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Abstract

We seek to provide an analytical answer whether the impact of packet scheduling algorithms on end-to-end
delays diminishes on long network paths. The answer is provided through a detailed multi-node delay analysis,
which is applicable to a broad class of scheduling algorithms, and which can account for statistical multiplexing. The
analysis is enabled by two contributions: (1) We derive a function that can characterize the available bandwidth at
a node for various scheduling algorithms. This characterization is sharp enough to provide necessary and sufficient
conditions for satisfying worst-case delay bounds at a single node; (2) We obtain end-to-end delay bounds by solving
an optimization problem, in which the service received at multiple nodes is subsumed into a single function. Since
our unified analysis captures the properties a broad group of schedulers in a single parameter, it can provide insight
how the choice of scheduling algorithms impacts end-to-end delay bounds. An important finding of this paper is
that some schedulers show noticeable performance differences which persist in a network setting with long paths.
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I. INTRODUCTION

Most carrier-class routers today can support a range of different link scheduling algorithms, even though
the view of First-In-First-Out (FIFO) scheduling is highly prevalent in the Internet. As a case in point,
measurement methods to estimate the available bandwidth on Internet paths often make explicit or implicit
assumptions of FIFO scheduling [23]. This view is justified when the impact of link scheduling algorithms
on end-to-end performance metrics diminishes with increased network size. The objective of this paper
is to present an analytical method that can shed light on the role of link scheduling algorithms on long
paths.

The literature on the impact of link scheduling on end-to-end performance is limited and not conclusive.
Most comparative evaluations of scheduling algorithms investigate only a single node scenario, e.g.,
[26]. Analytical comparisons between Generalized Processor Sharing (GPS) and Earliest Deadline First
(EDF) scheduling over a multi-hop path have been presented for worst-case arrival scenarios [10] and
for statistically multiplexed traffic [22]. These works highlight the differences between end-to-end delays
with these schedulers, but do not study how these differences evolve as the number of nodes of a network

An earlier version of this paper was presented at the IEEE ICDCS 2010 conference. The end-to-end analysis has been generalized and
dispenses with earlier assumptions on identical link capacities, scheduling algorithms, and homogeneous cross traffic at each node.
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path is increased. Some studies [2], [9], [25] have found conditions when the output traffic at a network
node has similar characteristics as the input, suggesting that the end-to-end delay performance of all
(work-conserving) scheduling algorithms is similar. An analysis of the throughput performance of FIFO
scheduling on long paths in an overloaded network with constant bit rate fluid flow traffic in [11] showed
that the end-to-end throughput of a flow asymptotically degrades to that of a low-priority flow. Our paper
is motivated by the question whether a similar degradation is observable under more complex traffic
patterns and in networks that are not permanently overloaded.

The analysis in this paper takes a network calculus approach [5], [14], which offers a general method
for delay and backlog analysis over a path with multiple nodes. As a performance metric, we use the
end-to-end delay. We assume that the long-term traffic load does not exceed the capacity of any network
link. Traffic is characterized in terms of envelope functions and service is characterized by service curve
functions. A key result of the (deterministic) network calculus states that the service curve of an end-to-end
network path can be computed from the service curves at the links of the path by applying the convolution
operator of the min-plus algebra. More precisely, when S1, S2, . . . , SH are service curves describing the
available service for a sequence of nodes, then the service of the entire network can be expressed by a
network service curve Snet = S1 ∗S2 ∗ . . .∗SH . (The min-plus convolution ‘∗’ is defined in Section II-B.)
In this fashion, a multi-node analysis is reduced to the analysis of a single node that represents the entire
network path. End-to-end delay bounds computed this way are generally more accurate than adding delay
bounds computed for individual nodes. For example, worst-case delay bounds obtained by adding per-node
delay bounds scale quadratically with the path length, while delays computed with Snet scale linearly [14].
In a probabilistic setting for traffic satisfying exponential bounds, delays computed by adding per-node
bounds scale as O(H3) in the number of traversed nodes H , while delays computed with a network
service curve scale with Θ(H logH) [4].

In this paper we assess the impact of link scheduling algorithms on probabilistic end-to-end delay
bounds using a network calculus analysis. A key difficulty is to find a service curve that can express a
probabilistic service guarantee for non-trivial scheduling algorithms. It is possible to express the service
available to a traffic flow in terms of the capacity left unused by all other flows with traffic. In a simplified
form, such a leftover service description is given by:

Leftover service = Link capacity − Arrivals from other traffic .

This corresponds to an interpretation of service where the flow under consideration receives a lower
priority than all other traffic at the link. For every work-conserving scheduling algorithm (that does
not reorder packets from the same flow), such a characterization provides a lower bound for the actually
available service. The leftover service interpretation is often referred to as blind multiplexing, since bounds
on performance metrics hold even if details of the scheduling algorithm are not available. Refinements
of a leftover characterization with service curves that account for specific scheduling algorithms have
been considered before [8], [16], [20], however, with the exception of FIFO [8], the accuracy of the
characterizations has not been established. An application of the blind multiplexing analysis of [6] to
FIFO networks in [12] has concluded that the delay bounds for Markov-modulated arrivals can be very
pessimistic.

In this paper, we derive an accurate probabilistic leftover service characterization for a broad class
of scheduling algorithms, referred to as ∆-schedulers. The class of ∆-schedulers contains a diverse set



3

of algorithms, such as FIFO, priority scheduling, and Earliest-Deadline-First (EDF). For this class of
schedulers, we provide a positive answer to the open question of the achievable accuracy of service
curve characterizations, by showing that we can obtain necessary and sufficient conditions for meeting
a given deterministic delay bound at a single node. These necessary and sufficient conditions extend the
findings in [3] to the entire class of ∆-schedulers. Taking advantage of a decade of research on multi-node
analysis with the stochastic network calculus [13], we then study the impact of scheduling algorithms
in a network environment. The end-to-end delay bounds derived in this paper extend the analysis of [6]
from blind multiplexing to all ∆-schedulers. This requires an additional analytical optimization (provided
in Section IV).

Since our probabilistic analysis contains deterministic delay bounds (that are never violated) as a
special case, our work also relates to the literature on worst-case end-to-end analyses [15], [21]. Several
methods for computing statistical end-to-end delay bounds have been developed for EDF scheduling under
additional assumptions on the operation of the scheduler. For example, Andrews [1] and Li et. al. [16]
assume that traffic exceeding an a priori delay constraint at a node is dropped. Sivaramanand and Chiussi
[22] present an analysis where traffic is re-shaped at each node, resulting in a non-workconserving system.
These EDF analyses do not achieve the same Θ(H logH) scaling of the delay bounds as the bounds derived
in this paper.

We gain new insights and findings on the role of scheduling algorithms in networks. Even though
the asymptotic growth of delays in the path length H for exponentially bounded traffic is Θ(H logH)

for every ∆-scheduler, we find that, in a non-asymptotic regime, the choice of the scheduling algorithm
can have a noticeable impact on end-to-end delays. Thus, accounting for the specifics of a scheduling
algorithms can yield probabilistic end-to-end bounds that improve on the conservative bounds provided
by blind multiplexing.

The paper is structured as follows. In Section II we discuss the probabilistic characterization of traffic
and service in the network calculus, with traffic envelopes and service curves. In Section III we define
∆-scheduling algorithms and analyze their impact on single-node delays. In Section IV we compute a
network service curve for ∆-schedulers and use it for an analytical optimization that result in end-to-end
delay bounds. We present numerical examples in Section V and conclude the paper in Section VI.

II. ARRIVAL AND SERVICE MODEL

This paper takes a network calculus approach to modeling and analysis, where arrivals of a flow and
the service given to a flow are expressed in terms of deterministic or probabilistic bounds. We refer to
these bounds as traffic envelopes and service curves, respectively. The concepts presented in this section
are developed in [5], [6], [14].

A. Traffic Envelopes

We consider a continuous-time model where arrivals from a traffic flow or flow aggregate in the time
interval [0, t) are represented by a random process A(t) whose increments satisfy stationary bounds.
Traffic departing from a node in [0, t) is denoted by D(t). Both A(t) and D(t) are nondecreasing in
time with A(t) = D(t) = 0 for t ≤ 0, and we have D(t) ≤ A(t). For brevity, we use the notation
A(s, t) = A(t) − A(s) for any s ≤ t to denote arrivals in the time interval [s, t). We use a subscript ‘j’
to denote traffic arrivals or departures by a flow or flow aggregate j.
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We characterize traffic in terms of traffic envelopes that specify the arrivals over given time intervals. In
a worst-case analysis, a deterministic sample path envelope E provides an upper bound on traffic arrivals
satisfying for all t > 0

sup
0≤s≤t

{A(s, t)− E(t− s)} ≤ 0 . (1)

For convenience, we set E(t) = 0 for t ≤ 0. By definition, no sample path of A ever violates a deterministic
sample path envelope. An example of a deterministic sample path envelope is a leaky bucket with E(t) =

Rt+B for a rate parameter R and a burst parameter B. Deterministic envelopes are generally conservative
bounds since they do not capture statistical fluctuations of a traffic or statistical multiplexing. This motivates
the definition of a probabilistic analogue to the deterministic envelope that may be violated with a small
probability. A statistical sample path envelope G(t) with bounding function ε(σ) satisfies for all t, σ ≥ 0

P ( sup
0≤s≤t

{A(s, t)− G(t− s)} > σ) ≤ ε(σ) , (2)

where 0 ≤ ε(σ) ≤ 1. G is non-negative with G(t) = 0 for t ≤ 0. The function ε(σ) bounds the probability
that a sample path of the arrivals exceeds the envelope G by more than σ. Over the years, traffic envelopes
have been explored for a wide range of arrival processes, including memoryless, Markov-modulated, and
even long range dependent processes. We refer to [18] for an informative survey. For ε(σ) = 0 if σ > 0,
we recover the deterministic version above.

B. Service Curves

Throughout this paper, we use service curves to describe lower bounds on the service available to a
flow. A node offers a (deterministic) service curve S if the input-output relationship of traffic at a node
satisfies for all t ≥ 0

D(t) ≥ inf
0≤s≤t

{A(s) + S(t− s)} . (3)

The term on the right-hand side is referred to as a min-plus convolution, and denoted by ‘A ∗ S(t)’. As
examples, a service curve for a constant rate link with capacity C is given by S(t) = Ct; the service
curve for a delay of d is given by S(t) = δd, where

δd(t) =

0 , if t ≤ d

∞ , if t > d .
(4)

The service on a path of H nodes, each offering a deterministic service curve of S1, S2, . . . , SH , can be
expressed in terms of the convolution S1 ∗ S2 ∗ . . . ∗ SH . The probabilistic analogue of this concept is a
statistical service curve S with bounding function ε(σ), which satisfies for all t, σ ≥ 0

P (D(t) < A ∗ [S − σ]+(t)) < ε(σ) . (5)

Here, S(t) is a non-negative, non-decreasing function with S(t) = 0 for t < 0, [x]+ = max(0, x). The
function ε(σ), which bounds the probability that the guarantee of Eq. (3) is violated by more than σ, is
non-increasing and satisfies 0 ≤ ε(σ) ≤ 1.

When applying the network calculus to practical scheduling methods, one finds that some schedulers
are more suitable than others for a service curve description. Some scheduling algorithms, such as General
Processor Sharing (GPS) [19] and Service Curve Earliest Deadline (SCED) [8], have been specified in
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terms of service curves. Generally, however, characterizing a scheduler in terms of service curves requires
an indirect description in terms of the available bandwidth capacity that is left unused by other flows with
traffic at this link. In the next section, we develop such a description and show that we can completely
capture the operation of an entire class of scheduling algorithms.

III. ∆-SCHEDULING ALGORITHMS

We consider the arrivals from a set N of traffic flows (or flow aggregates) to a buffered link with
rate C, referred to as a node. Schedulers are work-conserving in the sense that they transmit at rate C
whenever there is backlogged traffic, and they are locally FIFO in the sense that traffic from the same
flow is transmitted in the order of its arrival. In this paper, we ignore that packet transmissions cannot be
interrupted. This is a reasonable assumption when packet sizes are small compared to the transmission
rate. The assumption can be relaxed at the cost of additional notation. We do not assume that traffic
shaping is performed between nodes.

Let us consider an arrival from flow j at time t, which we refer to as ‘tagged arrival’. This arrival
will be transmitted when it has higher precedence than all other backlogged traffic. It turns out that for
many scheduling algorithms it is feasible to specify constants ∆j,k (k ∈ N ), so that only arrivals from
flow k that occur before t + ∆j,k have higher precedence than the tagged arrival from flow j. Note that
any locally FIFO ∆-scheduler satisfies ∆j,j = 0 for all j ∈ N . We refer to scheduling algorithms whose
operations can be completely described by such constants ∆j,k as ∆-schedulers.

Definition 1: Given a set N of flows with arrivals to a work-conserving link. A ∆-scheduler is a work-
conserving locally FIFO scheduling algorithm if there exist constants {∆j,k}j,k∈N such that an arrival at
time t from flow j has precedence precisely over those arrivals from flow k that occur after t+ ∆j,k.

The class of ∆-schedulers contains a diverse group of scheduling algorithms.

• FIFO: Traffic is transmitted in the order of arrivals. Consequently, we have ∆j,k = 0 for all j, k ∈ N .
• SP, BMUX: With static priority (SP) scheduling, each flow is assigned a priority level, and the scheduler
always transmits backlogged traffic with the highest available priority. Traffic within one priority class
is served in order of arrival. Since low priority traffic has never higher precedence over higher priority
traffic, we have

∆j,k =


−∞ , if k has lower priority than j,
0 , if k has the same priority as j,
∞ , if k has higher priority than j.

A scenario where the tagged flow j has low priority and all other traffic has high priority is referred to
as blind multiplexing (BMUX). BMUX is an important benchmark, since it yields the highest delays for
flow j among all any work-conserving locally FIFO schedulers.
• EDF: Each flow j is associated with an a priori delay constraint d∗j . When traffic from flow j

arrives to the scheduler at time t, it is assigned a deadline t + d∗j . Traffic is transmitted in the order of
increasing deadlines. Since, in EDF, traffic has a higher precedence if it has a smaller deadline, we have
that ∆j,k = d∗j − k∗k for all j, k ∈ N .

There are numerous schedulers for which we can specify a time limit on the arrivals that have higher
precedence than a tagged arrival that are not ∆-schedulers. Consider Generalized Processor Sharing (GPS)
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[19] as a representative of fair queueing algorithms. Each flow j is assigned a weight φj and the amount
of service given to backlogged flows is proportional to their weights. Here, at a link with fixed capacity
C, the service rate of a backlogged flow j at time t is given by φjP

k∈Q(t) φk
C, where Q(t) is the set of

flows that have a backlog at time t. Since the set Q(t) is random and the values ∆j,k depend on Q(t), it
is not feasible to characterize the ∆j,k by constants. More generally, any scheduling algorithm for which
a time limit ∆j,k can only be given in terms of a random variable is not a ∆-scheduler.

A. Service Curves for ∆-Schedulers

We will characterize the service available to a flow j ∈ N at a node with fixed capacity C and a
∆-scheduler in terms of a service curve in the sense of Eq. (5). All flows in N \ {j} comprise the cross
traffic at the node. Before we present the service curve in Theorem 1 we must introduce some notation.

For any locally FIFO scheduler, let Wj(t) denote the delay of an arrival from flow j at time t, defined
as

Wj(t) = inf {s ≥ 0 | Dj(t+ s) ≥ Aj(t)} . (6)

It is convenient to view Wj as a function that is defined at all times.
For given constants {∆j,k}j,k∈N , we define

∆j,k(y) = min {∆j,k, y} (7)

to denote arrivals with higher precedence that have already occurred. More specifically, consider an arrival
from flow j at time t that still resides in the scheduler at time t+ y (y > 0), i.e., Wj(t) > y. With respect
to this arrival, traffic from flow k that is transmitted earlier must arrive no later than t+ ∆j,k(y).

If ∆j,k = −∞, arrivals from flow k never have precedence over traffic from flow j, and can be excluded
from a delay analysis. We define Nj and N−j as

Nj = {k ∈ N |∆j,k(t) > −∞} , N−j = Nj \ {j} ,

to specify the subset of flows that may have an impact on the delay Wj of traffic from flow j.
Finally, we denote by I(.) the indicator function, where I(expr) = 1 if ‘expr’ is true, and I(expr) = 0

otherwise. The following theorem specifies a family of statistical service curves for flow j at a node with
∆-scheduling:

Theorem 1: Given a ∆-scheduler operating at a link with capacity C and a set of flows N with traffic
at the link. For each flow k ∈ N , let Gk be a statistical sample path bound with bounding function εk(σ)

satisfying Eq (2). Then, for each θ ≥ 0, the function

Sj(t; θ) =
[
Ct−

∑
k∈N−j

Gk(t− θ + ∆j,k(θ))
]

+
I(t > θ) (8)

is a statistical service curve with bounding function

εs(σ) = infP
σk=σ

∑
k∈N−j

εk(σk) .
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The theorem generalizes a service curve characterization that has been known for FIFO [8] to all ∆-
schedulers and to a probabilistic setting. In the special case where the arrivals to flow k are bounded by
deterministic envelopes Ek satisfying Eq. (1), the theorem says that for each θ ≥ 0, the function

Sj(t; θ) =
[
Ct−

∑
k∈N−j

Ek(t− θ + ∆j,k(θ))
]

+
I(t > θ) (9)

is a deterministic service curve in the sense of Eq. (3).

Proof: Fix a time t ≥ 0. Let Bt
j,k(s) denote the backlogged traffic from flow k at time s with higher

or equal precedence than an arrival from flow j at time t. This can be expressed as follows:

Bt
j,k(s) = Ak (min {s, t+ ∆j,k})−Dk(s)

= Ak (t+ ∆j,k(s− t))−Dk(s) . (10)

Let x̂t be the last time before t when the scheduler does not have such a backlog, that is,

x̂t = sup
{
s ≤ t |

∑
k∈NjB

t
j,k(s) ≤ 0

}
. (11)

No traffic that arrives earlier than x̂t contributes to the delay of an arrival from flow j at time t. Note
that Eq. (11) implies that Aj(x̂t) = Dj(x̂t). With Eq. (11), we can rewrite Eq. (6) as

Wj(t) = inf {s ≥ 0 | Dj(x̂t, t+ s) ≥ Aj(x̂t, t)} .

Consider first the case where the delay at time t exceeds θ, that is, Wj(t) > θ. Since ∆-schedulers are
work-conserving, in the entire interval [x̂t, t + θ] the link is transmitting traffic from flows in Nj at rate
C. We get

C(θ + t− x̂t) =
∑

k∈NjDk(x̂t, t+ θ) . (12)

In the interval [x̂t, t+θ], the link is only transmitting traffic with higher precedence than the tagged arrival.
Since arrivals from flow k with higher precedence than the tagged arrival must occur before t+ ∆j,k(θ),
we have for each k that Ak(x̂t, t+ ∆j,k(θ)) ≥ Dk(x̂t, t+ θ). Applying this inequality in Eq. (12) gives a
lower bound on the transmitted traffic from class j:

Dj(x̂t, t+ θ) ≥ [C(θ + t− x̂t)−
∑
k∈N−j

Ak(x̂t, t+ ∆j,k(θ))]+ .

We can view the right hand term as a lower bound on the capacity available to flow j that is left unused
by the other flows. Using that Dj(x̂t) = Aj(x̂t), we can rewrite the inequality as

Dj(t+ θ) ≥ Aj(x̂t) + [C(θ + t− x̂t)−
∑
k∈N−j

Ak(x̂t, t+ ∆j,k(θ))]+I(t− x̂t > 0) . (13)

Note that the indicator function always evaluates to 1. On the other hand, in the case where Wj(t) ≤ θ,
we know that

Dj(t+ θ) ≥ Aj(t) , (14)

because the scheduler is locally FIFO.
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Eqs. (13) and (14) can be summarized in the statement that

Dj(t) ≥ inf
s≤t

{
Aj(s) +

[
C(t− s)−

∑
k∈N−j

Ak(s, t− θ + ∆j,k(θ))
]

+
I(t− s > θ)

}
(15)

for all t ≥ 0 and all θ ≥ 0. To see this, we first replace t by t − θ in both inequalities, then set s = x̂t
for Eq. (13) and s = t− θ for Eq. (14).

Now suppose that we have sample paths so that at time t we have

sup
s≤t

{∑
k∈N−j Ak(s, t− θ + ∆j,k(θ))−

∑
k∈N−j Gk(t− s− θ + ∆j,k(θ))− σ

}
≤ 0 . (16)

Inserting this into Eq. (15) yields the service curve

Dj(t) ≥ inf
s≤t

{
Aj(s) +

[
C(t− s)−

∑
k∈N−j

Gk(t− s− θ + ∆j,k(θ))− σ
]

+
I(t− s > θ)

}
≥ Aj ∗ [Sj − σ]+(t; θ) . (17)

Choosing {σk}k∈N−j such that σ =
∑

k∈N−j σk, we estimate the bounding function as follows:

P
(
Dj(t) ≥ Aj ∗ [Sj − σ]+(t; θ)

)
≥ P

(
Eq. (16) holds

)
≥ P

(
∀k ∈ N−j : sup

s≤t

{
Ak(s, t− θ + ∆j,k(θ))− Gk(t− s− θ + ∆j,k(θ))

}
≤ σk

)
(18)

≥ 1−
∑
k∈N−j

P
(

sup
s≤t−θ+∆j,k(θ)

{
Ak(s, t− θ + ∆j,k(θ))− Gk(t− θ + ∆j,k(θ)− s)

}
> σk

)
(19)

≥ 1−
∑
k∈N−j

εk(σk) .

In Eq. (18) we restrict the event by requiring that in Eq. (16) each flow k ∈ N−j satisfies its envelope Gk
for some allowed choice of σk. For Eq. (19) we have first applied the union bound and then used that the
supremum cannot be assumed for s > t− θ + ∆j,k(θ) to restrict the range of s. In the last step, we have
used that Gk is a statistical sample path bound. The claim follows by minimizing over {σk}k∈N−j .

B. Tightness of the Service Curve

We make the case that the service curve in Theorem 1 accurately characterizes a scheduler, by showing
that we can obtain necessary and sufficient conditions for meeting given delay bounds.

Let Sj be a statistical service curve with bounding function εs(σ), as defined in Eq. (5), and let Gj be
a statistical sample path envelope with bounding function εg(σ), as defined in Eq. (2). Select d(σ) as the
smallest value satisfying

Gj(t) + σ ≤ Sj(t+ d(σ)) , ∀t ≥ 0 , (20)

and set
ε(σ) = inf

σ=σ1+σ2

{εg(σ1) + εs(σ2)} . (21)

From [6] we have that d(σ) is a probabilistic delay bound that satisfies

P (Wj(t) > d(σ)) < ε(σ) , ∀t ≥ 0, ∀σ ≥ 0 . (22)
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We apply this probabilistic delay bound to the service curve of the ∆-scheduler from Theorem 1. Setting
θ = d(σ) in Eq. (8), and inserting the service curve into Eq. (20) we obtain

sup
t>0

{
Gj(t) + σ −

[
C(t+ d(σ))

∑
k∈N−j

Gk(t+ ∆j,k(d(σ)))
]

+

}
≤ 0 .

Since ∆j,j = 0 in all locally FIFO schedulers, we can replace Gj(t) by Gj(t+ ∆j,j(d)). Collecting terms,
we get

sup
t>0

{∑
k∈Nj

Gk(t+ ∆j,k(d(σ))) + σ − Ct
}
≤ Cd(σ) . (23)

For σ = 0 and d = d(0), this condition has the same structure as the probabilistic schedulability conditions
from [3], which were derived without using service curves. This indicates that the service curve from
Theorem 1 yields similar delay bounds as those obtained with a ‘direct’ analysis of a specific scheduling
algorithm.

The following theorem shows that the deterministic analogue of Eq. (23) is tight in the sense that it
yields a necessary and sufficient condition for meeting a delay bound. Here, the envelopes Gk are replaced
by deterministic sample-path envelopes Ek (satisfying Eq. (1)), Sj is given by Eq. (9), and σ = 0, ε(σ) = 0.

Theorem 2: Given a set of flows N arriving at a buffered link of fixed-rate capacity C and a ∆-
scheduler. Assume that the arrivals to each flow k ∈ N are bounded by a deterministic envelope function
Ek satisfying Eq. (1). If

sup
t>0

{∑
k∈Nj

Ek(t+ ∆j,k(d))− Ct
}
≤ Cd (24)

for some d > 0, then the delay of traffic from flow j does not exceed d. If the envelope functions Ek are
concave, then the conditions is tight, in the sense that the worst-case delay is give by d.

Condition (24) recovers the necessary and sufficient conditions for meeting a deterministic delay bound
d under FIFO, SP, and EDF from [7], [17]. We point out that deterministic envelope functions that
provide a tight description for an arrival flow are typically well approximated by concave functions. This
follows from the fact that the smallest deterministic envelope function for an arrival sample path is always
subadditive.

Proof: Sufficiency of Eq. (24) follows directly from the deterministic version of Eqs. (20) and (22).
To prove necessity for concave envelope functions, we assume that the condition in Eq. (24) is violated
for t∗, that is, ∑

k∈Nj

Ek(t
∗ + ∆j,k(d)) > C(d+ t∗) , (25)

and show that this violation results in a delay bound violation.
Consider a transmission scenario where the scheduler is empty at time t = 0, and immediately after

t = 0, each flow k 6= j generates arrivals to the scheduler such that Ak(t) = Ek(t). Arrivals from flow j

also satisfy Aj(t) = Ej(t) with the additional requirement that there is an arrival from flow j at t∗. The
backlogged traffic from flow k at time s with higher or equal precedence than an arrival from flow j at
time t∗ is Bt∗

j,k(s), as defined in Eq. (10). Defining

Bt∗

j (s) =
∑
k∈Nj

Bt∗

j,k(s) ,
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we obtain that for s ∈ [0, t∗ + d] the following holds:

Bt∗

j (s) =
∑
k∈Nj

(
Ak(t

∗ + ∆j,k(s− t∗))−Dk(s)
)

=
∑
k∈Nj

Ek(t
∗ + ∆j,k(s− t∗))− Cs . (26)

Since all Ek are assumed to be concave and nondecreasing, and ∆j,k(s − t∗) is concave, we have that
Bt∗
j (t) is concave in the interval [0, t∗ + d]. Since Bt∗

j (0) = 0 by construction of the arrival pattern, and
Bt∗
j (t∗ + ∆j,k(d)) > 0 due to the assumption in Eq. (25), we have that Bt∗

j (s) > 0 for s ∈ [0, t∗ + d).
Noting that for t > t∗, Bt∗

j describes the backlogged traffic that is transmitted before the arrival from flow
j at time t∗, the arrival cannot be transmitted by time t∗ + d, resulting in a delay bound violation.

IV. END-TO-END DELAY ANALYSIS

We next use the service curve from the previous section to analyze end-to-end delays for ∆-schedulers
across a path of multiple nodes. We study the delay of a traffic flow (with index ‘0’) that traverses a
sequence of H nodes as shown in Fig. 1, and that experiences cross traffic at each node. We do not assume
independence of cross traffic and through traffic. The cross traffic at nodes can be heterogeneous, and we
use N h

c to denote the set of cross-traffic flows at the h-th node. Each node has a fixed rate capacity, with
Ch denoting the rate at the h-th node. Each node uses a ∆-scheduler for packet transmission, but the
scheduling algorithm may be different at each node. We denote by ∆h

0,k the scheduler dependent constants
at node h for the through traffic flow 0 and a cross traffic flow k ∈ N h

c . For conciseness of the derivations,
we adopt a discrete time system (t = 0, 1, . . .).

We compute end-to-end delay bounds for exponentially bounded arrival processes, where the arrivals
A of each flow satisfy for all s ≤ t and for σ ≥ 0

P (A(s, t) > ρ(t− s) + σ) ≤Me−ασ , (27)

where M ≥ 1 and ρ, α > 0 are constants. Such traffic is said to have Exponentially Bounded Burstiness
(EBB) [24]. We will write A ∼ (M,ρ, α) to denote an EBB arrival process with the given constants.

Remark: For EBB arrivals and a network as in Fig. 1, the asymptotic growth of end-to-end delays in H
is Θ(H logH) for all ∆-schedulers. This follows from the scaling analysis in [4] for a packetized arrival
model. The upper bound of O(H logH) for delays in BMUX from [4] holds for all ∆-schedulers since
delays with BMUX are larger than those of any ∆-scheduler. The lower bound of Ω(H logH) in [4] was
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derived for a network without any cross traffic. Since all ∆-schedulers are locally FIFO, the lower bound
holds for any ∆-scheduler.

A statistical sample path envelope satisfying Eq. (2) for the EBB arrival process from Eq. (27) can be
computed with the union bound as

G(t) = (ρ+ γ)t , ε(σ) =
Me−ασ

1− e−αγ
,

for any choice of γ > 0. We assume that the through traffic is an EBB flow A0 ∼ (M0, ρ0, α0) that traverses
a path of H nodes. The EBB parameters of each cross traffic flow k ∈ N h

c is Ak ∼ (Mk, ρk, αk). Finally,
we denote by Gk and εk(σ), respectively, the statistical sample path envelope and bounding function of
flow k. Using the statistical sample path envelopes, Theorem 1 provides for the through traffic at the h-th
node the service curve

Sh(t; θh) =
[
Cht−

∑
k∈Nhc

(ρk + γ)
[
t−θh+∆h

0,k(θ
h)
]

+

]
+
I(t > θh), (28)

εh(σ) = infP
k∈Nhc

σk=σ

∑
k∈Nhc

Mke
−αkσk

1− e−αkγ
. (29)

We assume that the arrival rates satisfy the stability condition

ρ0 +
∑
k∈Nhc

ρk < Ch , h = 1, . . . , H ,

and choose the free parameter γ to satisfy

0 < γ < min
h

Ch −
∑

k∈Nhc
ρk − ρ0

h+ 1
. (30)

The value of the violation probability in the above equation can be found by taking advantage of the
following property derived in [6]: For any set of constants (Mj, ρj, αj) with j = 1, 2, . . . , N ,

infPN
j=1 σj=σ

N∑
j=1

Mje
−αjσj =

N∏
j=1

(Mjαjw)
1

αjw e−σ/w , (31)

where w = 1/α1 + 1/α2 + . . .+ 1/αN . This yields for the bounding function in Eq. (29)

εh(σ) = Mhe−α
hσ , (32)

where

αh =
(∑
k∈Nhc

1/αk

)−1

, Mh =
∏
k∈Nhc

(
Mkαk

αh(1− e−αkγ)

)αh

αk

. (33)

The statistical service curve given by Eqs. (28) and (32) describes the service available to the through
flow at the h-th node. We next use the min-plus algebra of the stochastic network calculus to derive a
probabilistic end-to-end delay bound from these per-node service curves.
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A. Probabilistic End-to-end Delay Bound

Following a network calculus approach for computing end-to-end delay bounds for a path of nodes,
we proceed in two steps. First, we use the per-node service curves for ∆-schedulers above to obtain a
statistical network service curve for the through flow on the entire path of H nodes. Second, we use this
network service curve in the single-node delay bound from Eq. (20).

Since the bounding function in Eq. (32) has an exponential decay, it clearly satisfies
∫∞

0
εh(x)dx <∞.

This allows us to use a result in [6] (Theorem 1) which provides a statistical network service curve Snet

satisfying Eq. (5). In the discrete-time version of the network service curve, the through flow receives a
service curve for the entire network of H nodes given by

Snet(t; θ) = S1 ∗ S2
γ ∗ . . . ∗ SH(H−1)γ(t; θ) , (34)

where θ = (θ1, . . . , θH) and Sh(h−1)γ(t; θ) = Sh(t; θ) − (h − 1)γt. Compared with the deterministic case,
the convolution of statistical service curves incurs at each node an additional rate degradation of γ. The
corresponding bounding function is given by

εnet(σ) = infPH
h=1 σ

h=σ

{
εH(σH) +

H−1∑
h=1

∞∑
j=0

εh(σh + jγ)
}
. (35)

We apply this result to derive Snet and εnet from the per-node service curves given by Eqs. (28) and
(32). By Eq. (30), and since θh − ∆h

0,k(θ
h) is non-decreasing in θh, the term in the outer brackets of

Eq. (28) is non-negative, and we can write

Sh(h−1)γ(t; θ
h) = S̃ ∗ δθh(t) .

Here, δ is the shift function defined by Eq. (4), and

S̃h(t) = (Ch − (h− 1)γ)(t+ θh)−
∑
k∈Nhc

(ρk + γ)
[
t+ ∆h

0,k(θ
h)
]

+
. (36)

Note that the term inside the large square brackets of Eq. (28) increases with θh. We will always take θh

so large that
(Ch − (h− 1)γ)θh ≥

∑
k∈Nhc

(ρk + γ)
[
∆h

0,k(θ
h)
]

+
. (37)

(Otherwise, Sh(h−1)γ could be increased by increasing θh.) With this choice of θh, we see that S̃h is
nonnegative, strictly increasing, and concave in t. Exploiting basic properties of the min-plus algebra, we
derive

Snet(t; θ) =
(
S̃1 ∗ δθ1

)
∗ . . . ∗

(
S̃H(H−1)γ ∗ δθH

)
(t)

=
(
S̃1 ∗ . . . ∗ S̃H(H−1)γ

)
∗
(
δθ1 ∗ . . . ∗ δθH

)
(t)

= min
h=1,...,H

{
S̃h
}
∗ δPH

h=1 θ
h(t)

= min
h=1,...,H

{
S̃h(t−

∑H
h=1 θ

h)
}
I(t >

∑H
h=1 θ

h) .

The second line in the above computation applies the associativity and commutativity of the min-plus
convolution. The third line uses that the convolution of concave functions is their pointwise minimum,
and that δa ∗ δb = δa+b.
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The bounding function εnet of the network service curve in Eq. (35) we estimate with Eq. (31) that

εnet(σ) = infPH
h=1 σ

h=σ

{MHe−α
HσH

1− e−αHγ
+

H−1∑
h=1

Mhe−α
hσh

(1− e−αhγ)2

}
= Mnete−α

netσ, (38)

where

αnet =
( H∑
h=1

1/αh
)−1

, Mnet ≤
H∏
h=1

(
Mhαh

(1− e−αhγ)2αnet

)αnet/αh

e−α
netσ.

Having derived a network service curve for the through flow in the network shown in Fig. 1, we can
now obtain a bound for the end-to-end delay bound, denoted by dnet(σ), by applying the single node
delay bound from Eqs. (20)–(22), where εnet from Eq. (38) takes the place of εs(σ), and εg(σ) is given
by M0e−α0σ

1−eα0γ
. We evaluate the bounding function in Eq. (22) with another application of Eq. (31) as

Pr{W (t) ≥ dnet(σ)} ≤
(Mnet

α0

) α0
α0+αnet

(M0

αnet
) αnet

α0+αnet (αnet + α0)e
−α0α

net

α0+αnet
σ
. (39)

Per Eq. (20),

∀t ≥ 0 : Snet(t+ dnet(σ); θ) ≥ (ρ0 + γ)t+ σ (40)

is a sufficient condition for dnet(σ) to be a probabilistic delay bound. The stability assumption and our
choice of γ guarantees that Eq. (40) is automatically satisfied for t sufficiently large, since Snet(t) grows
linearly with rate

min
h

{
Ch − hγ −

∑
k∈Nhc

ρk

}
> ρ0 + γ .

Since the left hand side of Eq. (40) is concave in t, it suffices to verify the condition in Eq. (40) for
t = 0. Thus, we determine dnet(σ) as the smallest d such that

∀h = 1, . . . , H : S̃h(d−
∑H

h=1 θ
h) ≥ σ ,

subject to
dnet(σ) ≥

∑H
h=1 θ

h . (41)

The θh’s should be selected to minimize dnet(σ), yielding the following optimization problem:

dnet(σ) = min
θ1...θh

min
{
d ≥

H∑
h=1

θh
∣∣∣ min
h=1,...,H

{
(Ch − (h− 1)γ)(d+ θh −

∑H
j=1 θ

j)

−
∑
k∈Nhc

(ρk + γ)
[
d+ ∆h

0,k(θ
h)−

∑H
j=1 θ

j
]

+

}
≥ σ

}
.

Here, the values of θh are subject to the constraint in Eq. (37). For H = 1, since θ1 −∆1
0,k(θ

1) is non-
decreasing in θ1, the optimal choice is θ1 = d for all ∆-schedulers. This will give the same results as the
single node analysis in Section III-B. For H > 1, the optimal choice of θh depends on the value of ∆h

0,k.
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Let θh∗ be the smallest number such that Eq. (37) holds. With the change of variables X = dnet(σ)−∑H
h=1 θ

h, the optimizing problem takes the following form:

Minimize dnet(σ) = X +
∑H

h=1 θ
h (42)

subject to

(Ch − (h−1)γ)(X + θh)−
∑
k∈Nhc

(ρk+γ)
[
X + ∆h

0,k(θ
h)
]

+
≥ σ, h = 1, . . . H ,

X ≥ 0 , θh ≥ θh∗ , h = 1, . . . H .

Even though this optimization problem is not generally convex, since ∆h
0,k(θ

h) is concave in θh when
∆h

0,k > 0, it can be solved explicitly as follows. For each value of X , let θh(X) be the smallest choice of
θh that satisfies the constraints of the optimization problem. Then θh(X) is a piece-wise linear function of
X , with at most two corners for each element in N h

c , where one corner is due to the condition θh ≥ θh∗ , and
the other corner is due either to the definition of ∆h

0,k(θ
h) (if ∆h

0,k < 0) or to enforcing the non-negativity
of the term

[
X + ∆h

0,k(θ
h)
]

+
(if ∆h

0,k > 0). Thus, θh is a piece-wise linear function of X , with at most
1 + 2|N h

c | corners (including X = 0). Inserting these values for θh, the objective function becomes a
piece-wise linear function of the single variable X . Since such a function has its minimum at one of the
corners, the optimization is solved by evaluating the objective functions for at most 1 +

∑H
h=1(2|N h

c |)
points, and taking the minimum.

B. Closed-Form Solutions

We now consider a few illuminating special cases where we can obtain closed-form expressions for
the end-to-end delay bound. To achieve a closed form we must reduce the set of available parameters.
Suppose each node has the same fixed capacity link with rate C, and the cross traffic at each node is
given by a single flow, given by an identically distributed arrival process Ac ∼ (Mc, ρc, αc). We also
assume that the same ∆-scheduling algorithm is used at each node, with ∆0,c denoting the constant for
the through traffic flow (with index 0) with respect to the cross traffic flow. With these simplifications,
we obtain αnet = α/H , Mnet = MH

(1−e−αγ)2
, and from Eq. (39),

Pr{W (t) ≥ dnet(σ)} ≤ M(H + 1)

(1− e−αγ)2
e−

α
H+1

σ . (43)

Since the objective function in Eq. (42) is linear, it assumes its minimum at a point where H + 1

constraints hold with equality. In such a point, we must have θ1 = . . . = θK = 0, and 0 < θK+1 ≤ . . . ≤ θH

for some K. We will now describe how to identify this point.
We reduce the problem to a minimization problem in the single variable X . For X ≥ 0, let θh(X) be

the smallest nonnegative solution of(
C − (h− 1)γ

)(
X + θh

)
− (ρc + γ)

[
X + ∆0,c(θ

h)
]

+
≥ σ .

This choice ensures that the h-th constraint in Eq. (42) is satisfied with equality whenever θh(X) > 0,
and we obtain

dnet(σ) = min
X≥0

{
X +

H∑
h=1

θh(X)

}
. (44)
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Clearly, θh(X) is a strictly decreasing function of X in the range where θh(X) > 0. Once we have
identified the index K described above, we can drop the first K summands and consider only θh(x) for
h > K. The minimum is assumed at a point where the derivative d

dX

{
.
}

changes from negative to positive.
We distinguish two cases. For ∆0,c ≥ 0, we compute its derivative as

d

dX
θh(X) =

{
− C−ρc−hγ
C−(h−1)γ

, θh > ∆0,c ,

−1 , 0 < θh < ∆0,c .

It follows that the optimal K necessarily satisfies∑
h>K

C − ρc − hγ
C − (h− 1)γ

< 1 . (45)

Given K ≥ 1, we set
X =

σ

C − ρc −Kγ
. (46)

For K = 0 we set X = 0. The optimal K must also satisfy θh(X) > ∆0,c for all h > K. We take K to
be the smallest index with these properties. Finally, we determine dnet(σ) from Eq. (44).

For ∆0,c ≤ 0, the function θh(X) is convex, and

d

dX
θh(X) =

{
−1 , X < −∆0,c ,

− C−ρc−hγ
C−(h−1)γ

, X > −∆0,c .

As above, K should be chosen so that Eq. (45) holds. If K ≥ 1, set

X = max

{
σ

C − (K − 1)γ
,
σ + (ρc + γ)∆0,c

C − ρc −Kγ

}
. (47)

If K = 0 set X = −∆0,c. We take K to be the smallest index satisfying Eq. (45).
We do not claim that these choices are optimal. However, in practice, K is usually close to H , resulting

in a near-optimal choice.
To compute a probabilistic delay bound, we first set the right hand side of Eq. (43) equal to the desired

violation probability and solve for σ, and then find dnet(σ) by solving the optimization problem in Eq. (42)
according to the procedure outlined above. Since there is no explicit term for γ, the optimization is done
numerically over γ.

There are several special cases where we can find explicit solutions to the optimization problem in
Eq. (42):

• ∆0,c = ∞: This is the case of blind multiplexing. Here, we obtain that the optimal solution is
θ1 = . . . = θH = 0, and we get

d(σ) = X =
σ

C − ρc −Hγ
, (48)

which is the same delay bound found in [6].
• ∆0,c = 0: This is the case of FIFO. Here, the optimization problem greatly simplifies, because the

constraints are linear. The second condition in Eq. (45) is always satisfied, leaving only the first condition.
We choose K to be the smallest integer that satisfies Eq. (45), determine X from Eq. (46), and compute

θh =
(h−K)γX

C − (h− 1)γ
, for h > K .
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The resulting delay bound is

d(σ) =
σ

C − ρc −Kγ

(
1 +

∑
h>K

(h−K)γ

C − (h− 1)γ

)
. (49)

• γ = 0: This case arises in a deterministic scenario, in which bounds are never violated. Note that
by setting M = eBα and letting α → ∞ in the EBB model in Eq. (27), we obtain a leaky bucket with
E(t − s) = R(t − s) + B. From Eq. (42), we see that necessarily θh = θ for all h. Then the solution
to the optimization gives either θ = 0 or X = 0. For different values of ∆0,c, we obtain end-to-end
delay bounds that apply to the deterministic network calculus. For FIFO scheduling, these bounds will
be weaker than those obtained in [15]. While this may appear as a principal limitation of applying the
stochastic network calculus to a deterministic network, a modification to the network service curve from
Eq. (34) can strengthen the result.

Studying the optimization problem, we discover that the delay bounds of FIFO approach that of blind
multiplexing when the utilization of the cross traffic ρc is small or H is large. The reason is that the first
condition in Eq. (45) forces K to be close to H , which in turn forces Eq. (49) (with ∆0,c = 0) to converge
to the blind multiplexing delay bound Eq. (48). In the numerical examples in the next section, we will
see that FIFO approaches the delay bounds of BMUX even for modest path lengths and link utilizations.

V. NUMERICAL EXAMPLES

We present numerical examples of the end-to-end delay bounds derived in this paper, where we assume
that the time unit is T = 1 ms. As traffic, we use discrete-time on-off Markov-Modulated Process with
two states (OFF= 1, ON= 2), where the probabilities of the transitions ON → OFF and OFF → ON are
denoted by p12 and p21. In one time unit in the ON state, the process transmits a fixed amount of data
denoted by P . We assume that p12 + p21 ≤ 1. The effective bandwidth eb(s, t) = 1

st
logE[esA(t)] of such

a process is bounded by [5]

eb(s, t) ≤ 1

s
log

1

2

(
p11 + p22e

sP +
√

(p11 + p22esP )2 − 4(p11 + p22 − 1)esP
)
,

where p11 = 1 − p12 and p22 = 1 − p21. If A denotes the arrivals of an aggregate of N independent
such flows, the traffic complies to the EBB model in Eq. (27) with A ∼ (1, N · eb(s, t), s). We set the
parameters to P = 1.5 kilobits, p11 = 0.989 and p22 = 0.9, resulting in a peak rate of 1.5 Mbps and an
average rate of 0.15 Mbps. Both through and cross traffic flows have these characteristics.

We consider a network as in Fig. 1, where all nodes have the same capacity C = 100 Mbps, and all
nodes use the same ∆-scheduling algorithm. The number of through flows is N0 and the number of cross
flows at each node is Nc. All flows have the same characteristics as discussed above. The load on a link
is denoted by the utilization U , defined as a percentage of utilized capacity U = (N0 +Nc) ·0.15/100. We
use U0 and Uc, to denote the utilization due to through and cross traffic, respectively, with U = U0 + Uc.
In all examples, we compute end-to-end delay bounds for the through flows with a violation probability
set to ε = 10−9.
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Fig. 2. Example 1: End-to-end delay bounds of through traffic for EDF (d∗0 < d∗c ), BMUX, and FIFO as a function of the total utilization U

(H = 2, 5, 10, U0 = 15% (constant), ε = 10−9).

A. Example 1

We evaluate the end-to-end delay bounds computed in Section IV as a function of the total utilization
U . We consider the scheduling algorithms BMUX (for reference), FIFO, and EDF. For EDF we set the
a priori delay constraints at each node to d∗0 = dnet

H
and d∗c = 10dnet

H
for the through and the cross traffic,

respectively, where dnet is the computed end-to-end delay bound of the through traffic with EDF. In the
example, the number of through flows is kept constant at N0 = 100, corresponding to a utilization of
Uc = 15%, while the number of through flows is increased, so that the total utilization U = U0 + Uc
covers a range of 20% ≤ U ≤ 95%. We include results for path lengths of H = 2, 5, 10.

In Fig. 2 we see that the delay bounds of FIFO are indistinguishable from those of BMUX as early
as H = 5. At the same time, the delay bounds of BMUX and FIFO are noticeably larger than those of
EDF, and the difference seems to increase with the network size. Note that, since the BMUX bounds
from [6] represent the state-of-the-art for end-to-end delay bound analysis, the graphs for EDF illustrate
the benefits of applying the scheduler-aware analysis from this paper.

B. Example 2

This example examines in more detail how scheduling algorithms influence delays in a network. We
use the same setup as in Example 1, however, we keep the link utilization constant at U = 50% and
instead vary the traffic mix Uc/U . For EDF we consider two cases: shorter delay constraints for through
traffic (d∗0 = d∗c/2) and longer delay constraints for through traffic (d∗0 = 2d∗c). The results are shown
in Fig. 2. Even though the total utilization at the node is constant, we observe different delay bounds
for the evaluated schedulers. We can observe several counteracting effects. Interpreting FIFO as an EDF
scheduler with identical a priori delay constraints, i.e., d∗0 = d∗c , and BMUX as an EDF scheduler with
d∗0 = ∞ and d∗c < ∞, we see, for H = 2, that a larger ratio d∗0/d

∗
c causes end-to-end delay bounds to

become more sensitive to increased cross traffic. In particular for EDF (d∗0 = d∗c/2), the end-to-end delay
bounds are almost insensitive to the traffic mix at H = 2, and even decrease when the fraction of cross
traffic in increased. This is due to the fact that with the choice of delay bounds, cross traffic mostly has
lower precedence, while through traffic maintains its locally FIFO property. Thus, increasing cross traffic
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creates more opportunities to ‘jump’ ahead in the buffer, leading to shorter delays. When the path length
H is increased, these effects are diminished as the scaling law for the delays of ∆-schedulers makes all
schedulers have a similar performance as BMUX, where increased cross traffic results in a steep increase
of delay bounds.

C. Example 3

We illustrate the scaling of end-to-end delay bounds as a function of the path length H . Using the
same MMPP traffic parameters as before, we set N0 = Nc, and compute the delay bounds for different
values of U = 10, 50, 90%. For EDF, we set delay constraints at each node to d∗0 = dnet

H
, d∗c = 10dnet

H
.

For BMUX, FIFO, and EDF we compute delay bounds as discussed in Section IV. For BMUX, we
additionally present a delay analysis that is based on adding up per-node delay bounds (as sketched in the
first paragraph of this paper), using a discrete-time version of such an analysis in [6]. In Fig. 4 we see
that the method of adding per-node delay bounds yields loose bounds. In fact, the growth of delays can be
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shown to be O(H3 logH) with discrete time. The delay bounds using our network service curve increase
essentially linearly for all schedulers, following the predicted asymptotic growth of Θ(H logH). These
findings generalize a comparison of a network delay analysis with a node-by-node analysis for BMUX in
[6] for blind multiplexing. Note that, for the depicted range of H , the delay bounds for FIFO and BMUX
appear identical, while delays for EDF (with the selected a priori delay constraints) are noticeably lower
at higher utilizations.

VI. CONCLUSION

We presented an end-to-end analysis of probabilistic delay bounds for ∆-schedulers, a class of algo-
rithms that can be defined in terms of constants which specify time intervals when arrivals have precedence
over buffered traffic. We derived a statistical service curve that can characterize the operations of any
given ∆-scheduler to a degree that it recovers tight delay bound conditions. We performed an end-to-end
delay bound analysis by providing explicit solutions to an optimization problem. We presented numerical
examples that illustrated the impact of the choice of the scheduling algorithm on end-to-end delays. We
observed that delay bounds of FIFO frequently approach those of blind multiplexing when the number
of traversed nodes is large. At the same time, the delays of EDF scheduling were generally markedly
different, and maintained the difference on long paths. Thus, our work does not confirm findings in
other works that longer routes in a network reduce the effectiveness of link scheduling for providing
delay differentiation to flows. Our results suggest that an accurate end-to-end analysis should take into
consideration the specifics of the scheduling algorithms at packet switches.
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