
Dissemination of Address Bindings in
Multi-substrate Overlay Networks

Jörg Liebeherr Majid Valipour
Department of Electrical and Computer Engineering

University of Toronto, Canada

Abstract—Self-organizing overlay networks have emerged as a
new paradigm for providing network services. While most overlay
networks are built over a single substrate network (mostly, the
Internet), recently the construction of overlay networks over
multiple heterogeneous substrate networks has received increased
attention. Such networks seek to interconnect mobile or fixed
devices using a diverse set of networking modalities. Here, a
key challenge arises from the more complex address bindings,
where a single logical identifier is bound to multiple substrate
addresses. In this paper, we evaluate the design and inherent
trade-offs of mechanisms for exchanging information on address
bindings in a multi-substrate overlay network. The evaluation
is done using measurement experiments of an overlay network
software system. The measurement data provides insights into
the scalability of dissemination methods. An important finding
is that gossip-based address dissemination is less effective than
an on-demand dissemination of address bindings.

I. INTRODUCTION

Self-organizing application-layer overlay networks have
emerged as a powerful paradigm for deploying network ser-
vices. Elements of self-organizing networks have been incor-
porated in peer-to-peer file sharing networks, content distri-
bution and streaming networks, wireless mesh and wireless
sensor networks, and vehicular networks. An overlay network
is a virtual network built on top of an existing substrate
network, also called underlay network. A link in the overlay
network corresponds to a path of one or more links in the
substrate network.

Application-layer overlay networks emerged in the late
1990s for rapid deployment of services not globally available
on the Internet, such as multicast [1], distributed lookup [5],
fault resilient delivery [4], and many more. The networks are
often self-organizing in the sense that they create and maintain
a network topology in a distributed fashion without need for
manual or central configuration or management.

Application-layer overlay networks generally assume that
the Internet provides a permanently available and universally
accessible substrate network. More recently, researchers have
tried to relax this assumption and considered self-organizing
application-layer overlay networks over multiple heteroge-
neous substrate networks, where any data link, network layer,
or even overlay network can constitute a separate substrate
network [7], [8]. The potential of such networks is a seamless
interconnection of applications running on mobile and fixed
endsystems using a diverse set of networking modalities
without requiring access to a particular network infrastructure.

Multi-substrate overlay networks impose many challenges
with respect to addressing, discovery, network topology main-
tenance, and many more. In this paper, we address a key prob-
lem in multi-substrate networks that arises from the complex
address bindings, where a single local identifier for a node in
the overlay network is bound to multiple substrate addresses.
In a multi-substrate network, a node may be connected to
a large number of substrate networks. Since nodes can be
neighbors in the overlay network only if they share at least one
common substrate, the challenge lies in building a connected
network graph that contains all devices that wish to establish
communication.

In this paper, we devise distributed protocol mechanisms
that assist nodes with learning about remote nodes accessible
through alternative substrates. We present and evaluate a set
of mechanisms, referred to as cross-substrate advertisement
(CSA), by which overlay nodes exchange address information
of one substrate network across another substrate network.
We consider different approaches for address dissemination,
including a gossip-based approach, proactive dissemination,
and on-demand address resolution. The discussed CSA meth-
ods are implemented in an existing software system for self-
organizing networks [12], and evaluated on a local cluster of
servers. Our experiments show that properly designed CSA
methods can scale to large networks, and quickly react to
changes of the network topology. Our experiments indicate
that an on-demand approach appears superior in terms of
effectiveness and overhead.

The remaining paper is structured as follows. In Section II,
we discuss address bindings in single- and multi-substrate
overlay networks. In Section III, we motivate the need for
cross-substrate advertisements. In Section IV, we discuss
methods for disseminating address bindings. In Section V, we
present the experimental evaluation of CSA methods. Finally,
we present conclusions in Section VI.

II. ADDRESS BINDINGS IN OVERLAY NETWORKS

We refer to an overlay node, or simply node, as an ap-
plication that participates in an overlay network. In a self-
organizing overlay network, nodes cooperate to establish the
network topology graph. Application data in the overlay net-
work is then routed along the edges of the graph. Establishing
and maintaining an overlay topology involves (1) a discovery
(rendezvous) process, by which a node not connected to the
overlay network can find nodes that are part of the overlay

C

A DB

Substrate Network

SA(A)
SA(C)

SA(B)
SA(D)

(a) Single-substrate overlay network.

C

A DB

SA(A) SA(B)

Substrate S3Substrate S2Substrate S1

SAS1(A)

SAS1(C)
SAS2(C)

SAS2(B) SAS3(A)

SAS3(B)

SAS3(D)

(b) Multi-substrate overlay network.

Fig. 1. Bindings of overlay and substrate addresses.

topology; (2) a neighbor selection method, by which a node
determines the subset of reachable nodes that become its
neighbors in the overlay topology; and (3) a routing protocol
that determines the forwarding paths for application data in
the overlay network. In many structured overlay networks, e.g.,
Chord [5], the forwarding table is implied once the nodes have
selected their neighbors in the topology.

Each node of an overlay network has an identifier, called
the overlay address, which, in some topologies, may also play
the role of a locator for the routing protocol. Dependent on
the overlay network topology, overlay addresses can be binary
strings [5], coordinates [16], or arbitrary identifiers [1]. The
overlay address serves as a unique identifier in the overlay
network. When the overlay address of a node is derived from
its geolocation, uniqueness of the overlay address can be
asserted only for given periods of time.

Each node has one substrate address for each attachment
point to a substrate network. In application-layer overlay
networks with the Internet as substrate network, a substrate
address generally consists of an IP address and a port number.
We refer to the association of an overlay address with a
substrate address as an address binding.

A. Address Bindings in Single-substrate Overlays

In a single-substrate scenario, each overlay address of a
node is associated with one substrate address, resulting in a
one-to-one binding. Fig. 1(a) depicts such an overlay network
with four nodes with overlay addresses A, B, C, and D.
Nodes connected by a link are neighbors in the overlay
topology. Each node has an attachment to the same substrate
network, with substrate addresses SA(A), SA(B), SA(C),
and SA(D), respectively.

When node A sends a message to its neighbor B, the
message is addressed to SA(B) in the substrate network.
With a single substrate, any two nodes can potentially become
neighbors in the overlay. (This may not hold in a wireless

network, since nodes can communicate only if they are within
transmission range of their radios. Such a situation can be
viewed either as a single, but disconnected substrate network,
or as multiple connected substrate networks.)

Since nodes must be able to exchange messages with their
neighbors, each node should hold the address bindings of
its neighbors. Nodes learn about potential new neighbors by
exchanging address bindings. In a single-substrate network,
a node that receives a message can often infer the address
binding of the sending node. For example, when A sends a
message to B, B can extract SA(A) from the source address
in the encapsulating header to create the address binding
〈A; SA(A)〉.

B. Address Bindings in Multi-substrate Overlays

In a multi-substrate network, nodes can communicate with
each other directly only if they share a common substrate
network. Nodes may have multiple address bindings, with
one substrate address for each connected substrate network,
resulting in a one-to-many mapping of overlay to substrate
addresses.

In Fig. 1(b) we depict the topology of a multi-substrate
overlay network with three substrate networks S1, S2, and
S3. Denoting by SAS1(A) the substrate address of node A
on substrate S1, the complete address bindings of node A are
given by {〈A; SAS1(A)〉, 〈A; SAS3(A)〉}, which is referred
to as A’s (substrate) address list. We assume that nodes
specify preferences for the substrates in their address list.
When nodes are connected to each other by more than one
substrate network (e.g., nodes A and B are both connected to
substrates S1 and S3), the nodes select one of the available
substrate based on their configured preference. While, in a
single substrate network, an address list can be extracted
by inspecting encapsulation headers of incoming messages,
this is not the case in a multi-substrate network. Thus, for
nodes to take full advantage of multiple substrates, additional
mechanisms are required by which nodes can disseminate
address lists. In the simplest case, each message sent between
overlay nodes contains the complete address list of the sender,
however, this may incur unreasonable overhead. In practice,
the dissemination of address lists must trade-off the benefit
of having available address list information with the cost
to disseminate the lists. The purpose of this study is to
explore these trade-offs, and provide insights into the design
of effective dissemination methods.

C. Related Work

While the problem addressed in this paper, i.e., the dissem-
ination of substrate address information across multiple sub-
strates, has not been studied before, there exists an extensive
literature on networks over heterogeneous substrates. Tradi-
tionally, network architectures have dealt with heterogeneous
substrate networks by providing multiple one-to-one address
bindings. For example, in the IP network architecture a multi-
homed host has a different IP address for each configured
network interface. The resulting problems, e.g., the need to

2. Contact A
 at SAS2(A)

A B

Substrate S1
(broadcast-enabled)

Substrate S2
(no broadcast)

SAS2(A)

1. Send
 address
 SAS2(A)
 to B

(a) Example 1: Exchange over connected broad-
cast substrate network

3. Contact A
 at SAS1(A)

C

Substrate S1
(no broadcast)

Substrate S2
(broadcast-enabled)

2. Pass address
 SAS1(A) to C

Substrate S3
(broadcast-enabled) B

SAS1(A)

1. Send
 address
 SAS1(A)
 to B

A

(b) Example 2: Exchange over multiple substrate networks

Fig. 2. Exchange of substrate addresses across substrate networks.

separate identifier and locator functions of an IP address, have
been extensively studied, and numerous solutions have been
proposed, e.g., [13], [14]. A different set of works address
the heterogeneity due to private IP networks and the resulting
loss of end-to-end connectivity, e.g., [9]. Plutarch [2] defines a
framework for interconnecting substrate networks and address
realms by making heterogeneity explicit, where middleboxes
perform translation between address realms. A self-organizing
approach for interconnecting applications across heteroge-
neous collections of substrate networks is presented in [8],
which uses a multi-substrate enabled distributed hash table
(DHT) for routing. The approach has been further developed
in SpoVNet [7], which uses the DHT only for lookup of a
locator, and routes traffic separately.

III. CROSS SUBSTRATE ADVERTISEMENT

We are interested in suitable protocol mechanisms for dis-
seminating substrate address information in a multi-substrate
overlay network across a diverse set of broadcast and non-
broadcast substrate networks, which we refer to as cross-
substrate advertisement or CSA. Such mechanisms assist
overlay nodes with learning about nodes accessible through
alternative substrates. We only consider fully distributed solu-
tions without the need for special purpose nodes or access to
an external service.

A. Motivation for CSA

The following examples motivate the need for proto-
col mechanisms for exchanging address bindings in multi-
substrate overlay network.
Example 1. In Fig. 2(a), two nodes, A and B, are both attached
to substrate networks S1 and S2. Only S1 supports a broadcast
delivery, while S2 is a non-broadcast network. Suppose nodes
A and B prefer to connect in the overlay via S2, possibly
because it offers a higher capacity or a higher level of security.
In this scenario, A and B can rendezvous over S1 with

Application Program

Substrate S1

SAS1(A)

Overlay Topology

Overlay address: “A”

CSA Processor

Interface
1

Interface
2

Interface
3

Substrate S2 Substrate S3

SAS2(A) SAS3(A)

Adapter

Next hop
lookup

Data path

O
verlay N

ode

Fig. 3. Overlay Node.

broadcast messages. Then A can use S1 to send its substrate
address in S2, SAS2(A), to B (either by unicast or broadcast).
Once B receives A’s address in S2, it can contact A using the
preferred substrate.
Example 2. In Fig. 2(b), there are three nodes (A, B, C) and
three substrate networks (S1, S2, S3), where S1 is a non-
broadcast network. Suppose, A has a neighborhood relation
established with B over substrate S2, and B is a neighbor
of C over substrate S3. Further, the preferences of nodes A
and C are such that they rather connect over S1, however,
A and C require each others’ substrate addresses in S1 to
establish communications over this non-broadcast substrate. In
this scenario, CSA can be used to deliver the substrate address
of A on substrate S1, SAS2(A), to node C across substrates
S2 and S3. This scenario is more difficult than Example 1,
since it requires the support of the intermediate node B.

An important design decision is whether CSA should be
realized as part of the protocol that maintains the overlay
network topology, or as a separate functional component that is
shared by all overlay topology protocols. We consider CSA as
a set of common protocol mechanisms that support any overlay
topology, with the rationale that the advantages of a topology
independent design outweigh possible drawbacks, e.g., not
being able to optimize the exchange of address bindings for a
specific topology.

B. Overlay Node with CSA Processor

Fig. 3 illustrates the main functional components of an
overlay node in an application-layer overlay network. The
overlay node appears as middleware between an application
program and a set of substrate networks. Any specific design
or implementation of an overlay node may differ from this
depiction, however, the same basic functions are found in every
implementation of an overlay node.

The overlay node plays the role of an application-layer
router. For each outgoing application message, it performs

a lookup for the next hop and then forwards the message
using one of the connected substrates. For an incoming appli-
cation message, the overlay node determines if the message
should be forwarded to other nodes and/or delivered to the
application. The overlay topology component comprises the
control path of the overlay node, which includes discovery,
neighbor selection, and the forwarding table. For each con-
nected substrate network, the overlay node has a component,
referred to as interface, for access to the substrate network
and encapsulation/decapsulation of messages. Each interface
is associated with a substrate address. In Fig. 3, the node
has overlay address A, and three interfaces with substrate
addresses SAS1(A), SAS2(A), and SAS3(A). In the figure,
the interfaces are collected in an adapter component.

In our design, the tasks of cross-substrate advertisement are
performed by a single component, referred to as CSA proces-
sor, which is placed between the overlay topology component
and the adapter, as shown in Fig. 3. The CSA processor
inspects incoming and outgoing messages to and from the
overlay topology component, and initiates the resolution of
address bindings.

CSA processors only need to exchange two types of mes-
sages: (1) a request for an address list, and (2) an update
containing one or more address lists. Updates of address lists
can be sent as standalone messages, e.g., in response to a
request, or piggybacked to an outgoing message from the
overlay node. The rules for transmitting request and update
messages are discussed in the next section.

We have implemented a CSA processor as an enhancement
to an existing (open source) software system for single-
substrate application-layer overlay networks, called HyperCast
[12]. We have modified the HyperCast software to support
multi-substrate overlay networks. The modified implemen-
tation follows the design shown in Fig. 3. Details of the
CSA processor specification, such as packet formats, and its
implementation are given in [17].

IV. METHODS FOR ADDRESS LIST DISSEMINATION

We distinguish two methods for exchanging address bind-
ings. We refer to a direct address list exchange when two
nodes connected to the same substrate network exchange their
address lists with each other. This is the scenario depicted
in Fig. 2(a). In a relayed (indirect) address list exchange a
node forwards address bindings for other nodes in the overlay
network. The scenario in Fig. 2(b) depicts a relayed address
list exchange, where B relays address information of A to C.

Since a direct address exchange is relatively straightforward,
we will not discuss it in detail. Essentially, a node can attach its
address list to each outgoing message. Alternatively, whenever
a node receives a message from a remote node, it can check
whether it has recent information on the address list of the
sender of the message, and, if required, request the address
list. In a broadcast network, there is the additional option to
broadcast a request for an address list, similar as in ARP [15].
In the following we discuss CSA methods for a relayed address
list exchange.

A. Gossip Communication

An obvious candidate for disseminating address binding
information is a gossip protocol. In gossip communication,
a piece of information, originally known by a single node
is spread through the entire network. Each node that holds
the information periodically exchanges it with a randomly
selected node. Protocols for gossip communication have been
extensively studied, and we refer to [10] for a survey. With
gossip, each overlay node periodically sends one or more
randomly selected address list(s) to one or more randomly
selected destination(s). Without memory constraints, all nodes
eventually obtain the address lists of all nodes in the network.

While the concept of gossip communication is simple,
running an efficient gossip protocol can be difficult. In large
networks, nodes may not be able to store the complete set
of address lists, thus, requiring a replacement strategy of
stored address entries. Further, the frequency of gossiping, the
amount of data gossiped, and the destination set should adapt
to the number of nodes in the overlay network.

For our evaluation of CSA methods, we use a basic gossip
protocol, which does not require information on the size or
topology of the network. The gossip protocol operates in
rounds, where the time between rounds, the gossip interval,
is constant. In each round, a node selects one address list as
destination and transmits to this destination a set of address
lists (By default, one address list is transmitted). The selection
of destinations is random, but weighted to favor newly added
nodes. Also, the more an address list has been gossiped in the
past, the less likely it will be gossiped in future rounds.

A drawback of gossip communication is that it does not take
into consideration whether a disseminated piece of information
is actually needed by the receiver. Conversely, there is no
guarantee that an address list of a remote node is available
when needed.

B. Protocol-driven Dissemination

In virtually all protocols for maintaining an overlay topol-
ogy, neighboring nodes advertise information about other
(non-neighbor) nodes to each other. Such third-party node
advertisements are used to learn about other nodes in the
network, and identify potential new neighbors in the over-
lay topology. Such considerations suggest to attach substrate
addresses to messages containing third-party node advertise-
ments. This is referred to as protocol-driven dissemination. For
example, in Fig. 2(b), node B is a neighbor of A, and therefore
knows its address lists (due to a direct address exchange). If B
sends a message to C containing a third-party advertisement
of A and attaches the address list of A, node C obtains the
substrate address needed to send a message to node A using
S1.

We consider two methods of protocol-driven dissemination,
one is pro-active and the other operates in an on-demand
fashion.

Push. In the pro-active approach, referred to as Push, the
complete address list of an advertised node is piggybacked to

each third-party node advertisement. With Push, nodes need
not maintain state information about cross-substrate advertise-
ments, however, attaching a complete address list to each third-
party node advertisement results in redundant transmissions.

Pull. In the on-demand approach, referred to as Pull, address
lists must be explicitly requested by a node. When a node
wants to send a message to an advertised node, i.e., a node
whose overlay address was obtained by receiving a third-party
node advertisement, it sends a request for the address list to
one of its neighbors. When the node receiving a request holds
the requested address list, it replies to the requesting node.
Otherwise, the receiving node itself issues a request to resolve
the address list. In this fashion, the request is iterated until a
node can respond to the query.

There are two variations of the Pull approach. One can issue
the request to the neighbor that earlier sent the third-party
advertisement for the requested node. Here, the rationale is
that address information about a node is more likely to be
found at the node that has sent an advertisement for this node.
Alternatively, the request can be made to the next-hop neighbor
on the path to the requested node. Here, the rationale is that
address information about a node is more likely to be found
closer to the location of the requested node.

The steps performed by Pull share aspects with address
resolution protocols in non-broadcast networks. For example,
the Next-Hop-Resolution-Protocol (NHRP) [6], which has
been used for IP-to-ATM address resolution when multiple
IP subnets are realized on a common ATM substrate, follows
the IP routing table to the subnet where the requested node is
located.

C. Variants and Hybrid Methods

With Push, appending address lists to all third-party
node advertisements incurs substantial overhead. To evaluate
whether Push can be effective with less overhead, we consider
a modified version of Push, where only the substrate address
with the highest preference is piggybacked to a node adver-
tisement, using the preference settings of the ‘owner’ of an
address. This method is referred to as Push-Single.

We refer to hybrid methods as CSA mechanisms that
combine elements of the approaches above. In this paper, we
evaluate a hybrid method that supplements gossip communi-
cation with features of Push. The main drawback of (pure)
gossip communications is that the dissemination of address
information is not deterministic, and the main drawback of
Push is the incurred overhead. In the considered hybrid
method, referred to as Push-Single+Gossip, we enhance Push-
single with the gossip protocol. This methods transmits the
most preferred substrate address pro-actively and disseminates
complete address lists via gossiping. In the experimental evalu-
ation in Section V, the hybrid method is shown to significantly
enhance the effectiveness of a pure gossip solution.

V. EVALUATION

In this section, we present an experimental evaluation of the
cross-substrate advertisement mechanisms from Section IV to

R11

R21

R31

R12

R22

R32

R13

R23

R33

Region R11

S1

S2

S3

S4
Substrate Area

Fig. 4. Substrate arrangement for DT.

assess and compare the effectiveness of CSA in supporting
self-organizing overlay networks in a multi-substrate environ-
ment. We organize substrate networks in a layout that allows us
to predict their connectivity. Also, we use an overlay network
with a structured topology, where convergence of the topology
can be asserted.

Testbed Network. The experiments are conducted on an
Emulab [3] cluster at the University of Toronto, consisting
of 22 servers with Intel Xeon 2 GHz processors, and GigE
interfaces. In the experiments, workload is distributed approx-
imately equally across the servers.

Emulating Multiple Substrates. The substrate networks in
our experiments are set up as UDP/IP networks, which are
labeled with an additional substrate identifier. (The identifier
becomes part of the substrate address.) This enables us to
conveniently create a large number of substrates. Two nodes
share a common substrate network and can exchange messages
directly only if they have a substrate address with the same
substrate identifier. The UDP/IP substrate networks are set up
as non-broadcast networks.

Arrangement of Substrate Networks. Each substrate is asso-
ciated to a square in a 2-dimensional plane, with an area of
(` × `) for each substrate networks. The areas of substrates
are laid out to form an overlapping tiling, with the length of
overlap given by `/2. In this fashion, a system of N × N
substrate networks creates (N + 1)× (N + 1) tiles, which we
refer to as regions. The scheme for arranging the overlapping
substrates is illustrated in Fig. 4. The top of the figure shows
the area associated with substrate S4. Below, we show how
the other three substrates, S1, S2, and S3, overlap to form the
overlapping tiling. The overlapping areas of substrate networks
S1, . . . , S4 create nine regions, where each region is associated
with one or more substrate networks. In the figure, the regions
are labeled as R11, . . . , R33. By distributing overlay nodes to
the regions, we associate the nodes with substrate networks.
For example, a node located in the labeled region R11 is only
attached to substrate network S1, while a node in region R22

R11

R21

R31

R12

R22

R32

R13

R23

R33

(a) Placement of nodes.

R11

R21

R31

R12

R22

R32

R13

R23

R33

(b) Delaunay triangulation.

R11

R21

R31

R12

R22

R32

R13

R23

R33

(c) Buddy configuration.

Fig. 5. Delaunay triangulation overlay topology in a (2x2) grid of substrate
networks with 9 regions (In (c), the arrows indicate the neighboring region
where a pre-configured buddy is located).

is connected to all four substrates S1 − S4.

Overlay Topology. For our experiments, we use a structured
overlay protocol that establishes a Delaunay triangulation
topology. The DT protocol from [11] is an application-layer
overlay topology protocol that creates a Delaunay triangulation
for overlay nodes with (x,y)-coordinates in a non-broadcast
substrate network. In our experiments, the coordinates of nodes
are matched to the regions of the substrates, and nodes are
evenly distributed across the regions formed by the substrate
networks (see Fig. 5(a)).

Since we establish non-broadcast substrates, each node
must be pre-configured with a set of substrate addresses of
overlay nodes, the buddies, to make an initial rendezvous
with an existing overlay network.1 After the rendezvous, a
node maintains a list of neighbors in the overlay topology.
Periodically, every HeartBeat (we use HeartBeat = 500 msec),
a node sends to each neighbor a HelloNeighbor message,
which includes node advertisements of the closest neighbors
in a clockwise and counter-clockwise direction. When each
node updates its neighbor table with incoming HelloNeighbor
messages, the network eventually converges to the desired
topology (see Fig. 5(b)).

In the multi-substrate experiments with the DT protocol,
each node is configured with two buddies. One buddy is a node
in the same region, the other buddy is a node in a neighboring
region, following a scheme indicated in Fig. 5(c). The arrows
in the figure indicate where a buddy in a neighboring region
is located, i.e., the second buddy of nodes in region R11 is
located in R12, and so forth. As seen in the figure, the buddies
are selected such that they form a chain between regions.
This ensures that it is in principle feasible to form a single
connected overlay network.

1The version of the DT protocol described in [11] uses a central server for
the rendezvous process. The version used in the experiments is as described
here.

A. Measurement Methodology

In our experiments, we start a given number of overlay
nodes and measure the effectiveness of CSA methods in terms
of the ability to establish a multi-substrate overlay network.
As performance metrics we use stability and connectivity of
the overlay topology, which are measured as follows:
Stability: In the DT protocol, a node is locally stable if it
satisfies a local stability condition (see [11]), which can be
computed from its neighborhood table. If all nodes are locally
stable, it is assured that the overlay network has formed a
stable Delaunay triangulation topology. We use the percent-
age of locally stable nodes to measure the progress towards
completing a stable topology. However, this measure does not
detect if multiple disconnected topologies have formed.
Connectivity: In the DT protocol, a node is a leader if it
does not have a neighbor with a larger coordinate2. Since
each Delaunay triangulation graph can have only one leader,
the number of leaders indicates the number of partitioned
(unconnected) overlay topologies. When an experiment is
started, each node is initially a leader of an overlay network
with itself as the only member. We say that a set of nodes is
connected when all overlay nodes have the same leader. We
use the number of leaders as a measure of progress towards
establishing a single connected overlay network.

A single stable overlay network with a Delaunay triangula-
tion topology has formed if and only if all nodes are locally
stable and there is only one leader.

Our experiments compare the CSA methods for relayed ad-
dress list exchange from Section IV. Gossip refers to the gossip
protocol, where we evaluate gossip intervals of 250, 500 and
1000 msec. Push, Pull, and Push-single denote the protocol-
driven dissemination methods, and Push-single+Gossip refers
to the previously discussed hybrid method.

The length of all experiments is 450 sec. Each experiment
is repeated three times, and we plot the average of the results
in graphs.

B. Experiment 1: 64 Substrate Networks

We first evaluate the CSA methods in a network of 64 sub-
strate networks, laid out as an 8×8 overlapping grid, creating
81 regions (as shown in Fig. 4). We place eight nodes into
each region, resulting in an overlay network of 648 nodes.

Figs. 6(a) and 6(b), respectively, depict the percentage of
stable nodes in the overlay and the number of partitioned
topologies (measured by counting ‘leaders’) as functions of
time. Fig. 6(c) depicts the connectivity metric for a smaller
range of values, which allows us to validate whether a method
can establish a single topology (with one ‘leader’). The graphs
show that Push and Pull quickly establish a single stable
overlay network in less than 20 sec. The None option does not
lead to a stable network, thus providing evidence that CSA is
needed to establish a multi-substrate overlay network. Gossip
communication shows a slow increase of the stability and
connectivity measures, with better results for shorter gossip

2coord(A) < coord(B), if yA < yB , or yA = yB and xA < xB .

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450

P
e
rc

e
n
ta

g
e
 o

f
s
ta

b
le

 n
o
d
e
s

time (seconds)

pull/push

push-single+gossip (500 ms) push-single

gossip (250 ms)

gossip (500 ms)

gossip (1000 ms)

none

(a) Stability.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350 400 450

N
u
m

b
e
r

o
f
le

a
d
e
r

n
o
d
e
s

time (seconds)

all others

none

gossip (1000 ms)
gossip (500 ms)
gossip (250 ms)

none
push

pull
gossip(250ms)
gossip(500ms)

gossip(1000ms)
push-single

push-single+gossip(500ms)

(b) Connectivity.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350 400 450

N
u
m

b
e
r

o
f
le

a
d
e
r

n
o
d
e
s

time (seconds)

pull/push

push-single

push-single+gossip (500 ms)

(c) Connectivity for selected methods.

 0

 5

 10

 15

 20

none
gossip (1000 ms)

gossip (500 ms)

gossip (250 ms)

push-single

push-single and gossip (500 ms)

pull
push

Tr
af

fic
 (k

bp
s)

Overlay Protocol
CSA Protocol

(d) Protocol overhead.

Fig. 6. Experiment 1: Overlay topology with 64 substrate networks and 648
nodes.

interval. The Push-single increases sharply initially, but cannot
achieve stability for all nodes, and also cannot form a single
connected network. At the same time, the hybrid method that
enhances Push-single by gossiping can create a single overlay
containing all nodes.

Fig. 6(d) compares the overhead of protocol messages

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450

P
e
rc

e
n
ta

g
e
 o

f
s
ta

b
le

 n
o
d
e
s

time (seconds)

pull/push

push-single+gossip (500 ms)
push-single

gossip (250 ms)

gossip (500 ms)

gossip (1000 ms)
none

(a) Stability.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

none
gossip (1000 ms)

gossip (500 ms)

gossip (250 ms)

push-single

push-single and gossip (500 ms)

pull push

Tr
af

fic
 (k

bp
s)

Overlay Protocol
CSA Protocol

(b) Protocol overhead.

Fig. 7. Experiment 2: Overlay topology with 289 substrate networks and
2592 nodes.

incurred by the CSA mechanisms in the experiment. We
measure the average amount of control traffic received by
a node, averaged over the length of the experiment. Since
CSA messages are frequently piggybacked to control messages
of the overlay protocol, we present the total control traffic,
which includes messages of the DT protocol with or without
piggybacked CSA information (labeled as Overlay Protocol),
as well as standalone messages sent by the CSA processor
(labeled as CSA Protocol). The amount of traffic with None
gives a lower bound for the control overhead without CSA. As
expected, Push incurs the most overhead, while the overhead
for all other methods is modest. In summary, the protocol-
driven dissemination methods appear most effective. With
Pull generating considerably less protocol traffic than Push,
it offers the best tradeoff overall.

C. Experiment 2: 289 Substrate Networks

We repeat the same experiment, in a larger network, where
we quadruple the number of regions and nodes. The substrates
are arranged in an overlapping 17 × 17 grid, resulting in
324 regions, that each receive eight overlay nodes for a total of
2592 overlay nodes. Figs. 7(a) present the results for stability
(we omit the graph on connectivity for lack of space). For all
methods, the outcomes are similar to Experiment 1. Fig. 7(b)
shows that the average protocol overhead in the larger network
is similar to that observed in Experiment 1. We conclude that,
for the chosen substrate and overlay network configuration, all
CSA methods scale well.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450

P
e
rc

e
n
ta

g
e
 o

f
s
ta

b
le

 n
o
d
e
s

time (seconds)

none
push

pull
gossip(250ms)

gossip(500ms)
gossip(1000ms)

push-single
push-single+gossip(500ms)

(a) Result of the entire experiment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 230 235 240 245 250 255 260 265 270

P
e
rc

e
n
ta

g
e
 o

f
s
ta

b
le

 n
o
d
e
s

time (seconds)

none
push

pull
gossip(250ms)

gossip(500ms)
gossip(1000ms)

push-single
push-single+gossip(500ms)

(b) Snapshot for 230 sec < t < 270 sec.

Fig. 8. Experiment 3: Stability in a scenario with churn (64 substrate
networks, 648 nodes; at t=250 sec, 25% of nodes in each region leave the
network).

D. Experiment 3: Performance of CSA under Churn

In this experiment, we examine how CSA methods perform
when the network experiences a major disruption. The setup
for this experiment is as in Experiment 1. Half-way through
the experiment, at time t = 250 sec, 25% of randomly selected
nodes in each region leave the network. We are interested in
studying the impact of this event on the ability to maintain the
topology of the overlay network.

Fig. 8(a) presents the stability measure with different CSA
methods over the duration of the entire experiment, and
Fig. 8(b) depicts the same data for a period starting 20 sec
before the departure event until 20 sec after the event. The
figures show that the departure event majorly disrupts the
overlay topology, as the percentage of stable nodes falls to
30% or below. With Push and Pull, the network quickly
recovers to full stability. The Push-single method, with or
without gossiping, returns quickly to the stability level before
the departure event. With gossip, we observe that after an
initial quick recovery, the stability settles at a level that is
below that before the departure event. This difference between
the gossip and protocol-driven methods is noteworthy. After
the departure event, the overlay topology protocol repairs the
topology, resulting in increased protocol traffic in areas where
a repair is needed. Since protocol-driven methods piggyback
CSA information to protocol messages, they deliver address
information where it is needed. In contrast, gossip dissemina-
tion does not specifically direct address lists to nodes affected
by the departure event. Thus, the address information lost in

the departure event must be slowly re-acquired.

VI. CONCLUSIONS

We have studied mechanisms for resolving address bindings
in a self-organizing overlay network over multiple substrate
networks. We presented methods for cross-substrate advertise-
ment, by which overlay nodes exchange address information
of one substrate network across another substrate network. We
have evaluated the effectiveness and the overhead of CSA
methods in a set of measurement experiments on a testbed
network. Our experiments show that CSA improves the ability
to establish a single connected overlay network, even when
the number of substrate networks grows large. Overall, the
on-demand Pull method presented the best trade-off in terms
of effectiveness and overhead, compared to proactive methods
such as Push or a gossip protocol. While the performance of
CSA methods depends on the particular properties of substrate
networks and the overlay topology, our experiments show that
CSA is a crucial protocol component in large-scale multi-
substrate overlay networks.

ACKNOWLEDGMENT

This work is supported in part by the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES

[1] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system
multicast. In Proc. ACM Sigmetrics, pages 1–12, June 2000.

[2] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield. Plutarch:
an argument for network pluralism. In Proc. ACM SIGCOMM FDNA
Workshop, pages 258–266, August 2003.

[3] B. White et. al. An integrated experimental environment for distributed
systems and networks. In Proc. OSDI, pages 255–270, Dec. 2002.

[4] D. G. Andersen et. al. Resilient overlay networks. In Proc. ACM SOSP,
pages 131–145, October 2001.

[5] I. Stoica et. al. Chord: A scalable peer-to-peer lookup service for Internet
applications. In Proc. ACM SIGCOMM, pages 149 – 160, August 2001.

[6] J. Luciani et. al. NBMA next hop resolution protocol (NHRP). IETF
RFC 2332, 1998.

[7] R. Bless et. al. The underlay abstraction in the spontaneous virtual
networks (SpoVNet) architecture. In Proc. 4th Euro-NGI Conf. on Next
Generation Internet Networks, pages 115–122, April 2008.

[8] B. Ford. Scalable Internet routing on topology-independent node
identities. Technical report, MIT, October 2003.

[9] P. Francis and R. Gummadi. IPNL: A NAT-extended Internet architec-
ture. In Proc. ACM SIGCOMM, pages 69–80, August 2001.

[10] S. M. Hedetniemi and A. L. Liestman. A survey of gossiping and
broadcasting in communication networks. Networks, 18(4):319–349,
1988.

[11] J. Liebeherr, M. Nahas, and W. Si. Application-layer multicasting with
Delaunay triangulation overlays. IEEE J. on Sel. Areas in Comm.,
20(8):1472–1488, October 2002.

[12] J. Liebeherr, J. Wang, and G. Zhang. Programming overlay networks
with overlay sockets. In Proc. 5th COST 264 NGC Workshop, LNCS
2816, pages 242–253, September 2003.

[13] D. Meyer. The locator identifier separation protocol (LISP). Internet
Protocol Journal, 11(1):23–34, March 2008.

[14] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) architecture.
RFC 4423, IETF, May 2006.

[15] D. C. Plummer. An Ethernet address resolution protocol. RFC 826,
IETF, November 1982.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proc. ACM SIGCOMM, pages
161–172, August 2001.

[17] M. Valipour. Cross-substrate advertisement: Building overlay networks
for heterogeneous environments. Master’s thesis, Univ. of Toronto, 2010.

