different for each flow. The construction of effective envelopes
G"C for a set C of flows uses the moment generating function of Aj , denoted as Mj(s; t) = E[eAj(�;�+t)s].
As shown in [3], if assumptions (A1)–(A3) hold, we obtain Mj(s; t) �M j(s; t), where

M j(s; t) = 1 +
�j t

A�j (t)

�
esA

�
j (t) � 1

�
: (9)

With assumption (A3) and with the bound in Eqn. (9), we obtain from the Chernoff bound that

PrfAC(t) � xg � e�xs
Y
j2C

M j(s; t) : (10)

Setting the right hand side equal to " and solving for x gives

x =
1

s

�X
j2C

logM j(s; t)� log "
�
: (11)

For any choice of s > 0, Eqn. (11) is an effective envelope for the arrivals from C. We select the value of
the effective envelope at t to be

G"C(t) = inf
s>0

1

s

�X
j2C

logM j(s; t)� log "
�
: (12)

With this choice, G"C(t) � A�C(t) is always satisfied. Since the derivative of the right hand side of Eqn. (12) is
increasing in s, there is at most one minimum, which can be found by searching for the zero of the derivative.
Note the similarity of Eqn. (12) to the effective bandwidth in [7, 13].

Given an effective envelope G"C for a set C, we can construct a strong effective envelope H`; "C .

Lemma 1 Given an effective envelope G"C for a set C of heterogeneous flows satisfying (A1) ��(A3). An
upper bound for a strong effective envelope for the arrivals in C is given by

H`;"0

C (t) � G"C
�
t+ a

�
; 0 � t � ` ;

where  > 1 and a 2 (0; `) are arbitrary parameters, and

"0 � " � `
a

p
 + 1p
 � 1

:
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The quality of the bound in the lemma for a given value of t depends on the selection of the two parameters
a and . To get the optimal bound for a time scale near t�, one should choose a �p

(� 1)t�. The largest

subadditive function below G"C
�
t+ a

�
is a strong effective envelope.

Proof: Fix a0 2 (0; `) and 0 > 1, and set

�i = a0
i0 � 1

0 � 1

xi = �i+1 � �i = a0
i
0

where i = 1; 2; : : : ; n and n is the smallest number with �n � `. Consider the intervals Iij = [jxi; jxi +

�i+1] for j = 0; 1; : : : ; d`��i+1
xi

e. If � � �i, then every interval Ix � [0; `] of length � is contained in one of
the Iij . The total number N of intervals Iij is bounded by

N �
nX
i=1

l`� �i+1

xi

m
+ 1 (13)

�
1X
i=1

`

a0

1

i0
=

`

a0(0 � 1)
: (14)

It follows that

Prf9[x; x+ � ] � [0; `] :

A(x; x+ �) > G"(20 + (1 + 0)a0)g
� Prf9i; j : A(jxi; jxi + �i+1) > G"(�i+1)g (15)

� N" : (16)

Eqn. (15) holds since �i�1 < � � �i implies

�i+1 = 20�i�1 + (0 + 1)ao (17)

� 20� + (0 + 1)a0 : (18)

Setting 0 =
p
 and a0 = ap

+1 completes the proof. 2

In Figure 1 we to illustrate the multiplexing gain captured by effective and strong effective envelopes.
We plot the effective envelope for N identical flows with parameters as given in Section 5, normalized by the
number N of flows. The results show that, as N grows large, the effective envelope is close to the average
traffic rate.

3.3 Service Provisioning and Busy Period Estimate

We assume that the service allocated to the aggregate arrivals is given by deterministic service curves. A
lower bound of the service given to the aggregate is expressed in terms of a strict minimum service curve SC
and an upper bound for the service is given by a maximum service curve SC . We do not make assumptions on
a specific scheduling algorithm at the node, as long as it can guarantee a strict minimum service curve. For
example, any work-conserving scheduling algorithm that allocates a constant rate K > 0 to the aggregate
of flows delivers a strict minimum service guarantee. Generally, scheduling algorithms do not specify an
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Figure 1: Comparison of effective envelopes (dash-dotted lines) and strong effective envelopes (solid lines) for Type-1 flow from
Section 5 for t � 100 ms, " = 10�9 , and for number of flows N = 100; 1000; 10000. The curves show the normalized curves
G"
C=jCj and H`; "

C
=jCj (jCj = N ). For constructing H`; "

C
, we use ` = 2 sec,  = 1:01 and t� = 10ms.

explicit maximum service curve. In these cases, a maximum service curve of the aggregate can be given as
SC(t) = Ct, where C is the output link capacity of the node.

With the traffic characterization A�C and the minimum service guarantee SC we can derive bounds on the
busy period at a node. We define the busy period for a given time t as the maximal time interval containing t
during which the backlog from the flows in C remains positive. The beginning of the busy period for a time
t is denoted by t with t = supf� � t : B(�) = 0g. For a strict service curve SC , the deterministic network
calculus yields that the number

T0 = inf f� > 0 j A�C(�) � SC(�)g (19)

provides an upper bound for the length of any busy period [5] . Therefore, in any interval [t; t � T0], the
backlog must be zero at least once. Since the bound T0 can be conservative, the following lemma can be
used to find a less conservative estimate.

Lemma 2 Consider an aggregate C of flows with given arrival and departure processes AC(t) and DC(t),
a strict service curve SC(t), and T0 as given in Eqn. (19), for all t � 0. Let HT0;"

C be a strong effective
envelope for the arrivals on time intervals of length T0, for some " < 1. If there exists a number T" < T0
such that

HT0;"
C (T ") � SC(T ") ; (20)

then T " is a probabilistic bound on the busy period, in the sense that for all t � 0,

Pr
�
t� t � T "

	 � 1� " : (21)

Proof: Fix t > 0. By Eqn. (19) we have t� t � T0. We compute
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Figure 2: Example 1: Busy period estimates with Type-1 flow traffic from Section 5 for a link with C = 100Mbps. The number
Tn is a bound for the busy period with probability 1� n".

Prft� t > T "g
� Pr

�
BC(t+ T ") > 0 and

DC(t; t+ T ") � SC(T ")
	

(22)

� Pr
�
AC(t; t+ T ") > HT0;"

C (T ")
	

(23)

� " : (24)

Eqn. (22) uses that the backlog is positive on the entire interval (t; t), and the definition of the strict service
curve SC . Eqn. (23) uses that BC(t+T ") > 0 implies AC(t; t+T ") > DC(t; t+T ") and the assumption that
SC(T ") � HT0;"

C (T "). Eqn. (24) follows by applying the definition of HT0;"C to the interval IT0 = [t�T0; t],
which contains the interval [t; t+ T") by assumption. This proves the claim. 2

The lemma allows us to replace a deterministic bound on the busy period by a (possibly less pessimistic)
probabilistic bound. A similar argument can be used to improve a given probabilistic bound: If in all
assumptions of the lemma, the deterministic bound T0 is replaced by a probabilistic bound T1, which satisfies
Pr
�
t� t � T1

	 � 1� "1 , then we can construct another probabilistic bound T2, with Pr
�
t� t � T2

	 �
1 � ("1 + "2) . We can thus recursively define a sequence of probabilistic bounds Tn on the busy period
satisfying Pr

�
t� t � Tn

	 � 1�n" . Since the bound Tn decreases with n while the violation probability
n" increases, one needs to pick a ‘good’ value for n.

In Figure 2, we illustrate the busy period estimates for a link with capacity C = 100 Mbps with
traffic according the Type-1 traffic described in Section 5. The figure shows the deterministic bound T0
according to Eqn. (19) and the probabilistic bound T1 = T " from Lemma 2 with " = 10�9. The figure
also includes a bound T2 with probability 1� 2" obtained by a repeated application of Lemma 2. The busy
periods are evaluated for N = 250 � 500 flows. The graph indicates that a single application of Lemma 2
significantly reduces the estimate on the busy period, whereas successive iterations of the lemma do not
result in noticeable improvements.

The busy period bound can be applied in Theorem 1 to give a bound on the range of the infimum in
Eqn. (5). Note, however, that the above busy period bounds assume deterministic arrival envelopes, and are
directly applicable at the first node in the network are available.
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For strict service curves SC , we can directly provide busy period bounds when a priori bounds on backlog
or delays are available. Given a backlog bound b� that satisfies Pr fB(t) > b�g � "1 and T such that
G"2C (T ) + b� � SC(T ), or given a delay bound d� that satisfies Pr fD(t) > AC(t� d�)g � "1 and T

such that G"2C (T + d�) � SC(T ), then one can obtain from the definition of the strict service curve that
Pr ft� t > Tg � "1 + "2.

4 Effective Service for a Flow with Aggregate Service

Given the aggregate of flows and given the service provisioned to the aggregate as described in the previous
section, we now address the problem of determining an effective service curve for a single flow from the
aggregate. The effective service curve that we construct expresses the service as seen by a single flow in
terms of a probabilistic bound. The basic idea for the effective service curve construction is a subtraction of
the multiplexed arrivals of all flows (including the flow that we are considering) from the service allocation
to the aggregate. Thus, the effective service curve can be viewed in terms of the leftover capacity that is not
used by the aggregate. The main result is that a probabilistic lower bound for the service of a single flow
from the aggregate can be given by the effective service curve. S"1+"2j =

�
SC�HT "1 ; "2

C
�
+

, where "1+"2 is

the probability that the effective service curve is violated, SC is the service curve for the aggregate, HT "1 ; "2
C

is a strong effective envelope for the aggregate, and T"1 is a probabilistic busy period bound. This effective
service curve will be obtained from the following (more complex) theorem.

Theorem 2 Effective service curve for a single flow in an aggregate of flows. Given a set C of flows with
a strict deterministic service curve SC . Assume that the set C � fjg is allocated a deterministic maximum
service curve S�j . Assume a probabilistic bound T"1 on the busy period as given in Lemma 2 and let
HT "1 ; "2
�j denote a strong effective envelope for the arrivals from C � fjg for time intervals of length T"1 .

Then the function defined on the interval [0; T"1 ] by

S"1+"2j =
�
SC �HT "1 ; "2

�j � S�j
�
+

(25)

is an effective service curve for flow j 2 C, with violation probability "1 + "2. 6 More precisely,

Pr

�
Dj(t) � inf

x�T "1

�
Dj(t� x) + S"1+"2j (x)

	�
� 1� ("1 + "2) : (26)

Thus, a probabilistic service allocation for a single flow can be obtained from the service allocation of an
aggregate by subtracting a probabilistic upper bound on the departures from all other flows.

The function S"1+"2j as defined in Eqn. (25) need not be monotonic in t. However, one can make S"1+"2j

monotonic by replacing it with the largest nondecreasing function below S"1+"2j . If SC is convex and HT "
1 ; "2
�j

is concave, then S"1+"2j is always convex and nondecreasing.

6We use “[f ]+(t) = maxff(t); 0g”.
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Proof: Fix t � 0. Then

Dj(t; t) = DC(t; t)�D�j(t; t) (27)

� SC(t� t)�A�j � S(t) +A�j(t) (28)

� SC(t� t)

� inf
x�t�t

�
A�j(t; t� x) + S�j(x)

	
: (29)

In Eqn. (27), we have used the definition of the service curves SC and S�j , and the fact that D�j(t) =

A�j(t) by definition of t. In Eqn. (29), we have expanded the convolution operator, restricted the range of
the infimum, and taken A�j under the infimum. Since Dj(t) = Aj(t) and Dj(t; t) � 0, this implies

Dj(t) � Aj(t) +
�
SC(t� t)

� inf
x�t�t

�
A�j(t; t� x) + S�j(x)

	�
+
: (30)

Let S"1+"2j =
�
SC � (HT "1 ;"2

�j � S�j)
�
+

be the function defined in the statement of the theorem. Then

Pr
�
Dj(t) � inf

x�T "1
fAj(t� x) + S"1+"2j (x)g	 (31)

� Pr

(
Dj(t) � Aj(t) + S"1+"2j (t� t)

and t� t � T "1

)
(32)

� Pr

8><
>:

8t0 2 [t� T "1 ; t] :

A�j(t0; t) � HT "1 ;"2
�j (t� t0)

and t� t � T "1

9>=
>; (33)

� 1� ("1 + "2) ; (34)

as claimed. 2

Since the given effective service curve for the aggregate applies to all (workconserving) scheduling
algorithms, it is pessimistic for most, particularly, FIFO. It is least conservative if flows in the set C � fjg
are transmitted with higher priority than flow j.

There is a corresponding formulation of a per-flow service curve in the deterministic calculus, which can
be found in [5, 10]. With the same notation as in Theorem 2, we can write a deterministic per-flow service
guarantee as

Sj =
h
SC �A��j � S�j

i
+

(35)

However, since A��j =
P

k2C;k 6=j A
�
k is large and does not exploit statistical multiplexing, the bounds with

such a service curve may not have practical relevance. This is different when the left-over capacity of the
aggregate is expressed as an ‘effective’ service curve.

The following corollary states the previously mentioned simpler bound on the minimum effective service
to flow j. This bound does not assume that a maximum service curve is available and estimates HT "1 ; "2

�j by

HT "1 ; "2
C .

Corollary 1 The conclusions of Theorem 2 hold without change for

S"1+"2j =
�
SC �HT "1 ; "2

C
�
+
:

11



Proof. The claim holds since HT "1 ; "2
C is a strong effective envelope for the flows in C � fjg, and since

f � f � g follows by the definition of the convolution operator. 2

Thus, we have derived a lower bound on the effective service to a flow even when information is available
only about the aggregate of flows. In the next section, we will see that even with the pessimistic lower bound
of this section, we are able to extract a significant amount of multiplexing gain.

5 Evaluation

We now present numerical examples for the effective service curve. We assume that individual flows are
regulated at the entrance to the network by using a peak rate limited leaky bucket with arrival envelope
A�j (�) = minfPj�; �j + �j�g for flow j, where Pj � �j is the peak rate, �j is the average rate, and �j is a
burst size parameter. We consider two types of flows with parameters as given in the following table:7

Type Peak Rate Mean Rate Burst Size
Pj (Mbps) �j (Mbps) �j (bits)

Type 1 1.5 0.15 95400
Type 2 6.0 0.15 10345

In the following we use A�1 and A�2 to denote the arrival envelope of a Type-1 and a Type-2 flow, respectively.
We assume that the arrivals satisfy assumptions (A1)–(A3), and we construct effective envelopes as shown
in Subsection 3.2.

Service curves for the aggregate have a constant-rate form. We set SC(t) = Nc t, where c > 0 is
referred to as ‘per-flow capacity’ and N = jCj is the number of flows. We assume that the maximum service
curve is given by SC(t) = C t, where C is the link capacity.

For the calculation of strong effective envelopes and effective service curves we use the busy period
bounds from Subsection 3.3. We use a busy period bound of T = 2 sec, which satisfies the deterministic
busy period bound in the sense of Eqn. (19). We set  = 1:01 and t� = 10 ms.8 For the construction of
effective service curves S"j , unless specifically stated otherwise, we apply the simpler and more conservative
bound from Corollary 1.

We compare the results obtained with effective service curves with the deterministic bound from Eqn. (35),
as well as to the following non-statistical per-flow service provisioning schemes.

� A peak rate allocation, where each flow j has a service curve of Sj(t) = Pj t.

� An average rate allocation, where each flow j has a service curve of Sj(t) = �j t.

� A deterministic per-flow allocation which delivers worst-case delay guarantees to each flow. The
resources allocated to a flow are determined by the smallest (deterministic) constant-rate service curve

Sj(t) = ĉj t that satisfies the delay bound d, i.e., ĉj = inf
n
c � 0 j 8t � 0 : A�j(t� d) � c t

o
. This

allocation method assumes that the network nodes perform per-flow scheduling operations.

12
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Figure 3: Example 1: Effective service curve vs. deterministic per-flow allocation. Effective service curves are shown for
different values of N , and are calculated for " = 10�9 .
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5.1 Example 1: Effective Service Curves at a Single Node

We consider an aggregate of N flows, where flows are either all Type-1 or all Type-2 flows. The capacity
allocated to the aggregate is set to SC(t) = Nĉi t, where ĉ1 = 1:3140 for Type-1 flows, and ĉ2 = 0:9016 for
Type-2 flows. If each node runs a rate-based per-flow scheduling algorithm, this bandwidth corresponds to
a deterministic per-flow allocation needed to meet a delay bound of d = 10 ms.

With this aggregate allocation we now construct effective service curves for different values of N and for
" = 10�9. The effective service curves are S"j (t) = [Nĉj t�HT;"

�j � S�j(t)]+ according to Theorem 2, and

S"j (t) = [Nĉj t �HT;"
C (t)]+, according to Corollary 1. For T we use a deterministic busy period estimate

according to Eqn. (19).
In Figures 3(a) and 3(b) we plot the effective service curves S"j for different values of N , and compare

them with the deterministic per-flow allocation service curve Sj(t) = ĉj t. Effective service curves com-
puted according to Corollary 1 are included as solid lines, and effective service curves computed according
to Theorem 2 are shown as dotted lines, and deterministic per-flow service curves Sj(t) = ĉ t are included
as dashed lines.

We see that, for most values of N , the statistical lower bound on the service as given by the effective
service curve is larger than service curves obtained from a deterministic per-flow allocation. Using the
network calculus from Section 2, larger effective service curves result in smaller delay bounds.

To explain the noticeable change of slope of the curve for N = 40 at t � 70ms in Figure 3(a), we note
that at �=(P � �) � 70 ms, the arrival envelope of Type-1 flows changes from Pt to � + � t.

The results from Theorem 2 and Corollary 1 can be distinguished only for small values of N . Since the
effective service curves with Corollary 1 are easier to compute and do not require a maximum service curve
for the aggregate, from now on, we will compute only the simpler effective service curve from Corollary 1.

5.2 Example 2: Using Lower Bounds on Service for Provisioning

We consider the same single node network as in Example 1. However, rather than assuming that the ag-
gregate provisioning is given (as in Example 1), we use the effective service curve from Corollary 1 to
determine how many flows can be provisioned on a link to meet a required service guarantee.

In this example, we determine how many flows can be put on a link with capacity C such that a proba-
bilistic delay bound in Eqn. (4) does not exceed d = 10 ms. Using the lower bound on the service given by
the effective service curve, we find the largest N such that S"j (t) = [C t�HT;"

C (t)]+ assures via Eqn. (4) a
delay bound d with probability 1� ".

In Figures 4(a) and 4(b), we show the number of flows that can receive the probabilistic delay bound of
d = 10 ms as a function of the network capacity. The figures include plots of effective service curves with
" = 10�3; 10�6; 10�9. We also include results for an average rate allocation (which does not satisfy the
delay bound), and the results for a deterministic per flow allocation, which is Sj(t) � 1:3140 t for Type-1
flows and Sj(t) � 0:9016 t for Type-2 flows.

For small C , the number of flows is too small to extract multiplexing gain, and, consequently, the
effective service curve constructed from Corollary 1 is inferior to a per-flow deterministic service curve

7The parameters are selected to be equal to those in [3, 11] and other studies.
8In our examples, the numerical computations for effective envelopes are done in discrete intervals of length � = 0:2 ms, and

not in continuous time. This may introduce discretization errors.
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Node 1 Node 2

N2 flows
(Type 2)

N2 flows
(Type 2)

N2 flows N2 flows

N1 flows
(Type 1)

N1 flows N1 flows

Figure 5: Example 3: A network with two nodes and with cross traffic. The cross-traffic consists of N2 Type-2 flows at the first
node and at the second node.

allocation. On the other hand, when C grows large, the number of flows that can be admitted with the
effective service curves are close to that of an average rate allocation.

5.3 Example 3: Multiple Nodes with Cross Traffic

We consider a network with two nodes, as shown in Figure 5, and determine the network service curve for a
flow in this network. There are N1 flows from Type-1 flows that pass through both nodes. We refer to these
flows as ‘through flows’. At each node there are N2 cross flows from Type-2. We set the number of through
and cross flows to be equal at each node (N1 = N2).

We assume that the service guarantee for the aggregate of N1 + N2 flows at the first node is SC(t) =

(N1ĉ1 + N2ĉ) t, where where ĉ1 = 1:3140 and ĉ2 = 0:9016 as in Example 1. Recall that this bandwidth
guarantees a deterministic delay bound of d = 10 ms for a rate-based scheduling algorithm with per-flow
rate allocation.

With this aggregate allocation we now construct effective service curves for different values of N1 and
for " = 10�9. The effective service curves for a Type-1 through flow at the first node and second node,
respectively, are denoted by S1;"1 and S2;"

1 , and are given by Sh;"(t) = [(N1ĉ1 +N2ĉ) t�Hh;T;"
C (t)]+ (h =

1; 2) according to Corollary 1, where Hh;T;"
C is the strong effective envelope of the aggregate of all flows at

the h-th node. In the effective service curve, since T is a deterministic bound, the violation probability of
the busy period is zero. S1;"1 and S2;"

1 , and are given by Once we have the effective service curve for each
node, we can calculate the network service curve Snet;"1 = S1;"

1 � S2;"
1 , and determine probabilistic delay

bounds from Eqn. (4).
The calculation of H1;T;"

C is straightforward as described in Subsection 3.2. The calculation of H2;T;"C
at the second node, however, requires some thought. Note that, for the through flows, we cannot assume
that the arrivals at the second node are independent. Therefore, we need to consider the entire set of N1
through flows as a group. At the first node, the group of N1 Type-1 flows obtains an effective service curve
of S1; "

N1
(t) = [(N1ĉ1 + N2ĉ) t � H1;T; "

N2
(t)]+, where the subscripts (in a slight abuse of notation) indicate

the set of flows, and where H1;T; "
N2

is a strong effective envelope for the Type-2 flows at the first node, which
is constructed as described in Subsection 3.2. With the statistical bound in Eqn. (2) we can construct an
effective envelope for the Type-1 departures from the first node by A�N1

� S1; "
N1

. This effective envelope

can be turned into a strong envelope via Lemma 1. Let us call this envelope H2;T;"N1
. The strong effective

envelope for the Type-2 flows at the second node, denoted by H2;T; "N2
, is same as H1;T; "

N2
. Finally, the sum

H2;T;2"
C = H2;T; "

N1
+H2;T; "

N2
gives us a strong effective envelope for all arrivals at the second node. As a last

issue, we need to ensure that T is selected so that it is greater than the busy period at each node. Here, we
use a worst-case estimate (using the deterministic network calculus) to provide us with such a bound.

In Figure 6, we plot the resulting effective network service curves for N1; N2 = 100; 1000; 10000 flows.
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A comparison shows that for N1 > 100, the statistical lower bound of the service to a single through flow
offers more service than a deterministic per-flow allocation. Thus, when the number of flows is large, the
aggregate provisioning will result in lower, albeit statistical, delay bounds. This point is emphasized in
Figure 7, where we plot the statistical delay bounds achieved with the network service curve by applying
Eqn. (4) as a function of the number of flows N1. If N1 > 100, the delay bounds offered by our statistical
lower bound on the service are better than a deterministic per-flow allocation.

6 Conclusion

We have presented a method to compute statistical lower bounds on the service given to a single flow
in a network in which service is provisioned to aggregates of flows. The lower bounds assume that the
service allocated to the aggregate workconserving, but does not assume that the scheduling algorithms in the
network are known. The derivations were done in the context of a statistical network calculus that expresses
the lower bound of the service given to a flow in terms of an effective service curve. By describing the
service at each node with an effective service curve, the service given by the network as a whole is simply
expressed as a concatenation of the per-node service curves. Thus, we were able to derive probabilistic
end-to-end guarantees. A limitation of the calculus is that it assumes that bounds on the busy period, or a
priori bounds on backlog or delay are available. We have shown how such bounds can be derived.
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