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Abstract

The network calculus is a framework for the analysis of communication net-
works, which exploits that many computer network models become tractable
for analysis if they are expressed in a min-plus or max-plus algebra. In a
min-plus algebra, the network calculus characterizes amounts of traffic and
available service as functions of time. In a max-plus algebra, the network cal-
culus works with functions that express the arrival and departure times or the
required service time for a given amount of traffic. While the min-plus net-
work calculus is more convenient for capacity provisioning in a network, the
max-plus network calculus is more compatible with traffic control algorithms
that involve the computation of timestamps. Many similarities and relation-
ships between the two versions of the network calculus are known, yet they
are largely viewed as distinct analytical approaches with different capabili-
ties and limitations. We show that there exists a one-to-one correspondence
between the min-plus and max-plus network calculus, as long as traffic and
service are described by functions with real-valued domains and ranges. Con-
sequently, results from one version of the network calculus can be readily
applied for computations in the other version. The ability to switch between
min-plus and max-plus analysis without any loss of accuracy provides addi-
tional flexibility for characterizing and analyzing traffic control algorithms.
This flexibility is exploited for gaining new insights into link scheduling al-
gorithms that offer rate and delay guarantees to traffic flows.

J. Liebeherr. Duality of the Max-Plus and Min-Plus Network Calculus. Foundations and
Trends R© in Networking, vol. 11, no. 3-4, pp. 139–282, 2016.
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1
Introduction

Network calculus is a methodology for performance evaluation of communi-
cation networks that expresses the analysis of networks in a min-plus or max-
plus algebra. In these algebras, the conventional addition and multiplication
operations are replaced by the minimum or maximum operation, respectively,
and addition. On the one hand, algebras with a minimum or maximum oper-
ation have weaker properties than algebras endowed with an addition and a
multiplication. For instance, the minimum and the maximum do not have in-
verse operations. On the other hand, taking minimums and maximums creates
strong ordering properties that can be analytically exploited. Network algo-
rithms that involve sequencing of traffic, e.g., scheduling with a sorted queue,
or ordering of events, e.g., window flow control, can often be described by
linear systems in a min-plus or max-plus algebra, but are non-linear in an
algebra with addition and multiplication.

The deterministic analysis of networks by Cruz in [13, 14] and its applica-
tion to Generalized Processor Sharing scheduling by Parekh and Gallager in
[28, 29] mark the beginning of network calculus research. The research was
motivated by the emergence of communication networks that provide service
guarantees even in adversarial worst-case scenarios. Within a few years, re-
searchers recognized that non-traditional algebras, so-called dioids, for mod-
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elling discrete-event dynamic systems [3] can provide the foundation for a
systems theory for communication networks [1, 6, 8]. The dioid algebras are
applied to non-decreasing functions that represent cumulative arrival, depar-
ture and service processes in a network. The essence of the systems theory is
that the departure traffic at a network element can be characterized by a con-
volution of functions describing the cumulative arrivals and the available ser-
vice. The convolution operation is performed either in a min-plus or max-plus
dioid algebra, leading to the min-plus and max-plus versions of the network
calculus. Detailed models have been developed for many types of network
elements, such as buffered links with FIFO or more complex scheduling al-
gorithms, delay elements, traffic regulators, and many more. Comprehensive
discussions can be found in textbooks on the topic [7, 9].

Network calculus analysis can select either a min-plus or max-plus alge-
bra setting, yet, overwhelmingly, the literature presents derivations in a min-
plus framework. In such a setting, arrivals and departures are represented as
functions of time, where a function value F (t) represents the amount of ar-
riving or departing traffic until time t. This representation is convenient when
performing computations with multiplexed traffic flows, since an aggregate
of traffic flows that are characterized by functions F1(t), F2(t), . . . , FN (t)
is simply the sum

∑
j Fj(t). Expressions for multiplexed traffic flows are

needed when determining capacity requirements for a network, e.g., the max-
imum number of flows that can be supported in a network subject to given
service requirements. The representation of traffic by functions of time is less
ideal when describing network control algorithms that assign timestamps to
traffic. An example is a traffic regulator that determines the earliest time when
a packet can be admitted to a network, or a scheduling algorithm that assigns
deadlines for the departure time of packets. Obtaining timestamps from a
function of the form F (t) requires to solve an inverse problem. In a max-plus
framework, arrivals and departures are characterized by functions F (ν) that
give the arrival time or departure time of the ν-th bit or packet. For exam-
ple, at a traffic regulator, the timestamp that determines when the ν-th bit or
packet can be admitted is simply the value of the departure time function at ν.
On the other hand, expressions for multiplexed traffic in the max-plus algebra
are cumbersome (as we will see in §3).

Ideally, network analysis should be able to reconcile the advantages of the
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min-plus and max-plus network calculus algebras. That is, it should be able
to employ functions F (ν) when working with network mechanisms involv-
ing timestamps and functions F (t) when multiplexing traffic. Such mix-and-
match computations require that the functions F (t) and F (ν) can be related
to each other. Mappings between expressions in the min-plus and max-plus
network calculus, and vice versa, exist in the literature (see §13), however,
since the mappings are (generally) not one-to-one, performing them comes
at a loss of accuracy. At present, the prevailing view is that “many concepts
[of the min-plus algebra] can be mirrored in the max-plus algebra,” [20, p.
63], but also that not every result in the min-plus algebra can be extended to
a max-plus setting [9, Remark 6.2.7] and that there is a lacking correspon-
dence between concepts in the min-plus and max-plus algebra [7, §1.10].
On the other hand, according to dioid theory, the underlying min-plus and
max-plus algebras of integer or real numbers are isomorphic [3, 21]. Thus,
the question arises why the isomorphism does not extend to the min-plus and
max-plus network calculus, which are based on these algebras? Our objective
is to explore this question. We find that there exists a one-to-one relationship
between the min-plus and max-plus network calculus, as long as both ap-
proaches are using functions that have a real-valued, that is, continuous-time
or continuous-space, domains. Some of the previously observed differences
between max-plus and min-plus analysis can be traced to the use of functions
with a discrete-valued domain. After establishing the duality between the two
versions of the network calculus, we proceed to characterize scheduling al-
gorithms with rate and delay guarantees by service curves of the network
calculus.

The remainder is structured as follows. In §2, we show that the max-plus
convolution operation emerges when we describe the departures at a work-
conserving link in terms of the arrivals and the link capacity. We observe
that the expression for the departures is sensitive to the choice of measur-
ing traffic in discrete units (bits, bytes, or packets) or by a real-valued met-
ric. In §3–8, we present a self-contained description of the max-plus network
calculus. In §9, we summarize the definitions and main results of the min-
plus network calculus, which are later used for comparisons between the two
network calculus versions. In §10, we show that the min-plus algebra and
max-plus algebra for non-decreasing functions endowed with a minimum (or
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maximum) and a convolution operation are isomorphic to each other. We use
the isomorphism in §11 to establish a duality of service curves, traffic en-
velopes, and performance bounds. In §12, we express scheduling algorithms
for rate guarantees in terms of the continuous-space max-plus network cal-
culus, and establish a connection between well-known scheduling algorithms
and expressions in the max-plus algebra. In §13, we discuss the related liter-
ature with a focus on prior work on the max-plus network calculus, existing
mappings between the min-plus and max-plus network calculus, and its rela-
tionship to lattice theory. We present conclusions in §14.



2
Motivation

Consider a work-conserving buffered link with a fixed transmission rate
of C bits per second, as shown in Figure 2.1, which experiences arrivals of
a sequence of packets. Arrivals that exceed the transmission rate are stored
in a First-In-First-Out (FIFO) buffer, and become the backlog of the buffered
link. A work-conserving buffered link transmits at rate C as long as there is
a backlog in the buffer.

Let T pA(n) and `n denote the arrival time and the size (in bytes or bits),
respectively, of the n-th packet. The departure time of the n-th packet at the
buffered link, denoted by T pD(n), is determined by adding the transmission
time `n

C of the packet either to its arrival time or the departure time of the

Arrivals Departures

Backlog

C

Figure 2.1: Work-conserving buffered link with rate C.
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previous packet, whichever occurs later. We can write this as

T pD(n) = max
{
T pA(n), T pD(n− 1)

}
+ `n
C
, (2.1)

with T pD(0) = 0. If we expand the recursion in the expression, we obtain

T pD(n) = max
{
T pA(n) + `n

C
, T pA(n− 1) + `n−1 + `n

C
,

. . . , T pA(1) + `1 + . . .+ `n
C

}
= max

0≤k≤n−1

{
T pA(n− k) + `n−k + . . .+ `n

C

}
. (2.2)

We now perform a change of units, where, instead of marking the arrivals and
departures of packets, we track individual bits. We use TA(ν) and TD(ν),
respectively, to denote the arrival and departure times of the ν-th bit in the
packet sequence, where ν = 0 is the first bit in the sequence. If we express
the recursion of (2.1) using a bit-level description, we obtain for ν ≥ 0 that

TD(ν) = max
{
TA(ν), TD(ν − 1)

}
+ 1
C
, (2.3)

where we set TD(ν) = −∞ for ν < 0. Expanding the recursion results in

TD(ν) = max
{
TA(ν) + 1

C
, TA(ν − 1) + 2

C
, . . . , TA(0) + ν

C

}
= max

κ=0,1,...,ν

{
TA(ν − κ) + κ+ 1

C

}
. (2.4)

Suppose we introduce an operation ⊗ for two functions f and g such that

f ⊗ g(ν) = max
κ=0,1,...,ν

{f(ν − κ) + g(κ)} ,

and define a function γS(ν) = ν+1
C . Then we can write (2.4) as

TD(ν) = TA⊗ γS(ν) . (2.5)

We refer to the ⊗ operation as max-plus convolution. Alternatively, defining
γ′S(ν) = ν

C , the departure time can be characterized as

TD(ν) = TA⊗ γ′S(ν) + 1
C
. (2.6)
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In a bit-level description of packetized arrivals, all bits belonging to the same
packet arrive instantaneously. If we denote the cumulative size of the first n
packets by Ln, with Ln =

∑n
j=1 `j and Lo = 0, the arrival times of the bits

of the n-th packet are given by

TA(Ln−1) = TA(Ln − ln + 1) = . . . = TA(Ln − 1) ,
for each n ≥ 1. The departure time of a packet in a bit-level description is the
departure time of the last bit of the packet, so that T pD(n) = TD(Ln − 1) for
the n-th packet. With packetized arrivals and departures, the departure time
of the n-th packet, expressed with (2.5), is

TD(Ln − 1) = TA⊗ γS(Ln − 1) ,
which is identical to the packet-level expression in (2.2).

The convolution expressions in (2.5) and (2.6) contain a discretization
artifact due to the bit-level description. In (2.5), a term 1

C is added to the
service function, and in (2.6), the departure time TD(Ln− 1) is increased by
the same amount. To observe the artifact, consider that the unit in which we
measure traffic is 1

k -th of a bit. Then, the recursion in (2.3) and (2.4) becomes

TD(Ln − 1
k ) = max

{
TA(Ln − 1

k ), TD(Ln − 2
k )
}

+ 1
kC

= max
κ=0, 1k ,

2
k ...,Ln−

1
k

{
TA(Ln − 1

k − κ) +
κ+ 1

k

C

}
.

(2.7)

Letting k →∞, we obtain a fluid-flow description of traffic, where traffic vol-
ume is measured by a real number. Then, the values ν ∈ [Ln−1, Ln) designate
the data in the n-th packet. If we use the notation TD(L−n ) = supκ<Ln TD(κ),
and then take the limit k →∞ in (2.7), we obtain

TD(L−n ) = sup
0≤κ≤L−n

{
TA(L−n − κ) + κ

C

}
.

Defining the max-plus convolution for functions f and g with real-valued
arguments as f ⊗ g(ν) = sup0≤κ≤ν{f(ν−κ) + g(κ)}, the departure time of
the n-th packet is given by

TD(L−n ) = TA⊗ γS(L−n ) , (2.8)

with γS(ν) = ν
C . We see that the term 1

kC disappears when traffic volume is
measured by real numbers. This is the main reason why, in the remainder, we
prefer to work with fluid-flow arrival functions on a real-valued domain.



3
Modelling Traffic Arrivals in the Space Domain

Consider an arrival scenario of traffic over a time period of 2 milliseconds
as depicted in Figure 3.1. Each vertical bar in the figure represents an arrival
event of one or more packets. The arrivals are summarized in Table 3.1 in
terms of the packet index n, the packet arrival time T pA(n), and the packet
size `n. There are seven arrival events with eight packet arrivals. Packet ar-
rivals are assumed to be instantaneous and multiple packet arrivals may occur
at the same time. For instance, the arrival event at time t = 0.3 ms consists
of two packet arrivals, one with size 1000 bits and one with size 500 bits.

500

1000

1500

0.5 1 1.50

Time (ms)

Arrivals
(bits)

Figure 3.1: Arrival scenario. Each arrival event is indicated by a vertical line whose length
indicates the total amount of arriving traffic.
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148 Modelling Traffic Arrivals in the Space Domain

Packet index n 1 2 3 4 5 6 7 8

T pA(n) (ms) 0.2 0.3 0.3 0.6 1 1.1 1.5 1.6
`n (bits) 500 1000 500 500 1000 500 500 1000

Table 3.1: Parameters of the packet arrival scenario.

01 2 3 4 5 6 7

Packet index

Time
(ms)

1

0.5

1.5

0

(a) Arrival time function T pA(n).

3000

Tra�c
(bits)

5000

6000

0

1000

2000

4000

Packet index

81 2 3 4 5 6 7

(b) Cumulative packet size function Ln.

Figure 3.2: Packet-level arrival characterization.

Figure 3.2(a) illustrates T pA(n), the arrival time of the n-th packet, as a
function of the packet index n. The packet-level arrival time function does
not encode information on the amount of data in a packet. Unless all packets
have the same size, information on packet sizes must be provided separately,
for example, by the cumulative packet size function Ln defined in §2. The
function is shown in Figure 3.2(b).

A bit-level representation of arrivals dispenses with the need to maintain
two functions to describe arriving traffic. Letting TA(ν) denote the arrival
time of the (ν − 1)-th bit, we obtain the arrival time function TA given in
Figure 3.3(a). The function is defined for discrete values ν = 0, 1, . . ., and is
therefore referred to as a discrete-space function. The markers in the figure
indicate the function values that correspond to packet arrival instants. Due to
our convention of counting bits starting at zero, the first packet covers values
ν = 0, 1, . . . , 499 bits, the second covers ν = 500, . . . , 1499 bits, and so



149

Time
(ms)

1.5

0.5

1

0

Tra�c (bits)

0 1000 2000 3000 4000 5000 6000

(a) Bit-level (discrete space).

Time
(ms)

1.5

0.5

Tra�c (bits)

0 1000 2000 3000 4000 5000 6000

1

0

(b) Fluid-flow (continuous-space).

0

Tra�c (bits)

0 1000 2000 3000 4000 5000 6000

Time
(ms)

1.5

0.5

1

(c) Right-continuous (continuous-space).

Figure 3.3: Representations of the arrival time function TA.
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forth. In Figure 3.3(a), for ν ≥ 5500 bits, we set the arrival time function to
TA(ν) = ∞, indicating that those bits will never arrive. An alternative is to
limit the domain of TA(ν) to ν < 5500 bits.

When traffic is expressed using non-negative real numbers, the arrival
time function is a continuous-space function. With continuous-space func-
tions, we can express arrivals that occur continuously at a constant or vari-
able rate. Figure 3.3(b) shows an arrival function TA that is generated when
the packet arrivals in Table 3.1 have passed through a link with a rate of
15 Mbps. In this case, the data of a packet does not arrive instantaneously but
over a time interval whose length depends on the packet size. The dotted lines
in the figure indicate the intervals over which arrivals occur. We continue to
use ‘bits’ as the unit of traffic in a continuous-space setting, allowing bits to
take any non-negative real value.

A continuous-space arrival time function with instantaneous arrivals of
entire packets results in discontinuities (‘jumps’) that require a choice of the
function value at the time instant of a jump. Depending on this choice, the
arrival time function is right-continuous or left-continuous. As a convention,
we will always interpret continuous-space arrival time functions TA as right-
continuous functions. Compared to the left-continuous alternative, a right-
continuous function TA is the more conservative choice, since it assigns a bit
value a timestamp that is never earlier than that of the left-continuous version.
Figure 3.3(c) illustrates a right-continuous function arrival time function TA
with instantaneous packet arrivals. For emphasis, the function values at points
where TA is not continuous are indicated by large dots.

When working with a non-decreasing function F that has jumps, we
sometimes need to refer to the function value immediately to the left or to
the right of a value x. This can be done with the notation F (x−) and F (x+),
defined as

F (x−) = sup
u<x

F (u) and F (x+) = inf
u>x

F (u) . (3.1)

A right-continuous function always satisfies F (x) = F (x+), and a left-
continuous function satisfies F (x) = F (x−) for each x ∈ R. If a right-
continuous function has a jump at x, then F (x−) is the function value im-
mediately before the jump, and F (x) the function value after the jump. For
a left-continuous function F with a jump at x, F (x) is the function value
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500

0.5 1 1.50

Time (ms)

1000

1500

Arrivals
(bits)

Figure 3.4: Arrival scenario with data aggregation (A solid line indicates a Flow 1 arrival, and
a dashed line is a Flow 2 arrival).

before the jump and F (x+) the value after the jump.
Data aggregation. Let us consider an aggregate of several flows. When

we represent arrivals as functions of time, flows are aggregated by simply
adding the arrival functions. Let Aj(t) denote the cumulative arriving traffic
from flow j that arrives until time t. Then, with arrival functions A1, . . . , AN
for a set of flows, the arrival function of the aggregate is

∑N
j=1Aj(t). Deter-

mining aggregate arrivals in the space domain is less obvious. Let us use TA
for the arrival time function of the aggregate of a set of flows with arrival
time functions TA1 , . . . , TAN . The time instant TA(ν) denotes the earliest
time when arrivals from all flows add up to ν bits. Each flow j contributes νj
bits to this number with 0 ≤ νj ≤ ν, which gives ν = ν1 + . . . + νN . The
last arrival of the tuple (ν1, . . . , νN ) gets us to the total number of ν, which
is maxj=1,...,N TAj (νj). Since there can be many tuples that add up to ν, the
time TA(ν) is determined by the tuple that reaches the desired number of ν
bits first. This gives us

TA(ν) = inf
ν1,...,νN

ν=ν1+...+νN

max
j=1,...,N

TAj (νj) . (3.2)

For illustration consider the arrival scenario in Figure 3.4 with two flows.
The vertical lines in the figure indicate packet arrivals. Arrivals from Flow 1
and Flow 2 are represented by solid and dashed lines, respectively. We can
construct the values of the aggregate arrival time function TA by visual in-
spection, where we move along the time axis and collect packet arrivals until
the desired number of bits is obtained. For example, the arrival time function
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for ν = 5000 bits is reached by adding the first six packet arrivals, yielding
TA(5000) = 0.8 ms. At this time, the contributions from Flow 1 and Flow 2
are ν1 = ν2 = 2500 bits. There are other values of ν1 and ν2 that also result in
ν = 5000 bits. We can quickly confirm that, when considering all combina-
tions and computing the time max{TA1(ν1), TA2(ν2)}, 0.8 ms is the earliest
time that satisfies ν1 + ν2 = 5000.

Remark: If the arrival time functions TA1 , . . . , TAN are continuous and
strictly increasing, there exists for each ν a tuple (ν∗1 , . . . , ν∗N ) with ν =
ν∗1 + . . .+ ν∗N such that

TA(ν) = TA1(ν∗1) = . . . = TAN (ν∗N ) .

In other words, there exists a tuple that attains the infimum and that equal-
izes the contributing arrival time functions. Since arrival time functions are
in general right-continuous and non-decreasing, a minimizing tuple may not
exist. Here, we get the weaker property that, for each ν, there exist ν1, . . . , νN
with ν = ν1 + . . .+ νN such that

∃j ∈ {1, . . . , N} :
TAj (νj) = TA(ν) and ∀i 6= j : TAi(ν−i ) ≤ TA(ν) ≤ TAi(νi) .

(3.3)



4
Max-Plus Algebra of Functions

We next present an algebra, referred to as max-plus algebra, which contains
the max-plus convolution in (2.8) as one of its operations. The algebra is
built around the replacement of the conventional addition and multiplication
operations on the real line, respectively, by a maximum and an addition. For
example, for the expression 4 × 1 + 3 × 3 = 13 the replacement results in
(4 + 1) ∨ (3 + 3) = max{4 + 1, 3 + 3} = 6, where we use the symbol ‘∨’
to indicate the maximum operation. Both operations have neutral elements,
−∞ for the maximum (a∨−∞ = a) and 0 for the addition (a+ 0 = a), and
−∞ is an absorbing element for the second operation (a + (−∞) = −∞).
Clearly, the operations ∨ and + are commutative and associative. Also, the
+-operation distributes over the ∨-operation. A major difference to the con-
ventional algebra with addition and multiplication is that the maximum is
idempotent (a ∨ a = a) and that there are no inverse elements for the max-
imum operation. An algebra induced by the minimum and addition opera-
tions is referred to as a dioid or idempotent semiring [3]. The dioids are
(Z ∪ −∞ ∪ ∞,∨,+) for integer numbers and (R ∪ −∞ ∪ ∞,∨,+) for
real numbers.1

1The literature on semiring and dioid algebras [3, 21] does not always assume that the dioid
operations are commutative. If they are, they are referred to as commutative dioids. A further
distinction is that of a complete dioid, which requires that the first operation, the maximum in
our case, is closed for an infinite number of elements, and that the distribution law extends to
infinitely many elements. Obviously, the dioids (Z∪−∞∪∞,∨,+) and (R∪−∞∪∞,∨,+)
satisfy these properties.
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We are interested in applying the max-plus algebra to functions, such as
the arrival time functions TA. A common characteristic of these functions
is that they are non-decreasing, that is, TA(ν + κ) ≥ TA(ν) for all κ ≥ 0.
In a continuous-time domain, we always assume that functions are right-
continuous. Since the argument of functions in the space domain designates a
quantity of data, only non-negative arguments are meaningful. Nonetheless,
we define functions over the entire real axis. We consider non-decreasing
functions F : R → R+

o ∪ {∞} ∪ {−∞}, where function values are time-
stamps. Timestamps are non-negative real numbers, with two exceptions. The
value F (ν) = ∞ is interpreted as ‘will never occur in the future’, and a
timestamp of F (ν) = −∞ is interpreted as ‘has never occurred in the past’.
Consistent with this reasoning, we set TA(ν) = −∞ for ν < 0. If we run
into a situation where we have to add infinite values with different signs, we
use the convention that −∞+∞ = −∞.

We consider two classes of continuous-space functions. We use T to de-
note the set of right-continuous non-decreasing functions that are defined
over the entire real axis and take values in R ∪ {∞} ∪ {−∞}. Functions
that evaluate to −∞ on the negative half axis (F (ν) = −∞ for ν < 0) and
non-negative on the positive half axis (F (ν) ≥ 0 for ν ≥ 0) are referred to
as one-sided functions. We define To as the set of functions F ∈ T that are
one-sided. The same classes of functions can be defined in a discrete-time
domain for functions F : Z→ R+

o ∪ {∞} ∪ {−∞}.
The max-plus algebra of functions in T and To involves the following

three operations for two functions F and G:

• Maximum: F ∨G(ν) = max{F (ν), G(ν)},

• Max-plus convolution: F ⊗G(ν) = supκ∈R {F (κ) +G(ν − κ)},

• Max-plus deconvolution: F �G(ν) = infκ∈R {F (ν + κ)−G(κ)}.

We can replace a supremum by a maximum, when the supremum is taken
over a finite range. If F,G ∈ To, we can limit the ranges in the computation
of the max-plus convolution and deconvolution by

F ⊗G(ν) = sup
0≤κ≤ν

{F (κ) +G(ν − κ)} ,

F �G(ν) = inf
κ≥0
{F (ν + κ)−G(κ)} .
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For the convolution on To, the range can be limited since F (κ) = −∞ for
κ < 0 and F (ν−κ) = −∞ for κ < ν. For the deconvolution on To, we have
that F (ν+κ)−G(κ) =∞ for all κ < 0. Note that we used the limited range
of the convolution for functions in To when we first introduced the max-plus
convolution in §2.

We define the function δ as

δ(ν) =

−∞ , ν < 0 ,
0 , ν ≥ 0 ,

and we define δT (ν) = δ(ν) + T for any T > 0. The following lemmas
list properties of the max-plus convolution and the max-plus deconvolution
operation. We write ‘F ⊗G’ to mean ‘F ⊗G(ν) for all ν ∈ R’. Also, we
write ‘F ≤ G’ to mean ‘F (ν) ≤ G(ν) for all ν ∈ R’.

Lemma 4.1 (PROPERTIES OF THE MAX-PLUS CONVOLUTION). Consider
functions F,G,H ∈ T .

(a) Closure. If F and G lie in T (or To), so does F ⊗G.

(b) Associativity. (F ⊗G)⊗H = F ⊗ (G⊗H).

(c) Commutativity. F ⊗G = G⊗F .

(d) Distributivity. (F ∨G)⊗H = (F ⊗H) ∨ (G⊗H).

(e) Neutral element. F ⊗ δ = F .

(f) Time shift. For each T > 0, F ⊗ δT (ν) = F (ν) + T .

(g) Monotonicity. If F ≤ G then F ⊗H ≤ G⊗H .

(h) Boundedness. F ⊗G ≥ F for all F ∈ T and G ∈ To. In particular, if
F ∈ To then F ⊗F ≥ F .

(i) Existence of maximum. For F,G ∈ To, for each value of ν, there
exists a µ∗ with 0 ≤ µ∗ ≤ ν, such that F ⊗G(ν) = F (µ∗)+G(ν−µ∗).

These properties establish that (T ,∨, ⊗ ) and (To,∨, ⊗ ) are dioids,
for both discrete-space and continuous-space functions. The closure prop-
erty confirms that the max-plus convolution preserves the properties of non-
decreasing and one-sided function. Associativity is useful since the outcome
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of a sequence of max-plus convolutions does not depend on the order in which
the max-plus convolution operator is applied. In practice this means that we
can drop parentheses, and simply write F ⊗G⊗H . A consequence of com-
mutativity is that we can rearrange the order in a sequence of min-plus convo-
lutions, e.g., arranging F1⊗F2⊗ . . . ⊗FN as FN ⊗FN−1⊗ . . . ⊗F1 with-
out altering the result.
The max-plus deconvolution is not endowed with the same nice properties as
the convolution.

Lemma 4.2 (PROPERTIES OF THE MAX-PLUS DECONVOLUTION). Con-
sider functions F,G,H ∈ To.

(a) Not closed. There exist F and G such that F �G 6∈ To or even
F �G 6∈ T .

(b) Not associative. There exist F , G, and H such that (F �G)�H 6=
F � (G�H).

(c) Not commutative. There exist F and G such that F �G 6= G�F .

(d) Composition of ⊗ and � . (F �G)�H = F � (G⊗H).

(e) Duality. F ≥ G⊗H if and only if F �H ≥ G.

The proofs of Lemmas 4.1 and 4.2 are found in the appendix.
We next discuss superadditive functions, which play a special role in the

max-plus algebra. A function F is said to be superadditive if for all µ, ν ∈ R,

F (µ+ ν) ≥ F (µ) + F (ν) . (4.1)

We generally assume that superadditive functions lie in the set To. Define

F (0) = δ ,

F (n) = F (n−1)⊗F .

Then, the superadditive closure of F , denoted by F ∗, is defined as

F ∗ = lim
n→∞

(
δ ∨ F ∨ F (2) ∨ · · · ∨ F (n)

)
= sup

n>0
F (n) .
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We immediately see that F ∗ ≥ F . To show that the superadditive closure
deserves its name, i.e., that F ∗ is superadditive, we write

F ∗(ν + µ) = sup
k+m>0

F (k+m)(ν + µ)

= sup
k+m>0

(F (k)⊗F (m))(ν + µ)

= sup
k+m>0

sup
κ∈R

{
F (k)(κ) + F (m)(ν + µ− κ)

}
≥ sup

k+m>0

{
F (k)(µ) + F (m)(ν)

}
= sup

k>0
F (k)(µ) + sup

m>0
F (m)(ν)

= F ∗(µ) + F ∗(ν) .

In the fourth line, we have restricted the inner supremum to κ = µ. If F ∈ To,
then the superadditive closure is simplified to

F ∗ = lim
n→∞

F (n) .

In the max-plus algebra, superadditive functions have a number of unique
properties, as given by the next lemma.

Lemma 4.3. For a function F ∈ To, the following four statements are
equivalent:

(a) F is superadditive.

(b) F = F ⊗F .

(c) F = F �F .

(d) F = F ∗.

Proof.
(a)⇒ (b): Since F ≥ δ, the monotonicity of ⊗ gives

F ⊗F ≥ F ⊗ δ = F .

Next, by substituting ν for ν + µ in (4.1) we get

F (ν) ≥ F (ν − µ) + F (µ) , ∀ν, µ ∈ R ,
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which is equivalent to

F (ν) ≥ sup
µ∈R
{F (ν − µ) + F (µ)} = F ⊗F (ν) , ∀ν ∈ R .

(b) ⇒ (d): Since F ∈ To, we have F ∗ = limn→∞ F
(n). With F = F ⊗F

we get that F ∗ = F .

(d)⇒ (a): This follows from the fact that the superadditive closure is super-
additive.

(a)⇒ (c): Every function F ∈ To satisfies

F �F (ν) = inf
κ≥0
{F (ν + κ)− F (κ)}

≤ F (ν)− F (0)
≤ F (ν) ,

where we set κ = 0 in the second line, and used that F (0) ≥ 0 in the third
line. If F is superadditive, we can also write

F �F (ν) = inf
κ≥0
{F (ν + κ)− F (κ)}

≥ inf
κ≥0

F (ν)

= F (ν) ,

where we use the superadditivity of F in the second line. Hence, a superad-
ditive function F ∈ To satisfies F = F �F .

(c)⇒ (a): F �F = F means that for all ν ∈ R we have

F (ν + κ)− F (κ) ≥ F (ν) , ∀κ ≥ 0 ,

so the superadditive property is satisfied for κ ≥ 0. For κ < 0 we note that
F (κ) = −∞. In this case, if ν + κ ≥ 0 we have

F (ν + κ) ≥ 0 and F (ν) + F (κ) = −∞ ,

and if ν + κ < 0, we have

F (ν + κ) = −∞ and F (ν) + F (κ) = −∞ .

In both cases, F (ν + κ) ≥ F (ν) + F (κ). Hence, the superadditive property
holds for every κ ∈ R.



5
Backlog and Delay in the Space Domain

We are interested in observing and analyzing network traffic that passes
through one or more network devices. We study the amount of traffic that
resides in a network device at any time, which is referred to as backlog, as
well as the time duration that traffic resides in a device, referred to as delay.
The concept of a network element serves as a general model for anything that
can impose delay on network traffic, such as a packet switch, a buffered link,
a network cable, or any combination thereof. In Figure 5.1, we show arrivals
and departures to a network element. In the figure, γS refers to a function
that characterizes the service offered by the network element. We refer to the
analysis of backlog, delays, and other performance metrics at a network ele-
ment in a max-plus algebra as max-plus network calculus. We next develop
its building blocks and main results.

TA(⌫) TD(⌫)

Network
Element

�S

Arrivals Departures

Figure 5.1: Network element with arrivals and departures.
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Arrivals at a network element are described in terms of an arrival time
function TA ∈ To. We allow TA to be a discrete-space or continuous-
space function, but our discussion generally assumes that TA is right-
continuous. The departures at a system are given by TD ∈ To, where we have
TD(ν) ≥ TA(ν), that is, a bit cannot depart earlier than its arrival time. The
delay at a network element is expressed in terms of the difference between
arrival and departure times, that is, for all ν ≥ 0,

W (ν) = TD(ν)− TA(ν) . (5.1)

W (ν) provides the delay of the ν-th bit, where we allow the bit value to be a
real number. The backlog describes the number of bits that have arrived, but
not yet departed. If expressed as a function of bits, there is a choice whether
we evaluate the backlog at the time when a bit arrives at or when it departs
from the network element. Denoting by Ba(ν) and Bd(ν), respectively, the
backlog when the ν-th bit arrives and departs, we have

Ba(ν) = inf {κ > 0 | TD(ν − κ) ≤ TA(ν)} ,
Bd(ν) = inf {κ > 0 | TA(ν + κ) ≥ TD(ν)} .

(5.2)

We refer to the two quantities as the arrival backlog and the departure back-
log. Figure 5.2 illustrates the arrival time function TA and the departure time
function TD for the arrival scenario from Table 3.1 at a buffered link that op-
erates at 4 Mbps. The figure shows the delay W (ν) and the backlog B(ν) for
a value of ν that is somewhere between 1000 and 2000. The delay is simply
the vertical distance between the departure time function and the arrival time
function. When TA and TD are strictly increasing, then Ba(ν) and Bd(ν) are
the horizontal distances between TD and TA, where, for Ba(ν), the horizon-
tal distance is measured at TA(ν) and for Bd(ν), the distance is measured
at TD(ν). When TA and TD are not strictly increasing, Ba(ν) is the horizon-
tal distance between the point (ν, TA(ν)) and the curve TD, and Bd(ν) is the
horizontal distance between the point (ν, TD(ν)) and the curve TA.

We define a busy sequence to be a maximal contiguous set of bits that
experience non-zero delays. That is, an interval I = [κ, µ) is a busy sequence
if W (ν) > 0 for κ < ν < µ and W (κ−) = W (µ) = 0, where W (κ−) is
as defined in (3.1). An idle sequence is a maximal contiguous set of bits that
experience no delay. Since inserting TA(ν) = TD(ν) in the definitions of the
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Figure 5.2: Arrival and departure time functions at a buffered link.

arrival and departure backlog gives

W (ν) = 0 =⇒ Ba(ν) = 0 and Bd(ν) = 0 ,

we see that the bits of an idle sequence experience no arrival or departure
backlog. Note that the converses do not hold. For example, an arrival ν to an
element without backlog (Ba(ν) = 0) may experience a delay, e.g., when the
network element imposes a fixed delay on all traffic. Also, a bit that leaves no
backlog behind when it departs (Bd(ν) = 0) may have been delayed at the
network element.

In some derivations, we need to find the beginning of a busy sequence
with respect to a value ν ≥ 0. For this we define

ν = sup{κ | 0 ≤ κ ≤ ν ,W (κ) = 0} . (5.3)

The beginning of the busy sequence is expressed as the least upper bound on
the bit value ≤ ν that experiences no delay. Note that the supremum in the
definition of ν accounts for two cases. One case is that ν does not experience
any delay (W (ν) = 0). The second case is that W (ν) > 0 and W (ν−) = 0,
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which allows the delay at the beginning of a busy sequence to be positive, as
long as it is preceded by a value with no delay. Here, the supremum ν is not
in the set over which the supremum is computed. If there is no previous idle
sequence, that is, ν is in a busy sequence that starts at zero (W (κ) > 0 for all
κ ∈ [0, ν]), the supremum falls back to the lower bound of the interval and
we obtain that ν = 0. If ν is in an idle sequence (W (ν) = 0), then ν = ν.
In Figure 5.2 we have indicated the beginning of the busy sequences for the
arrival scenario with downward pointing arrows. Observe that the beginning
of a busy sequence does not experience a delay. While this is always the case
for the buffered link, it may not hold true for other network elements. We will
encounter such scenarios in §11.5. (There, in Figure 11.3(a), the beginning of
the busy sequences at ν3 and ν5 have a non-zero delay.)

With the definition of the beginning of a busy sequence at hand, we
can prove that the departure time function at a work-conserving link with
rate C, as given in (2.8), applies to arbitrary values of ν. Recall that the
convolution expression in (2.8) for packetized arrivals was obtained only
for TD(L−1 ), TD(L−2 ), . . ., that is, for the departure times of the end of each
packet.

Lemma 5.1. Given a right-continuous arrival time function TA, the depar-
ture time function at a work-conserving buffered link with rateC > 0 is given
for all ν ≥ 0 by

TD(ν) = sup
0≤κ≤ν

{
TA(κ) + ν − k

C

}
.

This expression is of course equal to TD = TA⊗ γS with γS(ν) = ν
C .

Proof. Pick two arbitrary values κ and ν with 0 ≤ κ ≤ ν. Since traffic is
served in a FIFO fashion, the departure time for bit value ν cannot be earlier
than the arrival time for κ plus the service time of ν − κ bits. This gives

TD(ν) ≥ TA(κ) + ν − k
C

.

Since the above relationship holds for all values of κ, it holds for the supre-
mum, yielding

TD(ν) ≥ sup
0≤κ≤ν

{
TA(κ) + ν − κ

C

}
.
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To show that the inequality above also holds for the other direction, we need
to use the work-conserving property of the buffered link, which states that the
link generates output at rate C at any time where there is a non-zero backlog.
Note that this concept of backlog is defined as a function of time, which
is not captured by the space-domain backlog expressions Ba(ν) or Bd(ν).
Using B(t) to denote the backlog at time t, we can establish a relationship
between the time-domain backlog and the space-domain delay. (In the min-
plus network calculus, where A(t) and D(t) denote the cumulative arrivals
in the time interval [0, t), we have B(t) = A(t)−D(t).) Since the departure
time of a bit at a work-conserving link with rate C depends on the backlog
found upon its arrival, we have

TD(ν) = TA(ν) + B(TA(ν))
C

,

which we can rewrite as

W (ν) = B(TA(ν))
C

.

This lets us conclude

W (ν) > 0 ⇐⇒ B(TA(ν)) > 0 . (5.4)

Let ν be defined as in (5.3). Suppose that W (ν) > 0. Then, from the re-
lationship between W (ν) and B(t) we can infer that B(t) > 0 for t ∈
[TA(ν+ ε), TA(ν)) for any ε > 0 with ν+ ε < ν. We also have B(t) > 0 for
t ∈ [TA(ν), TD(ν)) since ν is part of the backlog until it departs. Therefore,
in the interval [TA(ν + ε), TD(ν)), the link transmits continuously at rate C
with a total output of ν−ν+ε bits. This means that the departure time of ν is

TD(ν) = TA(ν + ε) + ν − ν − ε
C

.

If W (ν) = 0, we have TD(ν) = TA(ν). Hence, we get the inequality

TD(ν) ≤ sup
0≤κ≤ν

{
TA(κ) + ν − κ

C

}
.

Using (5.1), we obtain an exact expression for the delay, given by

W (ν) = sup
0≤κ≤ν

{ν − k
C
−
(
TA(ν)− TA(κ)

)}
. (5.5)
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Discrete-space considerations. When traffic is represented by discrete-space
functions, departure time functions and busy sequences may not fully co-
incide with the corresponding continuous-space version. To see this, con-
sider a discrete-space arrival time function TA(ν) with ν = 0, 1, 2, . . . at a
buffered link with rate C. Since the service time of a single bit is 1

C , we get
TD(ν) ≥ TA(ν) + 1

C . As a consequence, we have TD(ν) > TA(ν) for every
value of ν, and W (ν) > 0 (and Ba(ν) > 0) for all ν. Hence, a discrete-
space representation does not comply with the definition of a busy sequence
in (5.3). Another consequence is that the discrete-space and continuous-space
departure time functions at the buffered link have the relationship

T discrete
D (ν) = T continuous

D (ν) + 1
C
.

On the other hand, at network elements where the service time does not de-
pend on the amount of data being serviced, the discrete-space and continuous-
space departure time functions are identical. An example of this is a network
element that imposes a fixed delay, with TD(ν) = TA(ν) +T for some delay
value T > 0, where

T discrete
D (ν) = T continuous

D (ν)

holds. This discrepancy between continuous and discrete domains does not
exist in the min-plus network calculus, where arrivals and departures are char-
acterized by discrete-time or continuous-time functions. This means that, in
the max-plus framework, we have to be more careful about distinguishing
a discretized or continuous analysis. It should be noted that the difference
between continuous-space and discrete-space descriptions are limited. In the
case of the buffered link, the difference is the transmission time of a single bit
in a bit-level description. As seen in §2, the difference shrinks when traffic is
measured in smaller units.



6
Max-Plus Traffic Envelopes and Traffic

Regulators

We next explore space-invariant characterizations of traffic that bound the
traffic of a flow in terms of traffic envelopes. In the max-plus network calcu-
lus, traffic envelopes describe the shortest time interval that must elapse for a
given amount of traffic.

Definition 6.1. A function λE is a max-plus traffic envelope for an arrival
time function TA, if for all ν ≥ 0 and µ ≥ 0,

λE(µ) ≤ TA(ν + µ)− TA(ν) . (6.1)

A max-plus traffic envelope specifies that at most µ bits of traffic may
arrive within λE(µ) time units. We write TA ∼ λE , if λE is a max-plus
traffic envelope for TA. Among other properties, every max-plus traffic enve-
lope goes through the origin (λE(0) = 0). A traffic envelope is both space-
invariant and time-invariant. Space-invariance refers to the fact that λE(µ)
bounds the arrival time period of µ consecutive bits, regardless where the
bits are located in a traffic flow. By time-invariance we mean that any traffic
envelope λE for an arrival time function TA is also a traffic envelope for a
time-shifted version of TA. We can express this as

TA ∼ λE =⇒ TA + τ ∼ λE , for τ ≥ 0 ,
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where TA + τ (more precisely, TA(ν) + τ ) shifts the arrival times of TA by τ
time units into the future. For negative arguments µ < 0, we set λE(µ) =
−∞, which ensures that λE ∈ To.

Theorem 6.1. An envelope λE ∈ To for an arrival time function TA with
TA ∼ λE satisfies

TA = TA⊗λE . (6.2)

Proof. First observe that λE ∈ To ensures that λE ≥ δ. Then, the monotonic-
ity of the max-plus convolution gives

TA⊗λE ≥ TA⊗ δ = TA .

For the other direction of the inequality, we rewrite (6.1) as

λE(µ) + TA(ν − µ) ≤ TA(ν) , ∀µ ≤ ν ,

which is equivalent to

sup
0≤µ≤ν

{λE(µ) + TA(ν − µ)} ≤ TA(ν) ,

and, therefore, λE ⊗TA ≤ TA.

If we iterate (6.2), we obtain

TA = TA ⊗ λE
= TA⊗λE ⊗ · · · ⊗λE
= TA⊗λ∗E .

Therefore, if λE is a max-plus traffic envelope, so is its superadditive clo-
sure λ∗E . The reverse also holds, that is, if TA ∼ F ∗ then TA ∼ F . This
follows from λ∗E ≥ λE . If we compare two max-plus traffic envelopes for the
same arrival time function, e.g., TA ∼ λ1

E and TA ∼ λ2
E , then λ1

E is a better
envelope than λ2

E if λ1
E > λ2

E . The interpretation is that, λ1
E permits a larger

time interval for the arrival of the same number of bits.
Since λ∗E ≥ λE , the superadditive closure λ∗E is never a worse envelope

for TA than λE . Consequently, we can always improve a max-plus envelope
by replacing it with its superadditive closure. Put differently, any good choice
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TD ⇠ �ETA

Figure 6.1: Traffic regulator for a max-plus traffic envelope λE .

of a max-plus traffic envelope λE for an arrival time function A is superaddi-
tive, since λ∗E = λE in this case.

Let us address the question of the best achievable traffic envelope for
a given arrival time function TA. If we write (6.1) as λE ≤ TA�TA, the
best envelope is the largest function satisfying the inequality. We refer to
this envelope as the empirical max-plus traffic envelope of TA, and denote
it by λEA. The empirical envelope is constructed by setting λEA = TA�TA.
Since no envelope for TA can be larger than λEA, we can safely infer that λEA
is superadditive.

Next we discuss network elements that enforce envelope functions for
departing traffic. A traffic regulator for a max-plus traffic envelope λE is a
network element which ensures that TD ∼ λE for each arrival time func-
tion TA. Figure 6.1 illustrates a traffic regulator. We consider a type of traffic
regulator that buffers non-compliant traffic until it becomes compliant. Such a
traffic regulator is called a greedy shaper. The attribute ‘greedy’ refers to the
fact that non-compliant traffic is released from the buffer as early as allowed
by the traffic envelope.

Theorem 6.2. A network element is a greedy shaper for a superadditive
max-plus traffic envelope λE if and only if for an arrival time function TA,
the departure time function TD satisfies

TD = TA⊗λE .

The theorem suggests how to implement a greedy shaper, namely, set the
departure time of a bit to the max-plus convolution of the arrival time function
and the traffic envelope.

Proof. We first prove TD ≥ TA⊗λE . By a change of variable κ = ν+µ we
can rewrite (6.1) as

λE(κ− µ) ≤ TA(κ)− TA(ν) , ∀ν, κ with 0 ≤ µ ≤ κ .
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Since TD(ν) ≥ TA(ν) we can rewrite this as

TD(κ) ≥ TA(ν) + λE(κ− µ) , ∀ν, κ with 0 ≤ µ ≤ κ ,
which is equivalent to

TD(κ) ≥ sup
0≤s≤t

{TA(ν) + λE(κ− µ)} = TA⊗λE(κ) .

Next we show that TD ≤ TA⊗λE . Fix a ν ≥ 0. Assume for the moment
thatW (ν) = 0, that is, TD(ν) = TA(ν). Since λE(0) = 0, we have TD(ν) ≤
TA(ν) + λE(0), and therefore, we get

TD(ν) ≤ sup
0≤µ≤ν

{TA(µ) + λE(ν − µ)} .

Now we consider W (ν) > 0, that is, ν is delayed. Then, the previous arrivals
have not complied to the envelope and the departures have saturated the en-
velope for an interval [η, ν] with TD(ν) − TD(η) = λE(ν − η). If we let µ
be such that the interval where the envelope is saturated is maximal, we get

µ = inf {η < ν |TD(ν)− TD(η) = λE(ν − η)} .
We will show that TD(µ) = TA(µ) must hold. If µ = 0, then the envelope has
been saturated in the entire interval [0, ν]. In this case, we can use that every
max-plus traffic envelope satisfies λE(0) = 0, and obtain TA(0) = TD(0).

If µ > 0, then for any choice of κ < µ we have

TD(ν)− TD(κ) ≥ λE(ν − κ) .
Since, by superadditivity of λE , it holds that

λE(ν − κ) ≥ λE(ν − µ) + λE(µ− κ) ,
and since TD(ν)− TD(µ) = λE(ν − µ), we can conclude that

TD(µ)− TD(κ) ≥ λE(µ− κ) .
Since this relationship holds for all κ < µ, according to the operation of the
greedy shaper, we have that µ is not delayed, that is, TD(µ) = TA(µ). Then
we continue with

TD(ν) = TD(µ) + λE(ν − µ)
= TA(µ) + λE(ν − µ)
≤ sup

0≤κ≤ν
{TA(κ) + λE(ν − κ)}

= TA⊗λE(ν) .
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To show that TD = TA⊗λE for a superadditive function λE implies
TD ∼ λE , we write

TD ⊗ λE = TA ⊗ λE ⊗ λE = TA ⊗ λE = TD .

The first equality inserts TD = TA ⊗ λE , the second uses that superadditive
functions satisfy λE = λE ⊗ λE , and the last inequality uses again that
TD = TA ⊗ λE . Then, the claim follows since TD = TD ⊗ λE is equivalent
to TD ∼ λE .

Finally, we show that a traffic regulator that satisfies TD = TA⊗λE
releases the same number of bits at least as soon as any alternative realization.
This makes the case that TD = TA⊗λE is a defining property of a greedy
shaper. Suppose we have a superadditive traffic envelope λE . For a given
arrival time function TA, let T greedy

D denote the departure time function of the
traffic regulator for envelope λE that satisfies TD = TA⊗λE . Let T alt

D denote
an alternative realization of a traffic regulator for λE . Since both versions
enforce the envelope λE we can write

T alt
D = T alt

D ⊗λE ≥ TA⊗λE = T
greedy
D ,

where the first equality follows from Theorem 6.1, the inequality follows
from TA ≤ T alt

D and the monotonicity of the convolution, and the last equality
uses our assumption that the departures are equal to TA⊗λE . Thus, for any
arrival time function TA, we have T alt

D ≥ T
greedy
D , meaning that the departure

times T greedy
D cannot be improved.

Examples:

(a) Consider a simple traffic regulator which enforces that the output has
a fixed rate r. This is done with an envelope λE(ν) = ν

r with r > 0.
If we allow bits to depart e time units earlier than allowed by the fixed
rate guarantee, we obtain the envelope

λE(ν) =
[
ν

r
− e

]+
, (6.3)

where e > 0 is the permitted earliness with respect to a fixed rate
output. We will refer to e as earliness allowance. Later, we will see
that this max-plus traffic envelope corresponds to the well-known token
bucket traffic regulator with burst size er and rate r.
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(b) As a generalization of the previous traffic envelope, suppose that there
are two constraints

λE1(ν) =
[
ν

r1
− e1

]+
and λE2(ν) =

[
ν

r2
− e2

]+
,

with r1 > r2 and e1 < e2, that must both be satisfied. This can be
achieved by the traffic envelope

λE(ν) = max
{[

ν

r1
− e1

]+
,

[
ν

r2
− e2

]+
}
, (6.4)

that is, the latest timestamp computed by either of the two traffic en-
velopes determines the earliest departure time of a bit.

(c) When traffic arrivals consist of fixed-sized packets of ` bits, a fixed rate
traffic regulator can be viewed as releasing at most one packet every θ
time units. Also allowing a slack for being early by e time units, the
resulting max-plus traffic envelope is

λE(ν) =
[⌊
ν

`

⌋
θ − e

]+
.

The above discussion does not touch on the complexity of implementing a
traffic regulator. Obviously, computing the max-plus convolution TA⊗λE(ν)
for each value of ν can become computationally impractical. As we will see
in §12.2, for packet-level arrivals, the max-plus convolution can be computed
efficiently if λE has the form of (6.3) or (6.4).



7
Service Curves in the Max-Plus Network

Calculus

In §2, we saw that the output at a work-conserving buffered link with rate C
can be expressed as the max-plus convolution of the arrival time function and
the function γS(ν) = ν

C , that is, TD = TA⊗ γS . A generalization of this
relationship to other network elements leads us to the concept of a max-plus
service curve.

7.1 Max-plus service curves

We start out with the definition of service curves in the max-plus algebra.

Definition 7.1. Consider a network element and an arbitrary arrival time
function TA ∈ To, as shown in Figure 5.1. Let TD ∈ To be the departure time
function induced by arrivals TA at the network element. A function γS ∈ To
is an exact max-plus service curve for the network element, if

TD = TA⊗ γS .

A lower max-plus service curve γS satisfies

TD ≤ TA⊗ γS ,

and an upper max-plus service curve γS satisfies

TD ≥ TA⊗ γS .

171
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TA1
TD1

= TA2
TD2

TAN
TDN...�S1

�S2
�SN

(a) Sequence of network elements.

TA1
TDND1 = A2

�S1
⌦ �S2

⌦ . . . ⌦ �SN

(b) Equivalent network element with net-
work service curve.

Figure 7.1: Network service curve.

Max-plus service curves express guarantees offered by a network ele-
ment. Since the guarantees are expressed in terms of the times of departures,
a lower service curve describes a lower bound on the available service at the
network element and an upper service curve characterizes an upper bound
on the service. An example of an exact service curve is the work-conserving
buffered link with rate C, with γS(ν) = ν

C according to Lemma 5.1. Another
example is the greedy shaper, with γS = λE according to Theorem 6.2.

The max-plus convolution of max-plus service curves results again in a
service curve. This can be exploited to compute service guarantees given by
a sequence of network elements.

Theorem 7.1. Given a set of N network elements in sequence as shown in
Figure 7.1(a), where each element offers a max-plus service curve γSn ∈ To
(n = 1, . . . , N ). Let the arrival and departure time functions of the n-th ele-
ment be given by TAn and TDn , with TDn−1 = TAn for 1 < n ≤ N . Then

γnet = γS1 ⊗ γS2 ⊗ . . . ⊗ γSN

is a max-plus service curve for the entire sequence of network elements.

The service curve γnet is referred to as network service curve. The theo-
rem allows us to replace the tandem network in Figure 7.1(a) by a single
network element with service curve γS1 ⊗ γS2 ⊗ . . . ⊗ γSN as shown in Fig-
ure 7.1(b). If the service curves of all elements are exact service curves, the
service curve for the entire network is also exact. Likewise for the lower and
upper service curves.
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Proof. We prove the concatenation property for exact service curves.

TDN = TAN ⊗ γSN
= (TAN−1 ⊗ γSN−1)⊗ γSN
...

...

= (. . . (TA1 ⊗ γS1)⊗ . . . ⊗ γSN−1)⊗ γSN
= TA1 ⊗ (γS1 ⊗ . . . ⊗ γSN−1 ⊗ γSN ) .

Here, we repeatedly inserted TDn = TAn ⊗ γSn and replaced TDn−1 = TAn .
In the last line, we moved parentheses, which is permitted since the convolu-
tion operation is associative.

As we have seen in the example of the buffered link, a network element
with a rate guarantee of R bits per second can be expressed by the service
curve

γS1(ν) = ν

R
.

A delay server which guarantees a (minimum, maximum, or exact) delay of
T time units can be expressed with the service curve

γS2(ν) = T ,

which follows immediately from

TA⊗ γS2(ν) = sup
0≤κ≤ν

{TA(ν − κ) + T} = TA(ν) + T .

A combined rate and delay guarantee is given by the service curve

γS3(ν) = ν

R
+ T ,

which results from the max-plus convolution of a rate server with rate R and
a delay server with delay T , that is, γS3 = γS1 ⊗ γS2 . Such a network element
is referred to as a latency-rate server. In the max-plus algebra, the latency-
rate service curve takes the form of an affine function.

7.2 Residual max-plus service curves

At a work-conserving buffered link with a fixed rate C that receives arrivals
from multiple traffic flows, the residual service or leftover service expresses
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TAo
C

Through flow

· · ·

· · ·

TAc
⇠ �Ec

···

···

TDo

TDc

Cross tra�c

Figure 7.2: Buffered link with through flow and cross traffic.

the capacity that is available to one of these flows. When evaluating the resid-
ual service for a flow, that flow is referred to as the through flow, and the
aggregate of all other flows are summarily referred to as cross traffic. See Fig-
ure 7.2 for an illustration. If cross traffic arrivals are bounded by a max-plus
traffic envelope λc, we can characterize the residual service of the through
flow by a max-plus service curve.

With multiple flows at a buffered link, there is a need for a scheduling
algorithm that selects backlogged traffic for transmission. We will analyze
the residual service of the through flow without assuming that we know which
scheduling algorithm is operating at the link. Such an analysis is referred to
as blind-to-multiplexing or blind multiplexing. The residual service computed
under blind multiplexing can be refined when the specifics of the scheduling
algorithm are taken into consideration.

Theorem 7.2 (RESIDUAL SERVICE CURVE). Given a work-conserving
buffered link with a fixed rate C with a through flow and cross traffic. If λc is
a max-plus traffic envelope for the cross traffic, then

γS(ν) = 1
C

(
inf
{
µ ≥ 0 | λc(µ) ≥ ν + µ

C

}
+ ν

)
is a max-plus lower service curve for the through flow.

We use TAo and TDo to denote the arrival time and departure time func-
tions, respectively, of the through flow, and TAc and TDc to describe the cor-
responding functions for the cross traffic. The aggregate of through flow and
cross traffic is denoted by TA for the arrivals, and by TD for the departures.

Proof. Consider an arbitrary bit value νo ≥ 0 of the through flow. Let ν be
the beginning of the busy sequence in which νo is located. The value ν is
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composed of νo bits from the through flow, and νc bits from the cross traffic,
that is, ν = νo + νc with νo ≥ νo. At the beginning of the busy sequence,
both the through flow and the cross traffic have no delay, that is, TAo(νo) =
TDo(νo), TAc(νc) = TDc(νc), and TA(ν) = TD(ν). The departure time
TDo(νo) is bounded by

TDo(νo) ≤

TAo(νo) + 1
C

(
νo − νo +

{
Cross traffic arriving in [TAo(νo), TDo(νo)]

})
.

The term νo − νo describes the traffic of the through flow that must be trans-
mitted by TDo(νo). Here enters an assumption that the transmission order of
the through traffic occurs in the same order as its arrivals. Such a transmission
order is referred to as locally FIFO. The term that follows states that all cross
traffic arrivals since TA(νo) must have been transmitted by TD(νo). This en-
sures that, at time TD(ν), there is no cross traffic backlog. Time TDo(νo)
is therefore the first time after TAo(νo) when all cross traffic arrivals since
TAo(νo) as well as νo − νo bits from the through flow have been transmitted.
Since cross traffic arrivals are bounded by the max-plus envelope λc, we can
write{

Cross traffic arriving in [TAo(νo), TDo(νo)]
}
≤

inf
{
µ ≥ 0

∣∣∣λc(µ) ≥ νo − νo + µ

C

}
.

Defining a function µc as

µc(ν) = inf
{
µ ≥ 0

∣∣∣λc(µ) ≥ ν + µ

C

}
,

we have that µc(νo − νo) is an upper bound on the cross traffic that must be
transmitted by TDo(νo). With this, we can write the bound for the departure
time TD(νo) as

TD(νo) ≤ TA(νo) + νo − νo + µc(νo − νo)
C

. (7.1)

If we define a service curve by

γS(ν) = µc(ν) + ν

C
, (7.2)
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we obtain from (7.1) that

TD(νo) ≤ TA(νo) + γS(νo − νo)
≤ sup

0≤κ≤νo
{TA(κ) + γS(νo − κ)}

= TA⊗ γS(νo) .

Since the proof of Theorem 7.2 has not used any knowledge of
the scheduling algorithm, it is valid for any work-conserving schedul-
ing algorithm. This justifies the attribute ‘blind multiplexing’ or ‘blind-to-
multiplexing.’ It amounts to viewing the through flow as having a lower pri-
ority than the cross traffic.

As another remark, the proof of Theorem 7.2 used νo to denote the be-
ginning of the busy sequence in which νo is located, but did not provide an
explicit expression for it. This can be done by specifying the amount of cross
flow traffic that arrives before νo as

ννoc = sup{κ | TAc(κ) ≤ TAo(νo)} .

Then, setting ν = νo + ννoc we can obtain ν from (5.3). The quantities νo
and νc are determined by (3.2) as the values κ and µ that define the infimum
in

TA(ν) = inf
κ,µ

ν=κ+µ
max{TAo(κ), TAc(µ)} .

Example: We derive the residual service curve for the cross traffic envelope

λc(ν) =
[
ν

r
− e

]+
.

The computation of µc yields

µc = inf
{
µ ≥ 0

∣∣∣ ν + µ

C
<
[µ
r
− e

]+}
= inf

{
µ ≥ er

∣∣∣ ν + µ

C
<
µ

r
− e

}
=


rν + erC

C − r
if C > r ,

∞ if C ≤ r .
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We dropped ‘[. . .]+’ in the second line, since the inequality in the infimum is
satisfied only if µr − e > 0. With this, the service curve becomes

γS(ν) =


ν + er

C − r
if C > r ,

∞ if C ≤ r .
(7.3)

Packetizer in the space domain. A packetizer is a network element that
reconstitutes packet-level traffic by storing the bits belonging to the same
packet until all data of that packet has arrived, and then releasing all bits of
the packet simultaneously. Consider the departure time function TD of fluid-
flow traffic that departs from a network element. We can obtain a packetized
departure time function by simply assigning to each bit in a packet the depar-
ture time of the last bit in the packet. Using the cumulative packet size func-
tion Ln, and noting that the n-th packet covers the range ν ∈ [Ln−1, Ln), we
can express the packetized departure function by a function PL, defined as

PL(TD(ν)) = TD(L−n ) , for ν ∈ [Ln−1, Ln) .

The packetized departure time of bit ν is simply equal to the departure time
of the end of the packet, TD(L−n ). Note that the construction of the packet
departure times in §2 is consistent with this definition of a packetizer.

7.3 Strict and adaptive max-plus service curves

Sometimes the service guarantees expressed by lower max-plus service
curves are too weak. As an example, suppose we want to express a minimum
rate guarantee, where a flow can receive an arbitrary amount of available ser-
vice, with the assurance that the service rate never drops below a guaranteed
rate R. If this guarantee is expressed by the lower service curve γS(ν) = ν

R ,
the actual service rate can deviate substantially from a constant rate. This is
illustrated in Figure 7.3(a), which shows an arrival time function TA and a
departure time function TD. The arrivals occur in a single burst of size N at
time t1. The departures are such that an amount K < N is serviced immedi-
ately at time t1. After that, there are no departures in the time interval [t1, t2].
After t2, departures occur at a constant rate R, until all traffic is transmitted
by time t3. The departures in Figure 7.3(a) do not resemble at all those of
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Figure 7.3: Feasible arrival and departure time functions with service curve γS(ν) = ν
R

.

a rate guarantee since no traffic is serviced in the interval [t1, t2]. However,
the condition for the lower service curve TD(ν) ≤ TA⊗ γS(ν) is satisfied
for each ν ∈ [0, N ]. The reason for this discrepancy is that the rate guaran-
tee offered by a lower max-plus service curve is given for the interval [0, N ].
Hence, if a flow first has an output rate that is higher than the guaranteed rate,
followed by an output rate that is lower than the guarantee, the guarantee
may still be satisfied for each value of ν. (Note that an exact service curve
γS(ν) = ν

R ensures that the guaranteed rate is available during any time in-
terval. However, an exact service guarantee does not allow a flow to exceed
the guaranteed rate R, even if the network element has excess capacity.)

The inability of a lower max-plus service curves to express reasonable
rate guarantees is a motivation to refine the service curve definition. One such
refinement is a strict service curve.

Definition 7.2. A strict max-plus service curve is a function γS ∈ To such
that for all ν and µ in the same busy sequence (ν ≤ µ < ν), it holds that

TD(ν)− TD(µ) ≤ γS(ν − µ) , if ν < µ ,

and TD(ν)− TA(µ) ≤ γS(ν − µ) , if ν = µ .
(7.4)

Here, ν is the beginning of the busy sequence in which ν is located, as
defined in (5.3). A strict max-plus service curve makes a guarantee for any
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sequence of bits in the same busy sequence. If ν < µ, then µ is in the mid-
dle of a busy sequence. In this case, a strict service curve bounds the lag
between the departure times of ν and µ. If µ is at the beginning of a busy
sequence (ν = µ), the departure time of ν is linked to the arrival time of µ.
We can view the second condition on the service in (7.4) as anchoring the
service guarantees within the busy period to an absolute time. Without the
second condition, the departure time of the first bit in a busy sequence could
be delayed arbitrarily.

In Figure 7.3(b), we illustrate the departures for a strict service curve
γS(ν) = ν

R . We consider the same arrival scenario as in Figure 7.3(a). Also,
we assume that the initial departures at time t1 are again equal to K, which
exceeds the guaranteed service rate ν

R . Different from the lower service curve,
after time t1, the strict service curve cannot leverage the fact that it has pre-
viously transmitted at a higher rate. The first condition in (7.4) enforces that
departures continue at least at rate ν

R until the backlog has been cleared. This
results in a departure time function which is at most as large as the func-
tion TD depicted in Figure 7.3(b).

To emphasize the difference between lower and strict service curves, the
former are sometimes referred to as weak service curves. Every strict max-
plus service curve is a lower (or weak) max-plus service curve. To see this
consider an arbitrary ν > 0. IfW (ν) = 0, that is, TA(ν) = TD(ν), we obtain

TD(ν) ≤ TA(ν) + γS(0)
≤ sup

0≤κ≤ν
{TA(κ) + γS(ν − κ)}

= TA⊗ γS(ν) .

If W (ν) > 0, setting µ = ν in the second equation of (7.4) with ν as defined
in (5.3), we obtain

TD(ν) ≤ TA(ν) + γS(ν − ν)
≤ sup

0≤κ≤ν
{TA(κ) + γS(ν − κ)}

= TA⊗ γS(ν) .

As a remark, strong service curves are always defined as lower bounds on
the service. In fact, the only service curve for which (7.4) holds with equality
for all ν is the constant-rate service curve γS(ν) = ν

R .
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Figure 7.4: Sequence of two network elements with strict service curves.

A drawback of strict service curves is that they are not well equipped to
express delay guarantees. From the second inequality in (7.4), we can see
that a strict max-plus service curve γS(ν) = T limits the time period from
the first arrival to the last departure in a busy sequence to T . Hence, bits
appearing later in a busy sequence must satisfy a shorter delay bound than
those at the beginning of a busy sequence. This is not useful for expressing a
guarantee that grants all bits the same delay bound.

A second drawback of strict service curves is that the convolution of strict
service curves does not maintain strictness. Consider for example a sequence
of two network elements as shown in Figure 7.4(a). We give these network
elements a strange service policy: They first buffer all arriving traffic and then
flush the entire accumulated backlog in one instant after a time limit of T1
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for the first element and after T2 for the second element, with T1 6= T2. The
service curves γS1(ν) = T1 and γS2(ν) = T2, for the first and second network
element, respectively, satisfy (7.4) and are therefore strict service curves. For
the max-plus convolution, we obtain γS1 ⊗ γS2(ν) = T1 + T2. Now let us
consider an arrival scenario with constant rate arrivals where TA(ν) = ν. The
arrival time function, and resulting departure time functions TD1 and TD2 are
shown in Figure 7.4(b). The end-to-end delay of the entire network is given
by W (ν) = TD2 − TA. The figure illustrates that W (ν) > 0 for all ν ≥ 0,
that is, the initial busy sequence has infinite length. As a consequence, the
service curve γS1 ⊗ γS2(ν) = T1 + T2 violates the second inequality in (7.4)
for µ = 0 and ν > T1, since TD2(T1 + κ) ≥ T1 + T2 for all κ > 0.

The shortcomings of strict service curves can be avoided by revising –
actually weakening – the strict service curve guarantee. The revised definition
uses a modified max-plus convolution operation for functions F,G ∈ To,
given by

F ⊗
µ
G(ν) = sup

µ≤κ≤ν

{
F (κ) +G(ν − κ)

}
.

Definition 7.3. Given a network element with an arrival time function TA
and resulting departure time function TD. A function γS ∈ To is an adaptive
max-plus service curve for the network element if, for all ν ≥ 0,

TD(ν) ≤ inf
µ≤ν

{
max

[
TD(µ) + γS(ν − µ) , TA⊗

µ
γS(ν)

]}
. (7.5)

We can think of the condition as requiring that for all µ ≤ ν one of the
two inequalities

TD(ν) ≤ TD(µ) + γS(ν − µ) or TD(ν) ≤ TA⊗
µ
γS(ν) (7.6)

is satisfied. Note that the first inequality agrees with the first condition for a
strict service curve.

By setting µ = 0 in the definition, we see that every adaptive service
curve is a lower service curve, since either

TD(ν) ≤ γS(ν) or TD(ν) ≤ TA⊗
µ
γS(ν) .

Since both γS ≤ TA⊗ γS and TA⊗
µ
γS ≤ TA⊗ γS , the bound for a lower

service curve is satisfied in both cases.
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To see that every strict service curve is an adaptive service curve, pick
two values µ and ν in the same busy period with ν ≤ µ < ν. If µ > ν, then
the first condition in (7.4) gives that

TD(ν) ≤ TD(µ) + γS(ν − µ) .

If µ = ν then the second condition in (7.4) gives

TD(ν) ≤ TA(ν) + γS(ν − ν)
≤ TA⊗

µ
γS(ν) ,

which satisfies the second inequality in (7.6).
In the scenario in Figure 7.3(a), an adaptive service curve γS(ν) = ν

R

yields

TD(ν) ≤ inf
µ≤ν

{
max

[
TD(µ) + ν − µ

R
, sup
µ≤κ≤ν

{
TA(κ) + ν − κ

R

}]}
= min

(
inf
µ<0

{
t1 + ν − µ

R

}
,

inf
0≤µ≤ν

{
max

[
TD(µ) + ν − µ

R
, t1 + ν − µ

R

]})
= min

(
t1 + ν

R
, inf

0≤µ≤ν

{
TD(µ) + ν − µ

R

})
. (7.7)

In the second line, we split the infimum into two parts, µ < 0 and 0 ≤ µ ≤ ν.
The first infimum has only one term since TD(µ) + ν−µ

R = −∞ for µ < 0.
Also, since all arrivals occur at time t1, we set TA(κ) = t1 for all κ ≥ 0, and
obtain

sup
µ≤κ≤ν

{
TA(κ) + ν − κ

R

}
= sup

µ≤κ≤ν

{
t1 + ν − κ

R

}
= t1 + ν − µ

R
.

In the third line, we use that TD(µ) ≥ t1 for µ ≥ 0. If we write the infimum
in (7.7) with an existential quantifier, we see that (7.7) expresses the two
conditions

TD(ν)− t1 ≤
ν

R
,

TD(ν)− TD(µ) ≤ ν − µ
R

, ∀µ, 0 ≤ µ ≤ ν ,

which are the same conditions as those of the strict service curve in Defini-
tion 7.2 for the given arrival scenario and service curve γS(ν) = ν

R with
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ν = 0 and TA(0) = t1. Hence, an adaptive rate guarantee provides the
same bounds on the departures as a strict rate guarantee. Generally, however,
adaptive service curves provide a weaker service guarantee than strict service
curves. For example, for the adaptive service curve γS(ν) = T , equation (7.5)
evaluates to

TD(ν) ≤ inf
µ≤ν

{
max

[
TD(µ) + T , sup

µ≤κ≤ν

{
TA(κ) + T

}]}
= inf

µ≤ν

{
max

{
TD(µ) + T , TA(ν) + T

}}
= max

{
inf
µ≤ν
{TD(µ)} , TA(ν)

}
+ T

= TA(ν) + T ,

(7.8)

where we used the fact that infµ≤ν TD(µ) = −∞, since TD ∈ To. The
bound on the departures is identical to that of a lower service curve, i.e.,
TD(ν) ≤ TA(ν) + T , and not as stringent as the bound imposed by a strict
service curve. Both the lower and the adaptive service curves ensure that
each ν can experience a delay of up to T time units after its arrival time.

Another advantage of adaptive max-plus service curves is that they can
be concatenated. That is, if γS1 and γS2 are adaptive max-plus service curves,
then γS1 ⊗ γS2 is also adaptive max-plus. This opens a door to a performance
analysis of a network. Given a sequence of network elements each offering
an adaptive max-plus service curve, the service guarantee of the entire group
of network elements can be obtained by performing a max-plus convolution.
We defer the proof of this property to §11.2.
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Performance Bounds

Consider a network element with a lower max-plus service curve γS , which
experiences arrivals that are bounded by a max-plus traffic envelope λE . We
next present an envelope for the departure function TD, as well as bounds for
the delay and the backlog at the network element. All bounds are computed
from the deconvolution λE � γS .

Theorem 8.1. Given a flow with max-plus traffic envelope λE and a net-
work element that offers the flow a lower max-plus service curve γS .

(a) Envelope for departure time function TD: The function
[λE � γS(ν)]+ is a max-plus traffic envelope for the departure time
function TD for all ν ≥ 0, that is,

TD ∼ [λE � γS ]+ .

(b) Delay bound: A lower bound on the delay W (ν) for all ν ≥ 0 is

W (ν) ≤ −λE � γS(0) . (8.1)

(c) Backlog bound: At a network element where the order of departures
is the same as the order of arrivals (locally FIFO), an upper bound on
the arrival backlog Ba(ν) for all ν ≥ 0 is given by

Ba(ν) ≤ inf {b ≥ 0 |λE � γS(b) ≥ 0} . (8.2)

184
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Since we assume TD ∈ To for the departure time function, the require-
ment for a locally FIFO order of departures, as expressed for the backlog
bound, may appear gratuitous. Indeed, if arrivals and departures at the net-
work element consist of only a single flow, TD ∈ To implies a locally FIFO
order of the departures. On the other hand, if TA and TD express arrivals and
departure times for an aggregate of flows, as given in (3.2), we may have
TD ∈ To, even though the traffic of the aggregate does not depart in a locally
FIFO fashion.

Proof.
(a) Fix values µ, ν ≥ 0 and derive

TD(µ+ ν)− TD(µ) ≥ TD(ν + µ)− TA⊗ γS(µ)
= TD(µ+ ν)− sup

0≤κ≤µ
{TA(µ− κ) + γS(κ)}

≥ inf
κ≥0
{TA(µ+ ν)− TA(µ− κ)− γS(κ)}

≥ inf
κ≥0
{λE(ν + κ)− γS(κ)}

= λE � γS(ν) .

In the first line we insert TD ≤ TA⊗ γS . Then, we expand the max-plus
convolution. The third line holds since TD ≥ TA. The next line uses that λE
is a max-plus traffic envelope. Lastly, since TD(µ+ ν)− TD(µ) ≥ 0 always
holds, we get that [λE � γS ]+ is an envelope.

Note that the bound [λE � γS ]+(ν) for the envelope is used only for non-
negative values of ν. Since envelopes are assumed to be in To, they are as-
signed −∞ for ν < 0.
(b) The delay bound is derived for ν ≥ 0 by

W (ν) = TD(ν)− TA(ν)
≤ TA⊗ γS(ν)− TA(ν)
= sup

0≤κ≤ν
{TA(ν − κ) + γS(κ)− TA(ν)}

≤ sup
κ≥0
{γS(κ)− λE(κ)}

= − inf
κ≥0
{λE(κ)− γS(κ)}

= −λE � γS(0) .
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The first three lines spell out the definition of the delay, and use
TD ≤ TA⊗ γS . The fourth lines uses that λE is a max-plus traffic envelope,
and extends the range over which the supremum is taken. The next line takes
advantage of supx≥0 F (x) = − infx≥0 F (−x) for any function F , which
then yields the deconvolution expression.
(c) We will show that

λE � γS(b) ≥ 0 =⇒ ∀ν ≥ 0 : Ba(ν) ≤ b .

Then, the infimum over all non-negative b satisfying the inequality yields the
best bound achievable in this fashion. We start by deriving

λE � γS(b) ≥ 0 ⇐⇒ inf
κ≥0
{λE(b+ κ)− γS(κ)} ≥ 0

⇐⇒ inf
κ≥b
{λE(κ)− γS(κ− b)} ≥ 0

⇐⇒ ∀κ ≥ b : λE(κ) ≥ γS(κ− b) .

Therefore, if λE � γS(b) ≥ 0, then for each ν ≥ b

TD(ν − b) ≤ TA⊗ γS(ν − b)
≤ TA⊗λE(ν)
= TA(ν) .

In the second line we have used that F ⊗H(ν) ≥ G⊗H(ν − b) whenever
F (ν) ≥ G(ν − b), due to the monotonicity of the max-plus convolution. The
last line follows by (6.2). For values ν < b, we have TD(ν−b) = −∞. Since
in a locally FIFO system, TD(ν − b) = TA(ν) implies Ba(ν) ≤ b, we have
established that b is a bound on the backlog for all ν ≥ 0.

Example: Consider the max-plus traffic envelope

λE(ν) =
[
ν

r
− e

]+
,

for some r > 0 and e > 0, and the lower max-plus service curve

γS(ν) = ν

C
,
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for a constant C > r. To compute the deconvolution

λE � γS(ν) = inf
κ≥0

{[ν + κ

r
− e

]+
− κ

C

}
we distinguish the cases

0 ≤ κ < er − ν and κ ≥ er − ν .

Since 0 ≤ κ < er − ν is only feasible if ν < er, we evaluate the ranges
ν < er and ν ≥ er separately. For ν < er, we get

λE � γS(ν) = min
(

inf
0≤κ<er−ν

{
− κ
C

}
, inf
κ≥er−ν

{
ν + κ

r
− e− κ

C

})
= ν − er

C
.

Note that this term is negative. For ν ≥ er, we derive

λE � γS(ν) = inf
κ≥0

{
ν + κ

r
− e− κ

C

}
= ν

r
− e .

Here, the infimum occurs at κ = 0 since the function inside the infimum is
increasing in κ. So, we have

λE � γS(ν) =


ν − er
C

, if ν < er ,

ν

r
− e , if ν ≥ er ,

which yields the bounds

TD ∼
[
ν

r
− e

]+
,

W (ν) ≤ er

C
,

Ba(ν) ≤ er .

The output bound can sometimes be improved when the service curve
is exact. According to Theorem 6.2, if an exact service curve γS is super-
additive, it acts as a traffic regulator, which enforces that the departure time
function satisfies TD ∼ γS . Therefore, if the service curve γS(ν) = ν

C is
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exact, the departure envelope is given by the service curve, that is, TD ∼ ν
C ,

which may improve upon the departure envelope of a lower service curve.
With an adaptive service curve γS , it is possible to bound delays even

when arrivals are not limited by a max-plus traffic envelope, as long as we
can give an a priori bound on the backlog.

Theorem 8.2. Given a network element with adaptive service curve γS . If
the arrival backlog is bounded by Ba(ν) ≤ bmax for all ν ≥ 0, then the delay
is bounded for all ν ≥ 0 by

W (ν) ≤ γS(bmax) .

Proof. We use that Ba(ν) ≤ ν for all non-negative values ν. Setting µ =
ν −Ba(ν), the adaptive service curve as defined in (7.5) gives

TD(ν) ≤ max
{
TD(ν −Ba(ν)) + γS(Ba(ν)) ,

sup
ν−Ba(ν)≤κ≤ν

{
TA(κ) + γS(ν − κ)

}}
≤ max

{
TD(ν −Ba(ν)), TA(ν)

}
+ γS(Ba(ν))

= TA(ν) + γS(Ba(ν)) ,

where the second inequality uses that TA(κ) ≤ TA(ν) and γS(ν − κ) ≤
γS(Ba(ν)) for the given range of values of κ. In the last step, we used that
by definition of the backlog Ba, TD(ν − Ba(ν)) ≤ TA(ν) holds. Then the
bound follows from the definition of the delay, W (ν) = TD(ν)−TA(ν), and
bmax ≥ Ba(ν).



9
A Summary of the Min-Plus Network Calculus

Next we review some key concepts and results of the min-plus network cal-
culus, without any derivations or proofs. There are numerous articles and
textbooks that cover the min-plus network calculus [1, 7, 9]. The description
of the min-plus network calculus will serve us as a reference when we address
the mapping between the min-plus and max-plus versions of the network cal-
culus.
Min-plus algebra. A min-plus algebra refers to a dioid (R ∪∞,min,+) or
(Z ∪ ∞,min,+), where the operations are the minimum (∧) and the addi-
tion (+). The properties are analogous to those of the corresponding max-plus
dioids, with∞ as the neutral element for the minimum and the absorbing el-
ement for the addition.

Continuous-time functions describing arrivals, departures, or ser-
vice are left-continuous, non-negative, and non-decreasing functions
F : R→ R+

o ∪ {∞}. The set of left-continuous, non-negative and non-
decreasing functions is denoted by F . Functions are said to be one-sided if
F (t) = 0 for t ≤ 0. The subset of one-sided functions in F is denoted by Fo.
For two functions F,G ∈ F , the min-plus convolution F ⊗G is defined as

F ⊗G(t) = inf
s∈R
{F (s) +G(t− s)} .

189



190 A Summary of the Min-Plus Network Calculus

For F,G ∈ Fo, the convolution simplifies to

F ⊗G(t) =

 inf
0≤s≤t

{F (s) +G(t− s)} , t > 0 ,

0 , t ≤ 0 .

We have that (F ,min,⊗) and (Fo,min,⊗) are also dioids, where the neutral
element of the ⊗-operation is the function δ, defined as

δ(t) =

∞ , t > 0 ,
0 , t ≤ 0 .

A delay function with delay d, δd, is defined as δd(t) = δ(t− d).
Consider traffic processes F,G,H ∈ Fo .

(a) Closure. If F and G lie in F (Fo), so does F ⊗G.

(b) Associativity. (F ⊗G)⊗H = F ⊗ (G⊗H).

(c) Commutativity. F ⊗G = G⊗ F .

(d) Distributivity. (F ∧G)⊗H = (F ⊗H) ∧ (G⊗H).

(e) Neutral element. F ⊗ δ = F .

(f) Time shift. For all times t and d > 0 we have F ⊗ δd(t) = F (t− d).

(g) Monotonicity. If F ≤ G then F ⊗H ≤ G⊗H .

(h) Boundedness. F ⊗G ≤ F , in particular, F ⊗ F ≤ F .

(i) Existence of minimum. For each value of t, there exists an s∗ with
0 ≤ s∗ ≤ t, such that F ⊗G(t) = F (s∗) +G(t− s∗).

For two functions F,G ∈ Fo the min-plus deconvolution is defined as

F �G(t) = sup
s≥0
{F (t+ s)−G(s)} .

The operation is not closed in Fo, not commutative, and not associative.
A function F is subadditive if F (t+ τ) ≤ F (t) + F (τ) for all t ≥ 0 and

τ ≥ 0. For a non-decreasing function F , we define F (n) for n ≥ 0 as

F (0) = δ ,

F (n) = F ⊗ F (n−1) .
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Figure 9.1: Arrival and departure function A and D at a buffered link with rate C = 4 Mbps.

The subadditive closure F ∗ of F is defined as

F ∗ = inf
n≥0

F (n) .

Every subadditive closure is subadditive and F ∗ ≤ F always holds.
Subadditivity of a function F ∈ Fo expresses itself in a number of ways

due to the equivalences

F is subadditive ⇐⇒ F = F ⊗ F ⇐⇒ F = F � F ⇐⇒ F = F ∗ .

Arrivals, departures, backlog, and virtual delay. Arrivals at a network
element are described by a function A ∈ Fo, such that A(t) denotes the
cumulative arrivals in the time interval [0, t). The output of a network element
in [0, t) is characterized by a departure function D ∈ Fo, with D(t) ≤ A(t).
In Figure 9.1 we show the arrival and departure functions A and D for the
arrival scenario in Figure 3.1 at a buffered link with a rate of C = 4 Mbps.
The backlog at time t,B(t), consists of the arrivals that have not yet departed,
given by

B(t) = A(t)−D(t) . (9.1)
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In Figure 9.1, the backlog is the vertical distance between the arrival and the
departure function. A maximal time interval with B(t) > 0 is referred to
as busy period, and a maximal time interval without backlog (B(t) = 0) is
called an idle period.

With a locally FIFO transmission order, the delay is determined by the
transmission time of all traffic that have an earlier arrival time. Consider a
time t and suppose that the arrivals prior to t are given by A(t) = x. Clearly,
when the departure function D exceeds the value x, then all traffic that has
arrived before time t has been transmitted. Hence, the delay induced by this
traffic is the earliest time y such that D(t + y) ≥ x. Denoting the delay at
time t by W (t), we have

W (t) = inf {y > 0 | D(t+ y) ≥ A(t)} . (9.2)

In Figure 9.1,W (t) corresponds to the horizontal distance between the arrival
and the departure functions at time t. Since W (t) is defined even if there is
no arrival at time t, it is often referred to as the virtual delay at time t.
Traffic envelopes. A function E ∈ Fo is a min-plus traffic envelope for an
arrival function A, if

A = A⊗ E .

We write A ∼ E to indicate that E is a min-plus traffic envelope for A. For
A ∼ E,E(τ) expresses the maximum amount of traffic that may arrive in any
time interval of length τ , that is, E(τ) ≥ A(t+ τ)− A(t) for all t ≥ 0. The
smaller an envelope, the better, since it provides a tighter description of the
enveloped function. Since A ∼ E if and only if A ∼ E∗, and since E∗ ≤ E,
where E∗ is the subadditive closure of E, all reasonable choices for min-plus
traffic envelopes are subadditive. A frequently used min-plus traffic envelope
is the token bucket E(t) = (b + rt)It>0 with burst size b ≥ 0 and rate
r > 0.1 A token bucket bounds the long-term rate of traffic to r, but permits
instantaneous bursts of up to size b. An extension is a token bucket with a peak
rate constraint P > r, which has the envelope E(t) = min{Pt, b+ rt}It>0.
Here, a burst cannot be sent instantaneously, since the traffic rate is limited to
the peak rate P . The best (tightest) envelope for an arrival functionA is given
by its empirical envelope EA, which is computed with EA = A�A.

1Iexpr denotes an indicator function, with Iexpr = 1 if ‘expr’ is true, and Iexpr = 0
otherwise.
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Min-plus service curves. For a network element with arrival function
A ∈ Fo, and corresponding departure function D ∈ Fo, S ∈ Fo is a (an)

exact
lower
upper

min-plus service curve for the network element, if


D = A⊗ S
D ≥ A⊗ S
D ≤ A⊗ S

.

A work-conserving buffered link has an exact service curve S(t) =
C[t]+. The service curve of a delay element with delay d is S = δd. Ser-
vice curves of the form S(t) = R[t − T ]+ for constants R > 0 and T > 0
are referred to as latency-rate servers. The service provided by a sequence
of network elements with service curves S1, . . . , SN can be equivalently ex-
pressed by a single network element with service curve S1 ⊗ . . .⊗ SN . This
is analogous to the concatenation of service curves in the max-plus network
calculus.

Given a network element with exact service curve S(t) = C[t]+ that is
shared by two flows, a ‘through flow’ and a ‘cross flow’. If the arrivals of the
cross flow are bounded by the min-plus traffic envelope Ec, a lower service
curve of the through flow is given by

S(t) = [Ct− Ec(t)]+ .

This lower service curve is the residual min-plus service curve. The residual
service curve expresses a lower bound on the link capacity that is left unused
by the cross flow.

Min-plus lower service curves of the form S(t) = C[t]+ have the same
issue with satisfying rate guarantees as the corresponding max-plus service
curves, see §7.3. The issue arises when a flow acquires more than the guaran-
teed rate for an extended time period, followed by a time period without any
service. For example, if a permanently backlogged network element (A = δ)
is served at rate 2C in the time interval [0, T ] and not served at all in the
time interval [T, 2T ), the condition D(t) ≥ A ⊗ S(t) is still satisfied for
all t ∈ [0, 2T ]. Since T is arbitrary, a flow may be served at a rate of zero
for arbitrarily long time intervals, without violating the lower service curve.
Rate guarantees can be strengthened by using strict min-plus service curves
or adaptive min-plus service curves. A strict min-plus service curve guar-
antees that for any time interval [t1, t2] where the backlog is non-zero, that
is, B(s) > 0 for s ∈ (t1, t2), the departures at the network element sat-
isfy D(t)−D(s) ≥ S(t− s). Every strict min-plus service curve is a lower
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min-plus service curve. The limitation of strict min-plus service curves is that
the concatenation of two strict min-plus service curves S1 and S2, S1 ⊗ S2,
may not be strict, and that strict min-plus service curves that enforce a delay
bound d (S = δd) require that busy periods are bounded by d.

The issues with strict min-plus service curves can be avoided with an
adaptive min-plus service curve. The definition uses a modified min-plus con-
volution operation for F,G ∈ Fo, given by

F ⊗
s
G(ν) = inf

s≤u≤t

{
F (u) +G(t− u)

}
.

Then, a network element with an arrival function A and departure function D
has an adaptive min-plus service curve S, if for all t ≥ 0,

D(t) ≥ sup
s≤t

{
min

[
D(s) + S(t− s) , A⊗

s
S(t)

]}
. (9.3)

We note that the adaptive min-plus service curves originally proposed
in [2, 26] are more general in that the function S appearing in the two parts of
the minimum can be a different function in each part (see §13). For the earlier
discussed scenario of a permanently backlogged network element, an adap-
tive min-plus service curve S(t) = C[t]+ ensures that the strict guarantee
D(t)−D(s) ≥ S(t− s) is satisfied for any time interval [s, t]. On the other
hand, an adaptive service curve S = δd ensures that D(t) ≥ A(t − d) with-
out restricting the length of a busy period. Moreover, for a sequence of two
network elements with adaptive min-plus service curves S1 and S2, S1 ⊗ S2
is an adaptive min-plus service curve for the sequence of network elements.
Performance bounds. Consider a network element with lower min-plus ser-
vice curve S and arrivals A that are bounded by a min-plus traffic envelope,
A ∼ E. The network element satisfies the following bounds:

(a) Envelope for departure function D: The function (E � S(τ))Iτ>0
is a min-plus traffic envelope for the departure functionD, that is,D ∼
E � S.

(b) Backlog bound: The backlog B(t) is bounded for arbitrary times
t > 0 by

B(t) ≤ E � S(0) . (9.4)
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(c) Delay bound: If arrivals are served in a locally FIFO fashion, then the
virtual delay W (t) is bounded for all times t > 0 by

W (t) ≤ inf {d ≥ 0 |E � S(−d) ≤ 0} . (9.5)

If we compare the bounds in the min-plus network calculus with the cor-
responding bounds of the max-plus network calculus from §8, we observe
that they are all constructed using the deconvolution of the min-plus or max-
plus algebra, respectively, of an arrival envelope and a service curve. In the
max-plus setting, the computation of the delay bound is more straightforward
than that of the backlog bound, and it is the other way around in the min-plus
setting. In §11.3, we will see that the three bounds for the departure enve-
lope, the backlog, and the delay in the min-plus calculus are equivalent to the
corresponding bounds for the max-plus network calculus from §8.
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Isomorphism between the Min-Plus and

Max-Plus Algebra

The review of the min-plus network calculus in §9 has exposed many sim-
ilarities between the max-plus network calculus and the min-plus network
calculus. For example, the min-plus convolution and deconvolution appear to
have the same properties as their max-plus versions, as long as we exchange
infima by suprema and flip the direction of inequalities. Departure envelopes,
delay bounds, and backlog bounds at a network element were computed by
performing deconvolutions of service curves and traffic envelopes, as was the
case in the max-plus network calculus. We also encountered differences be-
tween the min-plus and max-plus network calculus. For example, expressing
an aggregate of traffic flows is more intuitive in a min-plus framework, where
it is a simple sum. Also, when comparing the expressions for the residual
max-plus and min-plus service curves, the min-plus version appears much
simpler. These superficial observations provide the motivation for studying
the relationship between the min-plus and max-plus versions of the network
calculus in greater detail. We will find that the analyses of the two approaches
are essentially mirror images of each other, in the sense that results in one
version of the network calculus can be mapped to results in the other version.
The mapping exists between continuous-time functions in the time domain
and continuous-space functions in the space domain.

196
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Figure 10.1: Arrival function A and arrival time function TA as diagonal reflections.

We begin by comparing an arrival function A with an arrival time func-
tion TA. In Figure 10.1 we depict A and TA for the arrival scenario from
Table 3.1. In the figure, the units for the arrival function A are at the bot-
tom and on the left, and the units for the arrival time function TA are on top
and on the right. We can observe that the two characterizations of arrivals are
diagonal reflections of each other.

If a function F is continuous and strictly increasing, its diagonal reflec-
tion is the inverse function F−1, defined as

F (x) = y =⇒ F−1(y) = x .

By definition, F−1(F (x)) = x and F (F−1(y)) = y. Hence, if an arrival
function A is continuous and strictly increasing, A and TA are related by
TA = A−1 and A = T−1

A . The same extends to the mapping of departure
characterizations (D and TD), traffic envelopes (E and λE), and service char-
acterizations (S and γS), where we refer to Table 10.1 for the conventions of
our notation. However, arrival functionsA and arrival time functions TA gen-
erally are not continuous and strictly increasing. Instead, they have ‘jumps’
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Time domain Space domain
(min-plus algebra) (max-plus algebra)

Arrivals: A TA

Departures: D TD

Traffic envelope: E λE

Service curve: S γS

Table 10.1: Summary of notation.

and ‘plateaus’. In Figure 10.1 we see that each packet arrival creates a jump
of A, and the elapsed time between two arrival events creates a plateau. For
the arrival time function TA, it is the other way around. In functions with
jumps and plateaus, the construction of an inverse is ambiguous. To illus-
trate this, consider the plateau A(t) = 2500, which is assumed for all times
in the range 0.6 ms < t ≤ 1 ms. While the inverse function value cannot
be determined at a plateau, always choosing the smallest value or the largest
value at a plateau constructs the desired reflection at the diagonal. We refer
to functions that are established in this fashion as pseudo-inverse functions.
If the pseudo-inverse function is constructed by picking the smallest value
(t = 0.6 for A(t) = 2500), we refer to it as lower pseudo-inverse, and de-
note it by A ↓. If the function is created by always selecting the largest value
(t = 1 for A(t) = 2500), we call it the upper pseudo-inverse, and denote it
by A ↑. Pseudo-inverses can be constructed for all non-decreasing functions,
be they discrete-time, discrete-space, fluid-flow, or other. The properties of
pseudo-inverse functions will provide us with the tools for mapping the net-
work calculus between the time domain and the space domain.

10.1 Properties of pseudo-inverse functions

We now present a formal definition of pseudo-inverse functions. For a non-
decreasing function F : R→ R∪{−∞}∪{∞}, the lower pseudo-inverse F ↓

and the upper pseudo-inverse F ↑ are given by

F ↓(y) = inf {x | F (x) ≥ y} = sup {x | F (x) < y} , (10.1)

F ↑(y) = sup {x | F (x) ≤ y} = inf {x | F (x) > y} . (10.2)
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Note that we define two versions for each pseudo-inverse. The two versions
are identical as long as F is non-decreasing. The attributes ‘lower’ and ‘up-
per’ for the pseudo-inverses are justified since F ↑ ≥ F ↓. If F is strictly
increasing and continuous, we have F ↓ = F ↑ = F−1.

We can use Figure 10.1 to check that T ↑A tracks the reflection of A at
the diagonal, and that A ↓ tracks the reflection of TA. We therefore have the
mapping

TA(ν) = A ↑(ν) and A(t) = T ↓A (t) . (10.3)

Shortly, we will make this observation precise.
For functions that have jumps as well as plateaus, F ↓(F (x)) and

F (F ↑(y)) generally do not recover the argument. Instead, the pseudo-
inverses of a non-decreasing function F satisfy the following weaker proper-
ties, for all x, y ∈ R and arbitrary ε > 0:

(P1) F ↓(F (x)) ≤ x < F ↓(F (x) + ε).

(P2) F ↑(F (x)− ε) < x ≤ F ↑(F (x)).

(P3) If F is right-continuous, then F (F ↓(y)− ε) < y ≤ F (F ↓(y)).

(P4) If F is left-continuous, then F (F ↑(y)) ≤ y < F (F ↑(y) + ε).

The properties follow directly from the definitions of the pseudo-inverses. For
example, we obtain property (P1) from

F ↓(F (x)) = inf {y | F (y) ≥ F (x)} ≤ x ,
F ↓(F (x) + ε) = inf {y | F (y) ≥ F (x) + ε} > x .

Properties (P1) and (P2) hold for both left- and right-continuous functions.
The other properties require that F is left- or right-continuous. We show this
for property (P4), by writing

F (F ↑(y)) = F (sup {x | F (x) ≤ y}) ≤ y ,
F (F ↑(y) + ε) = F (sup {x | F (x) ≤ y}+ ε) > y .

The above expressions assume that

sup {x | F (x) ≤ y} ∈ {x | F (x) ≤ y} ,
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which is ensured as long as F is left-continuous.
Figure 10.2 presents an illustration of the properties. Figure 10.2(a) shows

a non-decreasing function F , where F (x) is located on a plateau. In this
case, the lower pseudo-inverse F ↓(F (x)) maps to a value on the horizontal
axis that is less than or equal to x, as indicated by the dashed arrow. The
pseudo-inverse F ↓(F (x) + ε) maps to a value greater than x. This gives us
property (P1). If F (x) is not on a plateau, we have F ↓(F (x)) = x, and (P1)
remains valid. Figure 10.2(b) shows the corresponding mapping for the upper
pseudo-inverse, which yields the inequalities in property (P2).

Figure 10.2(c) shows a construction of property (P3) for a right-
continuous function F . We start by selecting a value y on the vertical axis.
The figure depicts the interesting case, where y is not a function value of F ,
and instead lies in the middle of a jump of F . Taking the lower pseudo-
inverse F ↓(y), and then F (F ↓(y)) maps to a value on the vertical axis that is
greater than or equal to y. On the other hand, F (F ↓(y)−ε) is less than y. Fig-
ure 10.2(d) illustrates property (P4) for a left-continuous function F , where
F (F ↑(y)) ≤ y.

Sometimes we must evaluate the pseudo-inverses in the immediate neigh-
borhood of a function value. Using F (x+) and F (x−), as defined in (3.1), and
expressing them as

F (x−) = sup
ε>0

F (x− ε) and F (x+) = inf
ε>0

F (x+ ε) ,

we see that the strict inequalities in properties (P1)–(P4) may become equal-
ities.

Properties (P1) and (P4) capture the defining properties of the pseudo-
inverses. Another, equivalent, way to express the relationships between func-
tions and their pseudo-inverses are properties (P5)–(P8).

(P5) F (x) > y =⇒ F ↑(y) ≤ x.

(P6) F (x) ≤ y =⇒ F ↑(y) ≥ x.

(P7) F (x) < y =⇒ F ↓(y) ≥ x.

(P8) F (x) ≥ y =⇒ F ↓(y) ≤ x.

To show that (P5) holds, we note that F (x) > y lets us conclude that F (x)−
ε ≥ y for some ε > 0. Applying F ↑ to both sides maintains the direction
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Figure 10.2: Illustrations of the properties of pseudo-inverses of non-decreasing functions.
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of the inequality. By property (P2), we obtain x > F ↑(F (x)− ε) ≥ F ↑(y).
For (P6), we can apply F ↑ to both sides of the inequality F (x) ≤ y. From
property (P2), we then get x ≥ F ↑(F (x)) ≥ F ↑(y). The proofs for proper-
ties (P7) and (P8) are similar.

Even though pseudo-inverses are less powerful than actual inverse func-
tions, they are sufficient to create perfect diagonal reflections between the
arrival function A and the arrival time function TA in Figure 10.1. In fact,
the pseudo-inverses create a one-to-one mapping between the min-plus and
max-plus network calculus. The mapping will be based on a set of fundamen-
tal properties of pseudo-inverses with respect to left-continuous and right-
continuous functions.

Lemma 10.1 (FUNDAMENTAL PROPERTIES OF PSEUDO-INVERSES).
Given non-decreasing functions F and G.

(a) F ↓ and F ↑ are non-decreasing.

(b) F ↓ is left-continuous and F ↑ is right-continuous.

(c) If F is left-continuous, then F =
(
F ↑
) ↓.

(d) If F is right-continuous, then F =
(
F ↓
) ↑.

(e) If F ≥ G, then F ↑ ≤ G ↑ and F ↓ ≤ G ↓.

The second property confirms that taking the lower pseudo-inverse pro-
duces a left-continuous function, and the upper pseudo-inverse produces a
right-continuous function. Note that this holds for the pseudo-inverses of any
non-decreasing function, be it left-continuous, right-continuous, or even con-
tinuous. The third and fourth properties state that taking first one type of
pseudo-inverse and then the other type of pseudo-inverse of a function re-
covers the original function. This can be used to justify our observation in
Figure 10.1 that A and TA are diagonal reflections of each other, and the re-
lationship between A and TA in (10.3). Since A is left-continuous and TA is
right-continuous, the third and fourth properties yield

A =
(
A ↑
) ↓ = T ↓A ,

TA =
(
T ↓A
) ↑ = A ↑ .
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Hence, TA can be expressed by the pseudo-inverse A ↑, and A by the pseudo-
inverse T ↓A . The fifth property, which states that pseudo-inverses reverse the
order relationship of functions, is instrumental for mapping service curves
and traffic envelopes between the min-plus and the max-plus algebras.

For the proofs of the properties, we view left-continuous functions as
functions of time, e.g., F (t), and right-continuous functions as space-domain
functions, e.g., F (ν).

Proof. (of Lemma 10.1)
(a) For the first property, there is nothing to show since the claim follows
directly from the definition of the pseudo-inverses in (10.1) and (10.2).
(b) To show that F ↑ is right-continuous we prove that the limit from the right
is equal to the function value. We derive

F ↑((y∗)+) = lim
y→y∗
y>y∗

inf {x | F (x) > y}

= inf
y>y∗

inf {x | F (x) > y}

= inf
x,y
y>y∗

F (x)>y

{x}

= inf {x | F (x) > y∗}
= F ↑(y∗) .

The first line expresses the limit from the right of the upper pseudo-inverse
for an arbitrary value y∗. The second line uses that F ↑ is non-decreasing.
In the next line, we summarize the two infima and collect their conditions.
Since the last two conditions give F (x) > y > y∗, we can drop y entirely
without changing the expression. Rewriting the result in the following line
gives F ↑(y∗).

The derivation for the lower pseudo-inverse is done in an analogous fash-
ion, by showing that F ↓((y∗)−) = F ↓(y∗).
(c) For an arbitrary time t ∈ R, inserting the definitions of the left and right
pseudo-inverses for

(
F ↑
) ↓ yields(

F ↑
) ↓(t) = inf

{
ν | F ↑(ν) ≥ t

}
= inf

{
ν | sup{s | F (s) ≤ ν} ≥ t

}
.
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We introduce notation for the two sets appearing in the equation and define

Mt =
{
ν | sup{s | F (s) ≤ ν} ≥ t

}
,

Mt,ν =
{
s | F (s) ≤ ν

}
.

We prove the claim by showing that F (t) = inf Mt. First, we argue that
F (t) ∈ Mt, and then we show that ν̂ 6∈ Mt if ν̂ < F (t). If ν = F (t), the
condition for membership in Mt becomes

supMt,F (t) = sup
{
s | F (s) ≤ F (t)

}
≥ t .

The supremum above is either t, or a number s∗ > t with F (s∗) = F (t). In
both cases, the condition that the supremum is greater than or equal to t is
satisfied, and we conclude that F (t) ∈ Mt. If a ν̂ < F (t), the condition for
membership in Mt reads

supMt,ν̂ = sup
{
s | F (s) ≤ ν̂

}
≥ t .

Let s∗ = supMt,ν̂ be the supremum. Since F is left-continuous, we have that
s∗ ∈Mt,ν̂ , and, therefore, F (s∗) ≤ ν̂. Together with the assumption on ν̂, we
now have F (s∗) ≤ ν̂ < F (t). Since F is non-decreasing, F (s∗) ≤ ν̂ < F (t)
implies that s∗ < t. Hence, with ν̂, the condition for membership in Mt

cannot be satisfied, and we have that ν̂ 6∈Mt.
(d) The proof is analogous to the left-continuous case shown above. For an
arbitrary ν ∈ R, we have(

F ↓
) ↑(ν) = sup

{
t | F ↓(t) ≤ ν

}
= sup

{
t | inf{k | F (k) ≥ t} ≤ ν

}
.

If we defineMν = {t | inf{k | F (k) ≥ t} ≤ ν}, we can proceed by showing
that F (ν) = supMν .
(e) The proof of the third property uses the definitions of the pseudo-inverses.

F ↑(ν) = sup
{
t | F (t) ≤ ν

}
≤ sup

{
t | G(t) ≤ ν

}
= G ↑(ν) ,

and

F ↓(t) = inf
{
ν | F (ν) ≥ t

}
≤ inf

{
ν | G(ν) ≥ t

}
= G ↓(t) ,
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where the inequality in both cases follows from F ≥ G, since F and G are
non-decreasing.

10.2 Mapping of algebras

Next we exploit the pseudo-inverses to map an arbitrary expression in the
min-plus algebra to an expression in the max-plus algebra, and vice versa.
The mapping is one-to-one and onto, thus creating an isomorphism between
the algebras.

We address the mapping between the min-plus algebra of left-continuous
functions in the sets F and Fo and the max-plus algebra of right-continuous
functions in T and To.

All functions that characterize arrivals, departures, traffic envelopes and
service curves of the min-plus network calculus lie in Fo, and in To for the
max-plus network calculus. The relationship between the sets Fo and To is as
follows.

Theorem 10.2 (MAPPING FUNCTIONS BETWEEN THE TIME DOMAIN AND

SPACE DOMAIN).

(a) If F ∈ Fo then F ↑ ∈ To.

(b) If F ∈ To then F ↓ ∈ Fo.

(c) δ ↑ = δ̄ and δ̄ ↓ = δ.

Proof. By Lemma 10.1(a), F ↑ and F ↓ are non-decreasing, as long as F
is non-decreasing. To prove the first claim, we evaluate the upper pseudo-
inverse of a function F ∈ Fo at ν < 0 and obtain

F ↑(ν) = sup
{
t | F (t) ≤ ν

}
= −∞ ,

since the supremum is taken over an empty set. For ν ≥ 0, we get that
F ↑(ν) ≥ 0 since F (0) ≤ ν. We therefore have F ↑ ∈ To.

For the second claim, consider the lower pseudo-inverse of a function
F ∈ To, and evaluate it for t ≤ 0. This yields

F ↓(t) = inf
{
ν | F (ν) ≥ t

}
= 0 ,
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since F (0) ≥ t and F (ν) = −∞ for ν < 0. For values t ≥ 0, we obtain that
F ↓(t) ≥ 0. Hence, we get F ↓ ∈ Fo.

For the third claim we write

δ ↑(ν) = sup
{
t | δ(t) ≤ ν

}
=

−∞ , if ν < 0 ,
0 , if ν ≥ 0 ,

δ̄ ↓(t) = inf
{
t | δ̄(ν) ≥ t

}
=

0 , if t ≤ 0 ,
∞ , if t > 0 ,

where we have used that sup ∅ = −∞ and inf ∅ =∞.

Now we consider the relationship between the operations in the two alge-
bras.

Theorem 10.3 (MAPPING MIN-PLUS ALGEBRA OPERATIONS).
Let F and G be non-negative non-decreasing left-continuous functions, that
is F,G ∈ F .

(a)
(
F ∧G

) ↑ = F ↑ ∨G ↑ .

(b)
(
F ⊗G

) ↑ = F ↑⊗G ↑ .

(c)
(
F �G

) ↑ = F ↑�G ↑ .

(d)
(
F +G

) ↑(ν) = inf
0≤κ≤ν

max
{
F ↑(κ), G ↑(ν − κ)

}
, ∀ν ∈ R .

(e) If F ∈ Fo is subadditive then F ↑ is superadditive.

Operations of the max-plus algebra and relations involving their oper-
ations can be mapped to the min-plus algebra with the help of the lower
pseudo-inverse. The results are summarized in the next theorem.

Theorem 10.4 (MAPPING MAX-PLUS ALGEBRA OPERATIONS).
Let F and G be non-decreasing right-continuous functions (F,G ∈ T ).

(a)
(
F ∨G

) ↓ = F ↓ ∧G ↓ .

(b)
(
F ⊗G

) ↓ = F ↓ ⊗G ↓ .
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(c)
(
F �G

) ↓ = F ↓ �G ↓ .

(d)
(

inf
0≤s≤t

max
{
F (s), G(t− s)

}) ↓
= F ↓(t) +G ↓(t) .

(e) If F ∈ To is superadditive then F ↓ is subadditive.

With these properties we can map any expression in one algebra to the
other algebra. For example, the aggregation of a set of flows with arrival
functions A1, . . . , AN and arrival time functions TA1 , . . . , TAN is governed
by  N∑

j=1
Aj(t)

 ↑ = inf
ν1,...,νN

ν=ν1+...+νN

max
j=1,...,N

TAj (νj) ,

 inf
ν1,...,νN

ν=ν1+...+νN

max
j=1,...,N

TAj (νj)

 ↓ =
N∑
j=1

Aj(t) ,

which justifies the expression in (3.2).
We now present the proofs for the mapping of operations from the time

domain to the space domain. The proofs for the mapping from the space
domain to the time domain are analogous. We assume throughout that time-
domain functions belong to F , and space-domain functions belong to T .

Proof. (of Theorem 10.3)
(a) The derivation expands the definition of the upper pseudo-inverse.(

F ∧G
) ↑(ν) = sup

{
t | min

(
F (t), G(t)

)
≤ ν

}
= sup

{
t | F (t) ≤ ν or G(t) ≤ ν

}
= max

{
sup{t | F (t) ≤ ν} , sup{t | G(t) ≤ ν}

}
=
(
F ↑ ∨G ↑

)
(ν) .

(b) First we show that (F ⊗G) ↑ ≤ F ↑⊗G ↑.(
F ⊗G

) ↑(ν) = sup{t | F ⊗G(t) ≤ ν}
= sup{t | inf

0≤s≤t
{F (s) +G(t− s)} ≤ ν}

= sup{t | F (st) +G(t− st) ≤ ν}
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≤ sup{t | F (st) ≤ κt and G(t− st) ≤ ν − κt}
≤ sup{t | F ↑(κt) ≥ st and G ↑(ν − κt) ≥ t− st}
≤ sup{t | F ↑(κt) +G ↑(ν − κt) ≥ t}
≤ sup{t | ∃κ, 0 ≤ κ ≤ ν : F ↑(κ) +G ↑(ν − κ) ≥ t}
= sup

{
t | sup

0≤κ≤ν
{F ↑(κ) +G ↑(ν − κ)} ≥ t

}
= sup{t | F ↑⊗G ↑(ν) ≥ t}
= F ↑⊗G ↑(ν) .

In the third line, we denote by st with st ≤ t the point where the infimum is
attained. The fact that it is attained follows from property (i) of the min-plus
convolution operation given in §9. Then we define κt = F (st). In the fifth
line, we take advantage of the order-reversing property of the pseudo-inverse.

For the reverse direction we derive

F ↑⊗G ↑(ν) = sup
0≤κ≤ν

{
sup{τ | F (τ) ≤ κ}+ sup{s | G(s) ≤ ν − κ}

}
= sup

0≤κ≤ν

{
sup{t | t = τ + s and F (τ) ≤ κ and G(s) ≤ ν − κ}

}
≤ sup

0≤κ≤ν

{
sup{t | t = τ + s and F (τ) +G(s) ≤ ν}

}
= sup

0≤κ≤ν

{
sup{t | inf

0≤τ≤t
{F (τ) +G(t− τ) ≤ ν}

}
= sup

0≤κ≤ν

{
sup{t | F ⊗G(t) ≤ ν}

}
=
(
F ⊗G

) ↑(ν) .

(c) We first show that (F �G) ↑ ≥ F ↑�G ↑.

(
F �G

) ↑(ν) = inf{t | F �G(t) > ν}
= inf

{
t | sup

s≥0
{F (t+ s)−G(s)} > ν

}
= inf

{
t | F (t+ st)−G(st) > ν

}
= inf{t | F (t+ st) > ν + κt and G(st) ≤ κt}
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≥ inf{t | F ↑(ν + κt) ≤ t+ st and G ↑(κt) ≥ st}
≥ inf{t | F ↑(ν + κt)−G ↑(κt) ≤ t}
≥ inf{t | ∃κ ≥ 0 : F ↑(ν + κ)−G ↑(κ) ≤ t}
= inf

{
t | inf

κ≥0
{F ↑(ν + κ) +G ↑(κ)} ≤ t

}
= inf{t | F ↑�G ↑(ν) ≤ t}
= F ↑�G ↑(ν) .

In the third line, we let st ≤ t be the time where the infimum is attained. In
the next line we define κt = G(st). After that, we apply the order-reversing
properties (P5) and (P6).

Now we argue that F ↑�G ↑ ≥ (F �G) ↑.

F ↑�G ↑(ν) = inf
κ≥0

{
sup{τ | F (τ) ≤ ν + κ} − sup{s | G(s) ≤ κ}

}
= inf

κ≥0

{
sup{τ | F (τ) ≤ ν + κ} − sκ}

}
= inf

κ≥0

{
sup{t | F (t+ sκ) ≤ ν + κ}

}
≥ inf

κ≥0

{
sup{t | F (t+ sκ)−G(sκ) ≤ ν}

}
= sup

{
t | ∀κ ≥ 0 : F (t+ sκ)−G(sκ) ≤ ν

}
≥ sup

{
t | ∀s ≥ 0 : F (t+ s)−G(s) ≤ ν

}
= sup

{
t | sup

s≥0
{F (t+ s)−G(s)} ≤ ν

}
= sup

{
t | F �G(t) ≤ ν

}
=
(
F �G

) ↑(ν) .

In the second line, we set sκ = G ↑(κ). Since G is left-continuous, sκ is in
the set and we have G(sκ) ≤ κ. In the third line, we perform the substitution
t = τ − sκ. For the fourth line, we use that G(sκ) ≤ κ. Since we substitute κ
by something that is not greater we have restricted the supremum. For the
next line, we express the infimum equivalently by a universal quantifier inside
the supremum. For the second inequality, we relax the constraint on sκ and
further restrict the supremum.
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(d) The claim follows from the following derivation.

inf
0≤κ≤ν

max{F ↑(κ), G ↑(ν − κ)}

= inf
0≤κ≤ν

max
{
inf{τ | F (τ) > κ}, inf{s | G(s) > ν − κ}

}
= inf{t | ∃κ, 0 ≤ κ ≤ ν : F (t) > κ and G(t) > ν − κ}
= inf{t | F (t) +G(t) > ν}

=
(
F +G

) ↑(ν) .

For the second line, since both F and G are non-decreasing, the maximum is
the infimum over t such that F (t) > κ and G(t) > ν − κ.
(e) We use that a subadditive function F ∈ Fo satisfies F = F ⊗F , and that
a superadditive function F ∈ To is characterized by F = F ⊗F .

F ∈ Fo subadditive⇐⇒ F ⊗ F = F

=⇒
(
F ⊗ F

) ↑ = F ↑

⇐⇒ F ↑⊗F ↑ = F ↑

⇐⇒ F ↑ ∈ To superadditive .

In summary, Theorem 10.2 constructs a bijection between the sets Fo
and To. Theorems 10.3 and 10.4 establish an exact correspondence between
the operations in the min-plus algebra and the max-plus algebra. The upper
and lower pseudo-inverse hence create a pair of isomorphisms between the
two algebraic structures. According to Lemma 10.1(d), the isomorphisms are
order-reversing.



11
Min-plus and Max-plus Duality in the Network

Calculus

We next use the mapping between the min-plus and the max-plus algebras
to show that traffic envelopes and service curve definitions in the max-plus
network calculus are consistent with the corresponding definitions in the min-
plus network calculus. When considering backlog and delay, we find that a
precise mapping of these quantities does not exist.

11.1 Mapping of traffic envelopes

Given a min-plus traffic envelope E and an arrival function A that complies
to the envelope (A ∼ E), we can construct a max-plus traffic envelope λE
for the space domain. Likewise, given TA ∼ λE , we can construct a min-plus
traffic envelope E for the time domain. This mapping of envelopes follows
as a corollary from Theorems 10.3 and 10.4.

Corollary 11.1. Given an arrival function A ∈ Fo and a min-plus traffic
envelope E ∈ Fo, then

A ∼ E =⇒ A ↑ ∼ E ↑ .

Given an arrival time function TA ∈ To and a max-plus traffic envelope
λE ∈ To, then

TA ∼ λE =⇒ TA
↓ ∼ λE ↓ .

211
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Proof. Recall that min-plus and max-plus traffic envelopes in Fo and To, re-
spectively, can be characterized in terms of convolutions, i.e.,

A ∼ E ⇐⇒ A = A⊗ E ,
TA ∼ λE ⇐⇒ TA = TA⊗λE .

Using Theorem 10.3(b), we obtain from A = A⊗ E that

A ↑ = (A⊗ E) ↑ = A ↑⊗E ↑ ,

and, therefore, A ↑ ∼ E ↑. Likewise, with Theorem 10.4(b), TA = TA⊗λE
implies that

T ↓A = (TA⊗λE) ↓ = T ↓A ⊗ λ
↓
E ,

which gives TA ↓ ∼ λE ↓.

Example: We perform the mapping of the min-plus traffic envelope for a
token bucket, given by E(t) = (b+ rt)It>0 with b, r > 0. Since E ∈ Fo, we
get from Theorem 10.2(a) that E ↑ ∈ To, and, therefore, E ↑(ν) = −∞ for
ν < 0. For ν ≥ 0, we compute E ↑ as

E ↑(ν) = sup {t | (b+ rt)It>0 ≤ ν}
= max

{
sup{t > 0 | b+ rt ≤ ν}, 0

}
= max

{ν − b
r

, 0
}
.

Setting e = b
r and comparing the right-inverse E ↑ with λE from (6.3), we

observe that the min-plus traffic envelope for the token bucket corresponds to
the max-plus traffic envelope of a rate controller with earliness allowance e.

11.2 Mapping of service curves

We can relate service curves in the time and space domains in a similar fash-
ion as traffic envelopes.
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Corollary 11.2. Given a network element with left-continuous arrival and
departure functions A and D.

If S is a (an)


exact
lower
upper

 min-plus service curve, then S ↑ is a (an)


exact
lower
upper


max-plus service curve, that is,

D = A⊗ S =⇒ D ↑ = A ↑⊗S ↑

D ≥ A⊗ S =⇒ D ↑ ≤ A ↑⊗S ↑

D ≤ A⊗ S =⇒ D ↑ ≥ A ↑⊗S ↑

 .

Corollary 11.3. Given a network element with right-continuous arrival time
function TA and departure time function TD.

If γS is a (an)


exact
lower
upper

 max-plus service curve, then γ ↓S is a (an)


exact
lower
upper


min-plus service curve, that is,

TD = TA⊗ γS =⇒ T ↓D = T ↓A ⊗ γ
↓
S

TD ≤ TA⊗ γS =⇒ T ↓D ≥ T
↓
A ⊗ γ

↓
S

TD ≥ TA⊗ γS =⇒ T ↓D ≤ T
↓
A ⊗ γ

↓
S

 .

The mappings follow directly from Theorems 10.3(b) and 10.4(b),
in conjunction with the order-reversing property of pseudo-inverses in
Lemma 10.1(e).

We now present examples of service curves that are mapped from the
time domain to the space domain. We note that for every min-plus service
curve S ∈ Fo, we have S ↑ ∈ To, and, therefore, S ↑(ν) = −∞ if ν < 0.
Examples:

(a) Let us first consider a min-plus delay service curve with δd (as defined
in §9). We realize that for all finite ν ≥ 0, we have

S ↑(ν) = sup {t | δd(t) ≤ ν} = d .

Therefore,

S ↑(ν) =

−∞ , if ν < 0 ,
d , if ν ≥ 0 ,

which corresponds to δd in §4.
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(b) Next we map the latency-rate service curve S(t) = R(t−T )It>T with
R, T > 0 from the time domain to the space domain. The computation
of the upper pseudo-inverse for ν ≥ 0 yields

S ↑(ν) = sup {t | R(t− T )It>T ≤ ν}
= sup {t > T | R(t− T ) ≤ ν}

= ν

R
+ T .

This gives the pseudo-inverse function

S ↑(ν) =

−∞ , if ν < 0 ,
ν

R
+ T , if ν ≥ 0 .

We see that latency-rate service curves in the time domain become
affine functions in the space domain.

(c) The residual service curve S(t) = [Ct− Ec(t)]+ expresses a lower
bound on the available service of a flow at a work-conserving link with
rate C, where the cross traffic complies to the min-plus traffic enve-
lope Ec. Note that the difference Ct − Ec(t) is generally not a non-
decreasing function. This creates an issue since all of our results for
mapping expressions between the time domain and the space domain
assume that functions are non-decreasing. We sidestep this issue by as-
suming that the traffic envelope Ec is concave. This ensures that the
inverse E−1

c exists and that the inverse of S(t) = [Ct− Ec(t)]+ is
convex and strictly increasing for all t where Ct > Ec(t). With this
assumption, we derive the pseudo-inverse of S by

S ↑(ν) = inf
{
t | [Ct− Ec(t)]+ > ν

}
= inf {t | Ec(t) < Ct− ν}
= inf {t | λc(Ct− ν) ≥ t}

= 1
C

(
inf
{
x | λc(x) ≥ x+ ν

C

}
+ ν

)
.

In the second line, we used thatCt ≥ Ec(t) must be satisfied for ν ≥ 0.
Also, since Ct − Ec(t) is convex and strictly increasing, we can relax
the strict inequality. In the next line, we use that Ec(x) ≤ y if and
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only if E−1
c (y) ≥ x, which is stronger than property (P6). In the last

line, we substitute x = Ct − ν, and obtain the residual service curve
from (7.2).

For specific traffic envelopes Ec, we can compute the space-domain
version directly. Let us considerEc(t) = {b+rt}It>0 with r < C. For
ν ≥ 0, we compute

S ↑(ν) = sup
{
t
∣∣∣ [Ct− {b+ rt}It>0

]+ ≤ ν}
= max

{
sup

{
t >

b

C − r

∣∣∣ (C − r)t− b ≤ ν},
sup

{
t ≤ b

C − r

∣∣∣ 0 ≤ ν}}
= ν + b

C − r
.

For b = er this service curve is identical to the residual max-plus ser-
vice curve from (7.3), which we derived for a buffered link where cross
traffic is bounded by a rate r with earliness allowance e.

The mapping between service curves in the time and space domain can be
extended to adaptive service curves. The following lemma relates the mod-
ified convolution operators used in the definitions of the min-plus and max-
plus versions of the adaptive service curve.

Lemma 11.4. Given two non-decreasing functions F and G.

(a) If F,G ∈ Fo, then, for all x ≥ 0 we have
(
F ⊗

x
G
) ↑ = F ↑ ⊗

F (x)
G ↑ .

(b) If F,G ∈ To, then, for all x ≥ 0 we have
(
F ⊗

x
G
) ↓ = F ↓ ⊗

F (x)
G ↓ .

Proof. We prove the first claim. The prove of the second claim is done in the
same fashion.(

F ⊗
x
G
) ↑

(ν) = sup
{
t | F ⊗

x
G(t) ≤ ν

}
= sup

{
t | inf

x≤s≤t

{
F (s) +G(t− s)

}
≤ ν

}
= sup

{
t | F (st) +G(t− st) ≤ ν

}
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= sup
{
t | F (st) ≤ κt and G(t− st) ≤ ν − κt

}
≤ sup

{
t | F ↑(κt) ≥ st and G ↑(ν − κt) ≥ t− st

}
≤ sup

{
t | F ↑(κt) +G ↑(ν − κt) ≥ t

}
≤ sup

{
t | ∃κ, F (x) ≤ κ ≤ ν : F ↑(κ) +G ↑(ν − κ) ≥ t

}
= sup

{
t | sup

F (x)≤κ≤ν

{
F ↑(κ) +G ↑(ν − κ)

}
≥ t
}

= sup
{
t | F ↑ ⊗

F (x)
G ↑(ν) ≥ t

}
= F ↑ ⊗

F (x)
G ↑(ν) .

In the third line, we used property (i) of the min-plus convolution from §9. In
the fourth line we set κt = F (st), and in the fifth line we apply property (P6).
For the seventh line, we use F (st) ≥ F (x). For the other direction we derive

F ↑ ⊗
F (x)

G ↑(ν) = sup
F (x)≤κ≤ν

{
sup{τ ≥ 0 | F (τ) ≤ κ}

+ sup{s ≥ 0 | G(s) ≤ ν − κ}
}

= sup
0≤κ≤ν

{
sup

{
t ≥ 0 | t = τ + s, τ ≥ 0, s ≥ 0

and F (τ) ≤ κ and F (x) ≤ κ and G(s) ≤ ν − κ}
}

≤ sup
{
t | t = τ + s, τ ≥ 0, s ≥ 0

and max[F (τ), F (x)] + G(s) ≤ ν}
= sup{t | ∀τ, 0 ≤ τ ≤ t : max[F (τ), F (x)] + G(t− τ) ≤ ν}

= sup
{
t | sup

0≤τ≤t
{max[F (τ), F (x)] + G(t− τ)} ≤ ν

}
≤ sup

{
t | sup

x≤τ≤t
{F (τ) + G(t− τ)} ≤ ν

}
= sup{t | F ⊗

x
G(t) ≤ ν}

=
(
F ⊗

x
G
) ↑(ν) .

After inserting the definition of the pseudo-inverses (first step) we express the
sum of two suprema inside a single supremum (second step). In the third step,
we summarize the inequalities, thereby relaxing the constraint on t. Doing so,
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we eliminate any appearance of κ, which allows us to drop the outer supre-
mum. Then, we substitute s = t − τ (fourth step) and express the quantifier
by a supremum (fifth step). The next line uses that

sup
0≤τ≤t

{max[F (τ), F (x)] + G(t− τ)} ≥ sup
x≤τ≤t

{F (τ) + G(t− τ)} ,

since both F and G are non-decreasing function. Replacing the first ex-
pression by the first therefore relaxes the constraint on t. The remaining
steps merely insert the ⊗

x
-operator and the definition of the upper pseudo-

inverse.

Theorem 11.5. If S is an adaptive min-plus service curve, then S ↑ is an
adaptive max-plus service curve. Likewise, if γS is an adaptive max-plus ser-
vice curve, then γ ↓S is an adaptive min-plus service curve.

We provide a proof of the mapping of an adaptive service curve from
the time domain to the space domain. The proof for the other direction is
analogous.

Proof. For an adaptive min-plus service curve S as given by Definition 7.3,
we pick two values κ and ν with κ < ν and set

tν = TD(ν) = D ↑(ν) ,
tκ = TD(κ) = D ↑(κ) .

Consider tν and tκ + ε, where ε > 0. With property (P4) we have

D(tν) = D(D ↑(ν)) ≤ ν ,
D(tκ + ε) = D(D ↑(κ) + ε) > κ .

(11.1)

According to (9.3), for t = tν and s = tκ + ε, a min-plus adaptive service
curve satisfies one of the two inequalities

D(tν) ≥ D(tκ + ε) + S(tν − tκ − ε) ,
D(tν) ≥ A ⊗

tκ+ε
S(tν) .

Suppose the first inequality is satisfied. Then, with (11.1) we get

ν − κ ≥ S(tν − tκ − ε) −−−→
ε→0

S(tν − tκ) ,
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where, for the limit ε → 0, we use that S is left-continuous. Applying S ↑ to
both sides of the inequality, we derive

S ↑(ν − κ) ≥ S ↑(S(tν − tκ))
≥ tν − tκ
= TD(ν)− TD(κ) ,

where we arrived at the second line with (P2). Hence, the first condition of an
adaptive max-plus service curve from (7.6) is satisfied.

Now suppose that the second inequality of (9.3) holds, that is, D(tν) ≥
A ⊗
tκ+ε

S(tν). With property (P6) we then have

(A ⊗
tκ+ε

S) ↑(D(tν)) ≥ tν . (11.2)

With (11.1) and Lemma 11.4, and setting A ↑ = TA, we get

TA ⊗
A(tκ+ε)

S ↑(ν) ≥ TD(ν) ,

where we used the fact that
(
A ⊗
tκ+ε

S
) ↑ is a non-decreasing function. Next

we derive

TA ⊗
A(tκ+ε)

S ↑(ν) ≤ TA ⊗
D(tκ+ε)

S ↑(ν)

≤ TA⊗
κ
S ↑(ν) ,

where the first inequality follows from A ≥ D, and the second inequality
uses (11.1). Since D(tκ + ε) = D(D ↑(κ) + ε) > κ and tν = TD(v), we
obtain from (11.2) that

TD(ν) ≤ TA⊗
κ
S ↑(ν) .

Summarizing, we have shown that, for an adaptive min-plus service S, the
upper pseudo-inverse S ↑ satisfies one of the inequalities in (7.6) for arbitrary
ν and κ with κ < µ. Therefore, S ↑ meets the requirements for an adaptive
max-plus service curve. We have skipped the case κ = ν, which is trivial
since TD(ν) ≤ TA⊗

κ
S ↑(ν) holds.
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γS1 adaptive max-plus γS2 adaptive max-plus
m m

γ ↓S1
adaptive min-plus γ ↓S2

adaptive min-plus

︸ ︷︷ ︸
⇓

γ ↓S1
⊗ γ ↓S2

adaptive min-plus
m

(γS1 ⊗ γS2) ↓ adaptive min-plus
m

((γS1 ⊗ γS2) ↓) ↑ adaptive max-plus
m

γS1 ⊗ γS2 adaptive max-plus

Figure 11.1: Convolution of two adaptive max-plus service curves.

With the mapping of min-plus to adaptive max-plus service curves at
hand, we can offer a quick proof that adaptive max-plus service curves can
be concatenated. Recall that, in §7.3, we deferred this proof when we dis-
cussed the properties of adaptive max-plus service curves. In the min-plus
network calculus, it is established that if S1 and S2 are adaptive min-plus
service curves, then S1 ⊗ S2 is also adaptive min-plus [26, Theorem 13].
This allows us to draw the diagram in Figure 11.1, which presents a proof
sketch that the max-plus convolution γ1⊗ γ2 of two adaptive max-plus ser-
vice curves γ1 and γ2 is also adaptive max-plus.

We skip the mapping of strict service curves between the time and space
domains. Since strict service curves are deficient in delivering suitable de-
lay guarantees, we find them to be less useful than adaptive service curves.
Note that a mapping of strict service curves must consider that the definition
of strictness in the time domain uses busy periods (where the time-domain
backlog satisfies B(t) > 0), whereas strictness in the space domain involves
busy sequences (where the space-domain delay satisfies W (ν) > 0). As we
will see in §11.5, busy periods are not always well aligned with busy se-
quences in the space domain. Hence, a mapping would be confined to net-
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work elements where busy sequences and busy periods coincide. An example
where this happens is a work-conserving buffered link with fixed rate C with
a right-continuous arrival time function TA. In this case, as seen in the proof
of Lemma 5.1, for every busy sequence [κ, µ] we have B(t) > 0 in the time
interval [TA(κ), TD(µ)).

11.3 Mapping of performance bounds

The mapping between the min-plus and max-plus network calculus allows us
to compare bounds for departures, backlog, and delay at network elements
that can be derived in the two frameworks. The bounds for the max-plus net-
work calculus are given in Theorem 8.1, and those of the min-plus network
calculus are found at the end of §9. The max-plus bounds are expressed for
units of traffic, i.e., the backlog and delay of a bit, and min-plus bounds are
expressed as functions of time. Nonetheless, we find that the bounds under a
time-domain and a space-domain analysis are in agreement.

We consider a network element with a lower max-plus service curve γS ,
and arrivals that are bounded by a max-plus traffic envelope λE , or by a min-
plus lower service curve S and a min-plus traffic envelope E. The min-plus
and max-plus characterizations are related by the lower and upper pseudo-
inverses, that is, E = λ ↓E , λE = E ↑, S = γ ↓S , and γS = S ↑.

For the envelope of departures at the network element, we use the fact that
traffic envelopes can be expressed in terms of a min-plus or max-plus convo-
lution, as shown at the beginning of §11.1. For the min-plus traffic envelope
of the departures, we have that D ∼ E �S if and only if D = D⊗ (E �S).
Taking the upper pseudo-inverse and using the fact that TD = D ↑, Theo-
rem 10.3 allows us to derive

TD =
(
D ⊗

(
E � S

)) ↑
= TD ⊗

(
E � S

) ↑
= TD ⊗

(
E ↑�S ↑

)
= TD ⊗

(
λE � γS

)
.

Since TD ∼ λE � γS if and only if TD = TD ⊗ (E � S), we conclude that
D ∼ E � S if and only if TD ∼ λE � γS . Since max-plus traffic envelopes
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do not take negative values, we can add a non-negativity constraint and write
TD ∼ [λE � γS ]+.

The backlog bound in the min-plus algebra is given by the min-plus de-
convolution E � S(0), see (9.4). Using the mapping of operations in the
min-plus and max-plus algebras, we can write

E � S(0) =
((
E � S

) ↑) ↓(0)

=
(
E ↑�S ↑

) ↓(0)

=
(
λE � γS

) ↓(0)
= inf

{
x ≥ 0 | λE � γS(x) ≥ 0

}
.

The last line, which inserts the definition of the lower pseudo-inverse, is iden-
tical to the bound on the arrival backlog Ba from (8.2). The restriction to
values x ≥ 0 is permitted since for x < 0, we have that λE(x) = −∞, and,
therefore, λE � γS(x) = −∞.

For the delay bounds, we take the max-plus delay bound from (8.1), given
by −λE � γS(0) and derive

−λE � γS(0) = −
((
λE � γS

) ↓) ↑(0)

= −
(
λ ↓E � γ

↓
S

) ↑(0)

= −
(
E � S

) ↑(0)
= − sup

{
x | E � S(x) ≤ 0

}
= inf

{
x ≥ 0 | E � S(−x) ≤ 0

}
.

The fourth line uses the definition of the upper pseudo-inverse. In the last
line, we can add the constraint x ≥ 0 since E � S(−x) > 0 for x < 0. The
last line is of course the delay bound from the min-plus algebra in (9.5).

11.4 Mapping of backlog and delay

We now relate the performance metrics of backlog and delays in the space
and time domains. For the space domain, we defined the waiting time W (ν)
in (5.1), and the arrival backlog Ba(ν) and departure backlog Bd(ν) in (5.2).

For the time domain with arrival and departure functions A and D at
a network element, the backlog at time t, B(t), is defined in (9.1) and the
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(virtual) delay W (t) is defined in (9.2). To emphasize that the virtual delay
is measured at an actual or imagined (virtual) arrival instant, we denote the
virtual delay by W a(t), and refer to it as virtual arrival delay. Analogous
to the departure backlog Bd(ν), we can also define the delay for departing
traffic. Let

W d(t) = inf {τ > 0 | D(t) ≥ A(t− τ)}

denote the virtual departure delay at time t. The delay W d(t) expresses the
delay that an actual or imagined departure at time t has incurred at a network
element.

Different from arrivals, departures, envelopes, service curves, and the per-
formance bounds, the backlog in the time and space domains are not easily
mapped to each other using one of the pseudo-inverses. In fact, an exact map-
ping is generally not feasible, and we are left with providing upper and lower
bounds. We first discuss bounds for the backlog, and then address bounds for
the delay.

Theorem 11.6.

(a) The time domain backlog B(t) is bounded by

Ba(A(t)) ≤ B(t) ≤ Bd(D(t)) .

(b) The space domain backlog Ba(ν) is bounded by

ν −D(TA(ν)+) ≤ Ba(ν) ≤ ν −D(TA(ν)) .

In Figure 11.2 we illustrate that the bounds in Theorem 11.6 are not
necessarily sharp. Figure 11.2(a) captures a scenario where B(t) > 0, yet
Ba(A(t)) = 0. Figure 11.2(b) depicts a case where Bd(D(t)) is signifi-
cantly larger than B(t). Incidentally, note that B(t) = Bd(D(t)) holds in
Figure 11.2(a), and B(t) = Ba(A(t)) in Figure 11.2(b).

The backlog in the space domain can be bounded by backlog expressions
from the time domain when the arrival and departure functions satisfy addi-
tional continuity properties. This will be stated in a corollary that follows the
proof.
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Tra�c

Time

TA

TD

t

TA(A(t))

D(t) A(t)

B(t)

Ba(A(t)) = 0

= TD(A(t))

(a) B(t)� Ba(A(t))

Tra�c

Time

TA

TD

t

D(t) A(t)

B(t)

Bd(D(t))
TD(D(t))

(b) B(t)� Bd(D(t))

Figure 11.2: Relationship between the time-domain backlog and the space-domain backlog.
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Proof.
(a) To get the lower bound for B(t) we derive

Ba(A(t)) = sup {κ ≥ 0 | TD(A(t)− κ) > TA(A(t))}
≤ sup {κ ≥ 0 | TD(A(t)− κ) > t}
≤ sup {κ ≥ 0 | A(t)− κ ≥ D(t)}
= A(t)−D(t)
= B(t) ,

where we used property (P2) in the second line and property (P8) in the third
line. The upper bound follows from

Bd(D(t)) = inf {κ ≥ 0 | TA(D(t) + κ) ≥ TD(D(t))}
≥ inf {κ ≥ 0 | TA(D(t) + κ) ≥ t}
≥ inf {κ ≥ 0 | D(t) + κ ≥ A(t)}
= A(t)−D(t)
= B(t) ,

where we again used properties (P2) and (P8) in the second and third line,
respectively.
(b) We derive the lower bound on Ba(ν) as

Ba(ν) = inf {κ ≥ 0 | TD(ν − κ) + ε ≤ TA(ν) + ε}
≥ inf {κ ≥ 0 | D(TD(ν − κ) + ε) ≤ D(TA(ν) + ε)}
≥ inf {κ ≥ 0 | ν − κ ≤ D(TA(ν) + ε)}
= ν −D(TA(ν) + ε) .

In the first line, we added a constant ε > 0 and applied the departure func-
tion D on both sides. Then we applied property (P4), and used that D is non-
decreasing. Since the inequality also holds for the limit ε→ 0 for positive ε,
we obtain

Ba(ν) ≥ ν −D(TA(ν)+) .
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For the upper bound of Ba(ν) we derive

Ba(ν) = sup {κ ≥ 0 | TD(ν − κ) > TA(ν)}
≤ sup {κ ≥ 0 | D(TD(ν − κ)) ≥ D(TA(ν))}
≤ sup {κ ≥ 0 | ν − κ ≥ D(TA(ν))}
= ν −D(TA(ν)) ,

where we used property (P4) in the third line.

Observe that the bounds of Theorem 11.6(b) differ by the instantaneous
departures that occur at time TA(ν). Hence, the bounds are improved when
the burstiness of departures is reduced. If the arrival and departure functions
are continuous and do not allow any bursts, we can bound the backlog Ba(ν)
by the time-domain backlog function.

Corollary 11.7.

(a) If A is continuous at TA(ν), then B(TA(ν)+) ≤ Ba(ν) ≤ B(TA(ν)).

(b) If D is continuous at TA(ν), then B(TA(ν)) ≤ Ba(ν) ≤ B(TA(ν)+).

(c) If A and D are both continuous at TA(ν), then B(TA(ν)) = Ba(ν).

Proof. By (P4), we have A(TA(ν)) ≤ ν ≤ A(TA(ν)+). This allows us to
write the expression in Theorem 11.6(b) as

A(TA(ν))−D(TA(ν)+) ≤ Ba(ν) ≤ A(TA(ν)+)−D(TA(ν)) .

The first statement in the corollary follows from Theorem 11.6(b) since
A(TA(ν)) = A(TA(ν)+) if A is continuous at TA(ν). The second state-
ment holds since D(TA(ν)) = D(TA(ν)+) if D is continuous at TA(ν). The
third statement follows since B(TA(ν)) = B(TA(ν)+) if both A and B are
continuous at TA(ν).

The relationships between delays in the time and space domains are sim-
ilar to those for the backlog, as stated in the next theorem.
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Theorem 11.8.

(a) The space domain delay W (ν) is bounded by

W a(TA(ν)) ≤W (ν) ≤W d(TD(ν)) .

(b) The arrival delay in the time domain is bounded by

TD(A(t)−)− t ≤W a(t) ≤ TD(A(t))− t .

Proof.
(a) The lower bound is obtained from

W a(TA(ν)) = sup {τ ≥ 0 | D(TA(ν) + τ) < A(TA(ν))}
≤ sup {τ ≥ 0 | D(TA(ν) + τ) ≤ ν}
≤ sup {τ ≥ 0 | TA(ν) + τ ≤ TD(ν)}
= TD(ν)− TA(ν)
= W (ν) .

Here, we have taken advantage of (P4) in the second line and of (P6) in
the third line. The derivation of the upper bound also uses properties (P4)
and (P6), and yields

W d(TD(ν)) = inf {τ ≥ 0 | D(TD(ν)) ≥ A(TD(ν)− τ)}
≥ inf {τ ≥ 0 | ν ≥ A(TD(ν)− τ)}
≥ inf {τ ≥ 0 | TA(ν) ≥ TD(ν)− τ}
= TD(ν)− TA(ν)
= W (ν) .

(b) We obtain the lower bound by using a constant ε > 0 and writing

W a(t) = inf {τ ≥ 0 | D(t+ τ)− ε ≥ A(t)− ε}
≥ inf {τ ≥ 0 | TD(D(t+ τ)− ε) ≥ TD(A(t)− ε)}
≥ inf {τ ≥ 0 | t+ τ ≥ TD(A(t)− ε)}
= TD(A(t)− ε)− t,

where the third line follows from (P2). For ε→ 0 we obtain

W a(t) ≥ TD(A(t)−)− t .
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The upper bound is also derived with (P2) with

W a(t) = sup {τ ≥ 0 | D(t+ τ) < A(t)}
≤ sup {τ ≥ 0 | TD(D(t+ τ)) ≤ TD(A(t))}
≤ sup {τ ≥ 0 | t+ τ ≤ TD(A(t))}
= TD(A(t))− t .

Since, by (P2),
TA(A(t)−) ≤ t ≤ TA(A(t)) ,

the bounds on the arrival delay can be written as

TD(A(t)−)− TA(A(t)) ≤W a(t) ≤ TD(A(t))− TA(A(t)−) .

Corollary 11.9.

(a) If TA is continuous at A(t), then

W (A(t)−) ≤W a(t) ≤W (A(t)) .

(b) If TD is continuous at A(t), then

W (A(t)) ≤W a(t) ≤W (A(t)−) .

(c) If both TA and TD are continuous at A(t), then W a(t) = W (A(t)).

Proof. Since, by (P2), it holds that

TA(A(t)−) ≤ t ≤ TA(A(t)) ,

the inequalities in Theorem 11.8 on the arrival delay can be written as

TD(A(t)−)− TA(A(t)) ≤W a(t) ≤ TD(A(t))− TA(A(t)−) .

Then, if TA is continuous at A(t), we get TA(A(t)) = TA(A(t)−), which
gives the first claim. If TD is continuous at A(t), we have TD(A(t)) =
TD(A(t)−), which gives the second claim. If both TA and TD are contin-
uous, we have W (A(t)) = W (A(t)−)) and obtain the third claim.

Similar derivations can be made for the departure backlogBd in the space
domain, and the departure delay W d in the time domain.
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11.5 Mapping of busy periods and busy sequences

We saw that the space-domain and time-domain notions of backlog and de-
lays are not linked by a one-to-one correspondence, at least in the presence
of discontinuous arrivals and departures. The relationship between busy peri-
ods in the time domain and busy sequences in the space domain is even more
complicated, and may occasionally even appear counterintuitive.

Let us quickly recall that a busy period is defined as a maximal time
interval with a non-zero time-domain backlog, and that a busy sequence is a
maximal continuous interval of bits with non-zero space-domain delay. That
is, we have B(t) > 0 if t lies in a busy period, and W (ν) > 0 if ν lies in
a busy sequence. For an interval where the time-domain backlog or space-
domain delay are zero, we speak, respectively, of an idle period or an idle
sequence.

We want to explore how to map busy periods to busy sequences, and
vice versa. More broadly, we seek a description of busy periods using con-
cepts from the space domain, and of busy sequences using concepts from the
time domain. We have collected a few clues so far. For the work-conserving
buffered link we were able to relate a non-zero space-domain delay W (ν) to
the time-domain backlogB(t) via (5.4). This relationship, however, does not
extend to general service curves. Another relationship can be obtained from
the comparison of the space-domain and time-domain backlog in §11.4. Since
B(t) ≥ Ba(A(t)), we obtain that during an idle period where B(t) = 0, we
also have Ba(A(t)) = 0. Note that the opposite is not true, that is, we can
have Ba(A(t)) = 0 even if t lies in a busy period.

In general, busy periods are not easily characterized from the perspective
of the space domain, and the same holds for busy sequences from the time
domain. The arrival and departure scenario in Figure 11.3 illustrates some of
the issues that may arise. The figure has two plots that each show the same
scenario. Figure 11.3(a) presents a space domain view, with arrival and depar-
ture time functions TA and TD, and Figure 11.3(b) depicts the same scenario
from the perspective of the time domain, with arrival and departure functions
A and D. TA and A are related by the upper and lower pseudo-inverses, and
so are TD and D. In both figures, double-headed arrows at the axes indi-
cate busy periods and busy sequences. For example, the double-headed ar-
row connecting ν3 and ν4 indicates that [ν3, ν4) is a busy sequence, and the
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(a) Space domain view.
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(b) Time domain view.

Figure 11.3: Busy periods and busy sequences. Both figures show an identical arrival and
departure scenario. Double-headed arrows on the axes indicate busy sequences in the space
domain and busy periods in the time domain.
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double-headed arrow between t5 and t6 indicates a busy period.
The figures show two busy sequences and one idle sequence between 0

and ν4. When we project arrivals and departures of these bits to the time
domain, we see that the interval (t1, t4] is covered by a single busy period.
The arrivals and departures in the busy sequence [ν3, ν4) map to a single
time instant t3, which is located in the busy period. Since A and D are left-
continuous, we haveA(t3) = ν2,D(t3) = ν1, yieldingB(t3) = ν2−ν1 > 0.
Since B(t3) > 0, time t3 lies in a busy period, but there are a lot of other
things happening at time t3. First of all, the entire backlog ν2 − ν1 departs
at t3. Then, we have an instantaneous arrival of ν4−ν2 bits. Of these, ν3−ν2
bits depart immediately without experiencing delay. In summary, at time t3,
the network element at which the arrivals and departures are observed, is
busy (having nonzero backlog), idle (when the backlog has been completely
cleared), and then busy again (since some, but not all arrivals occurring at
time t3 are released). With our left-continuous interpretation of traffic we
have thatB(t3) = ν2−ν1 andB(t+3 ) = ν4−ν3, so the time-domain depiction
does not capture that the bits in the interval [ν2, ν3) do not experience a delay
or a backlog.

A similar observation can be made for the busy sequence [ν5, ν7), which
maps in the time domain to a busy period (t5, t6], an idle period (t6, t7], and
another busy period (t7, t8]. Here, all bits in [ν5, ν7) experience a non-zero
delay. The bits in this range fall into two groups. For the first group we have
W (ν) = t6−t5 for ν ∈ [ν5, ν6), and for the second group we obtainW (ν) =
t8 − t7 for ν ∈ [ν6, ν7). All bits in the first group depart (at t6), before the
bits in the second group arrive (at t7). In between, in the time interval (t6, t7],
the system has no backlog and, therefore, the time domain indicates an idle
period. If we compute the time-domain delay W (t) (which we referred to
as W a(t) in 11.4) in the interval (t6, t7], we obtain a delay of zero. Note,
however, that this delay is a virtual delay which indicates the delay that an
arrival at that time would experience. However, since there are no arrival
events in (t6, t7], the delay in this interval is never realized.

The above examples illustrate that the mapping between busy periods and
busy sequences is not entirely straightforward when arrivals and departures
are not continuous. While it is generally not feasible to express a busy period
in terms of space-domain backlog and delay, or to express a busy sequence
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in terms of time-domain backlog and delay, it is possible to specify a busy
period using space-domain functions, and to specify a busy sequence with
functions from the time domain. The next lemma expresses a busy period
using arrival and departure time functions from the space domain.

Lemma 11.10. The time-domain backlog satisfies B(t) > 0 if and only if
there exist ν, µ with ν > µ such that TA(ν) < t ≤ TD(µ).

Proof. We write the time-domain backlog in terms of pseudo-inverses as

B(t) = A(t)−D(t)
= sup {ν | TA(ν) < t} − inf {µ | TD(µ) ≥ t}
= sup {ν − µ | TA(ν) < t ≤ TD(µ)} .

Then the lemma follows by definition of the supremum.

Verifying the condition in the lemma is quite cumbersome. Unfortunately,
there are no obviously better alternatives. If TD(ν−) < TA(ν) for some ν,
i.e., the arrival time of ν is later than the departure time of the traffic immedi-
ately before it, we can conclude that the interval [TD(ν−), TA(ν)] is an idle
period. However, this is only a sufficient condition for an idle period, since it
is possible to have B(t) = 0 with v = A(t), but TD(ν−) = TA(ν).
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Scheduling for Rate and Delay Guarantees

A strength of the max-plus network calculus is its compatibility with traffic
control algorithms that compute timestamps, e.g., the earliest time when a
packet is permitted to depart a greedy shaper or the latest time by which a
packet must be transmitted. In the max-plus network calculus, these time-
stamps can be obtained directly from the value of a computed departure time
function at a network element. In the min-plus network calculus, departure
functions determine the amount of departing traffic for a given time value.
Extracting timestamps for a departure time at a network element from such a
function requires the solution of an inverse problem, e.g., finding the earliest
time t such the departure function D(t) meets a given requirement.

We will use the max-plus network calculus to formulate scheduling al-
gorithms that ensure rate and delay guarantees to flows. We assume a work-
conserving link with rate C with traffic from several flows, each of which
receives guarantees on the minimum rate and the maximum delay. The guar-
antees are lower bounds in that flows may receive additional service if sur-
plus link capacity is available. This is different from the service discussed
in §2, where a single flow acquired the entire link rate C without the possibil-
ity of obtaining additional capacity. The scheduling algorithms we construct
are max-plus versions of the Service Curve Earliest Deadline First (SCED)

232
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scheduling algorithm [30]. The idea behind SCED is to assign to each ar-
rival a target departure time, referred to as deadline, which is computed from
a convolution of the arrivals with a reference service curve, and to transmit
traffic in the order of deadlines. As long as the flows at the link satisfy a
schedulability condition, SCED can guarantee that all traffic departs by the
assigned deadlines. SCED scheduling offers a solution to the difficult prob-
lem of simultaneously offering rate and delay guarantees to a flow, where rate
and delay bounds for each flow can be chosen arbitrarily.

12.1 Earliest Deadline First in the max-plus algebra

A scheduling algorithm, in short, scheduler, at a buffered link is a traffic
control algorithm that selects backlogged traffic for transmission. In the Ear-
liest Deadline First (EDF) scheduling algorithm, each traffic arrival ν from
a flow j is tagged with a deadline D`j(ν) ≥ 0, and the link transmits back-
logged traffic in increasing order of deadlines. The deadlineD`j(ν) indicates
the latest permitted departure time of ν. Traffic that departs after its assigned
deadline, that is, TDj (ν) > D`j(ν), is said to experience a deadline violation.
EDF scheduling for packet-level traffic can be implemented by maintaining
a sorted transmission queue. In the most common version of EDF [19, 23],
each traffic flow j is associated with a delay bound dj . When a packet from
flow j arrives at time t, it is assigned the deadline t + dj . In the following,
we consider a more general interpretation of EDF, where packet deadlines
can be assigned arbitrarily as long as the deadline function D`j of flow j is
non-decreasing. Note that a non-decreasing function D`j is compatible with
a locally FIFO transmission order. Since there is no deadline violation if traf-
fic departs exactly at the assigned deadlines, that is, TDj = D`j , the deadline
function D`j is right-continuous.

With packetized traffic, when a packet is assigned a deadline that is less
than that of the packet currently in transmission, the packet with the lower
deadline must wait until the transmission of the currently served packet is
completed. This is referred to as non-preemptive scheduling. In our analy-
sis of EDF, we first assume that scheduling is preemptive. With preemptive
scheduling, when a packet arrives with a shorter deadline than that of the
packet currently in transmission, the untransmitted portion of the packet in
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transmission is returned to the buffer, and the new arrival starts its transmis-
sion immediately. Preemptive and non-preemptive scheduling are identical
for fluid-flow traffic without burst arrivals, since such traffic can be viewed as
consisting of infinitesimally small packets. The difference between preemp-
tive and non-preemptive scheduling in EDF and other scheduling algorithms
is generally bounded by the transmission time of a packet with maximum
size.

For a given scheduling algorithm, an arrival scenario with arrival time
functions TA1 , . . . , TAN and deadline assignments D`1, . . . , D`N is said to
be schedulable if the transmission schedule does not result in a deadline vio-
lation, that is, TDj ≤ D`j for all j. With regard to schedulability, EDF is an
optimal scheduling algorithm, as stated in the next lemma.

Lemma 12.1. GivenN flows with arrival time functions TA1 , . . . , TAN and
deadline functions D`1, . . . , D`N at a work-conserving link with rate C. If
there exists a scheduling algorithm for which the arrival scenario is schedu-
lable, then the arrival scenario is also schedulable under EDF.

Proof. The proof is quite intuitive for packetized arrivals. Consider an arbi-
trary scheduling algorithm and an arrival scenario that does not result in a
deadline violation for any packet. Let us consider the backlog at a time when
the scheduler selects the next packet for transmission. We denote by p∗ the
packet in the backlog with the smallest current deadline and by p′ the packet
that the scheduler selects next for transmission. By the assumption of feasi-
bility, there is no deadline violation. Now consider the selection according to
EDF, i.e., p′ = p∗. In this case, the departure time of p∗ is reduced, and it
meets its deadline. The departure time of other packets is possibly increased
by the transmission time of p∗. However, since their deadlines are larger than
that of p∗, and p∗ did not experience a deadline violation under the old sched-
ule (p′ 6= p∗), they will not experience a deadline violation with p′ = p∗.
Since a selection of p′ = p∗ for each packet selection is equal to the EDF
algorithm, the claim follows. The argument can be extended to fluid-flow ar-
rivals, where, instead of packets, we consider sequences of backlogged traffic
with equal deadlines.

Next we derive conditions for deadline violations under EDF scheduling
at a work-conserving link with rate C for a set of flows with arrival time
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functions TA1 , . . . , TAN and deadline functions D`1, . . . , D`N . A deadline
violation occurs if, for some flow i and some value µ, we have D`i(µ) <
TDi(µ). For bit µ of flow i, we define the bit value of each flow j with a
lower or equal deadline by

ν i,µj = sup
{
κ ≥ 0 | D`j(κ) ≤ D`i(µ)

}
,

with ν i,µi = µ, and we define ν i,µ = ν i,µ1 + . . . + ν i,µN . Also, we define
modified arrival time functions T i,µAj for each flow j as

T i,µ
Aj

(κ) =

TAj (κ) , κ ≤ ν i,µj ,

∞ , κ > ν i,µj .
(12.1)

Let T i,µ
A denote the modified arrival time function of the aggregate, which is

given with (3.2) by

T i,µ
A (κ) = inf

κ1,...,κN
κ=κ1+...+κN

max
j=1,...,N

T i,µ
Aj

(κj) .

We define modified departure time functions T i,µDj for each flow j and T i,µ
D (κ)

in the same way. The modified arrival and departure time functions eliminate
all traffic with a deadline after D`i(µ). Since, under EDF scheduling, a dead-
line violation of µ from flow i only depends on arrivals with deadlines no
later than D`i(µ), µ from flow i experiences a deadline violation under the
arrival scenario T i,µ

A1
, . . . , T i,µ

AN
if and only if there is a deadline violation un-

der TA1 , . . . , TAN . For a given ν ≥ 0 we define ν i,µ as the beginning of the
busy sequence under the aggregate modified arrival time function, which, in
accordance with (5.3), is given by

ν i,µ = sup{κ | 0 ≤ κ ≤ ν , T i,µ
A (κ) = T i,µ

D (ν)} .

With these definitions, we can give a condition for a deadline violation.

Lemma 12.2. Given arrival time functions TA1 , . . . , TAN and deadline as-
signments D`1, . . . , D`N at a work-conserving link with rate C. A bit value
µ of flow i experiences a deadline violation (D`i(µ) < TDi(µ)) under pre-
emptive EDF scheduling if and only if

max
j=1,...,N

D`j(ν i,µj ) < T i,µ
A (ν i,µ) + ν i,µ − ν i,µ

C
. (12.2)
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Proof. Suppose that D`i(µ) < TDi(µ). Consider the modified arrival
scenario T 1,µ

A , . . . , T N,µ
A with the corresponding departure time functions

T 1,µ
D , . . . , T N,µ

D . Since TDi(µ) = T i,µ
D (µ), we have D`i(µ) < T i,µ

Di
(µ). The

value µ from flow i resides in a busy sequence of the modified arrival scenario
that starts at ν i,µ. Therefore, in the time interval I = [T i,µ

A (ν i,µ), T i,µ
Di

(µ)],
the link with EDF scheduling only transmits traffic with a deadline ear-
lier than D`i(µ). The amount of bits that must be transmitted in this time
interval is ν i,µ − ν i,µ, and the required transmission time of these bits
is ν i,µ−ν i,µ

C . If µ of flow i experiences a deadline violation, the required
transmission time exceeds the length of interval I . Since, by construction,
D`i(µ) = maxj D`j(ν i,µj ), (12.2) holds.

For the reverse direction, assume that (12.2) holds for a given µ from
flow i. Then, between times T i,µ

A (ν i,µ) and D`i(µ) = maxj D`j(ν i,µj ),
the amount of traffic in the arrival scenario TA1 , . . . , TAN with a deadline
less than or equal to D`i(µ) is ν i,µ − ν i,µ. With (12.2), these bits cannot
be transmitted by time D`i(µ). Therefore, there is a deadline violation at
time D`i(µ).

Since the second part of the proof did not use properties of the EDF
scheduling algorithm, any scheduling algorithm will result in a deadline vio-
lation at time D`i(µ) if (12.2) is satisfied, in accordance with Lemma 12.1.

We next consider the non-preemptive EDF scheduling algorithm. The
difference between preemptive and non-preemptive scheduling is that, im-
mediately after time T i,µ

A (ν i,µ), the link may not be able to commence the
transmission of traffic with an assigned deadline at or before D`i(µ) until
the packet that is currently in transmission has been completely transmitted.
We denote the untransmitted portion of the packet in transmission at time
T i,µ
A (ν i,µ) by ` i,µ.

Lemma 12.3. Under the assumptions of Lemma 12.2, a bit value µ of flow i

experiences a deadline violation (D`i(µ) < TDi(µ)) under non-preemptive
EDF scheduling if and only if

max
j=1,...,N

D`j(ν i,µj ) < T i,µ
A (ν i,µ) + ` i,µ

C
+ ν i,µ − ν i,µ

C
. (12.3)
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Inserting an upper bound for the maximum packet size of any flow, de-
noted by `∗max, for ` i,µ in (12.3) yields a sufficient, but not necessary condi-
tion for a deadline violation at a non-preemptive EDF scheduler.

Proof. The proof of the non-preemptive condition follows that of
Lemma 12.2. The difference with non-preemptive scheduling is that, at time
T i,µ
A (ν i,µ), the link cannot immediately start the transmission of traffic with

a deadline at or before D`i(µ), if there is a packet currently in transmission,
which has a deadline greater than D`i(µ). Once the link completes the trans-
mission of this packet at time T i,µ

A (ν i,µ) + ` i,µ

C , it can attend to packets with
an earlier deadline. This reduces the time interval I where the traffic transmits
traffic with a deadline at or beforeD`i(µ) to I = [T i,µ

A (ν i,µ)+ ` i,µ

C , TDi(µ)],
while the number of bits that must be served in this interval remains un-
changed at ν i,µ − ν i,µ.

12.2 Max-plus Service Curve Earliest Deadline First

Suppose that we want to offer a flow a minimum guarantee in terms of a lower
max-plus service curve γS . If TA and TD denote the arrival and departure time
functions of the flow, then the guarantee is fulfilled if the inequality

TD(ν) ≤ TA⊗ γS(ν)

is satisfied for all ν ≥ 0. The objective to satisfy this inequality can be ex-
pressed by associating with each value ν a deadline D`(ν), set to

D`(ν) = TA⊗ γS(ν) , (12.4)

and transmitting traffic in increasing order of deadlines. A scheduling algo-
rithm that operates in this fashion is referred to as max-plus SCED algorithm
or max-plus SCED scheduler.

With the deadline assignment of (12.4), the max-plus SCED algorithm
ensures that γS is a lower service curve if and only if there is no deadline
violation, that is,

TD ≤ TA⊗ γS ⇐⇒ D` ≥ TD . (12.5)

As a simple example, consider a guarantee to a flow j for a maximum
delay dj > 0, which can be achieved by a lower max-plus service curve
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γSj (ν) = dj . Here, the computation of deadlines for max-plus SCED is sim-
ply the sum of the arrival time and the delay guarantee, given by

D`j(ν) = TAj ⊗ γSj (ν) = TAj (ν) + dj , (12.6)

which is equivalent to EDF scheduling with fixed delay bounds [19, 23].
Now consider a set of flows with arrival time functions TAj , traffic en-

velopes λEj , and deadline functions D`j for j = 1, . . . , N at a work-
conserving link with rate C. For a given scheduling algorithm, a condition,
which ensures that all compliant arrival scenarios, i.e., TAj ∼ λEj for each j,
are schedulable, is referred to schedulability condition. The next result states
a schedulability condition for max-plus SCED scheduling, where each flow j

is assigned a service curve γSj . With (12.5), satisfying the schedulability
condition of SCED guarantees that γS1 , . . . , γSN are lower max-plus service
curves. We first present the schedulability condition for a link with preemp-
tion, and then discuss the non-preemptive case. With preemption, the link al-
ways transmits traffic with the earliest deadline, even if it requires to interrupt
the transmission of a packet. Without preemption, the link always completes
an ongoing packet transmission.

Theorem 12.4 (SCHEDULABILITY CONDITION OF MAX-PLUS SCED
WITH PREEMPTION). Given a set of N flows at a work-conserving link
with a fixed rate C with preemption that performs max-plus SCED schedul-
ing. The deadlines of flow j (j = 1, . . . , N ) are computed with a function
γSj ∈ To. The arrivals of each flow comply to a max-plus traffic envelope,
that is TAj ∼ λEj for each j. Then, the functions γS1 , . . . , γSN are lower
max-plus service curves for the flows, if

inf
ν1,...,νN

ν=ν1+...+νN

max
j=1,...,N

λEj ⊗ γSj (νj) ≥
ν

C
, ∀ν ≥ 0 (12.7)

The condition is necessary if each envelope λEj can be saturated, in the sense
that there exist arrival time functions TA1 , . . . , TAN such that TAj = λEj for
each flow j.

Proof. Suppose that (12.7) holds and a bit value µ from flow j experiences
a deadline violation. Then, according to Lemma 12.2, the condition in (12.2)
is satisfied. Simplifying notation by dropping the super- and subscripts ‘i, µ’,
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the lemma provides us with tuples (ν1, . . . , νN ) and (ν1, . . . , νN ) with ν =
ν1 + . . .+ νN and ν = ν1 + . . .+ νN , such that

max
j=1,...,N

TAj ⊗ γSj (νj) < TA(ν) + ν − ν
C

, (12.8)

where we inserted the deadline function of the SCED scheduler from (12.4).
Note that, due to dropping ‘i, µ’, TAj is in fact the modified arrival time func-
tion from (12.1). For flow j we now derive

TAj ⊗ γSj (νj)− TA(ν)
≥ TAj ⊗ γSj (νj)− TAj (νj)
= sup

0≤κ≤νj
{TAj (κ) + γSj (νj − κ)− TAj (νj)}

≥ sup
νj≤κ≤νj

{TAj (κ)− TAj (νj) + γSj (νj − κ)}

= sup
0≤κ≤νj−νj

{TAj (κ+ νj)− TAj (νj) + γSj (νj − νj − κ)}

≥ λEj ⊗ γSj (νj − νj) .

(12.9)

The first inequality follows from (3.3). The second inequality restricts the
range of the supremum. The third inequality follows since TAj ∼ λEj . With
this derivation, we obtain from (12.8) that

max
j=1,...,N

λEj ⊗ γSj (νj − νj) <
ν − ν
C

.

Hence, we have found a tuple (ν1 − ν1, . . . , νN − νN ) with
∑N
j=1(νj −

νj) = ν − ν that violates (12.7). Since this contradicts that the condition
in (12.7) holds for all ν ≥ 0, the assumption of a deadline violation was
false. With (12.5), we conclude that γS1 , . . . , γSN are max-plus lower service
curves.

To show necessity, assume that TAj = λEj for each flow j, and suppose
that (12.7) is violated for a tuple (ν1, . . . , νN ) with ν = ν1 + . . .+νN , that is,

max
j=1,...,N

λEj ⊗ γSj (νj) <
ν

C
.

All bits of the tuple (ν1, . . . , νN ) have a deadline at or before
maxj=1,...,N λEj ⊗ γSj (νj). Since the time required to transmit the bits is ν

C ,
the violation of the condition indicates that some traffic has not been transmit-
ted by the time of the latest deadline. Hence, there is a deadline violation.
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Verifying the schedulability condition in Theorem 12.4 is not easy due to
the need to compute the infimum subject to the condition ν = ν1 + . . .+ νN .
The condition becomes more convenient once we map it to the min-plus alge-
bra. Using Lemma 10.1(e), and Theorems 10.4(b) and 10.4(d), we can write
(12.7) as

N∑
j=1

λ ↓Ej ⊗ γ
↓
Sj

(t) ≤ Ct , ∀t ≥ 0 . (12.10)

This results in an equivalent, more straightforward, schedulability condition.
The rephrased schedulability condition in (12.10) is in fact the schedula-
bility condition of the min-plus SCED algorithm from [30]. In min-plus
SCED, deadlines for arrivals are computed from the min-plus convolution
D ≥ A⊗ S. In the time domain, the deadlines of SCED for an arrival at
time t, denoted by D`(t), are computed by solving the inverse problem

D`(t) = inf{x > t | A⊗ S(x) ≥ A(t)} .

In [30], it is shown that this assignment does not result in a deadline violation
if and only if D ≥ A⊗ S. The schedulability condition for min-plus SCED,
given in [30, Theorem III.2], states that a SCED link with rate C guarantees
min-plus service curves S1, . . . , SN to a set of flows with min-plus traffic
envelopes Ej if

N∑
j=1

Ej ⊗ Sj(t) ≤ Ct , ∀t ≥ 0 . (12.11)

With λ ↓Ej = Ej and γ ↓j = Sj , we see that (12.10) and (12.11) are identical.
With Lemma 12.3, the schedulability condition for a non-preemptive link

with SCED scheduling is quickly obtained.

Corollary 12.5 (SCHEDULABILITY CONDITION OF MAX-PLUS SCED
WITHOUT PREEMPTION). Consider a set of N flows with max-plus traffic
envelope λEj for each flow j = 1, . . . , N , which arrive to a work-conserving
link with rate C without preemption that performs max-plus SCED schedul-
ing. The functions γS1 , . . . , γSN are lower max-plus service curves if

inf
ν1,...,νN

ν=ν1+...+νN

max
j=1,...,N

λEj ⊗ γSj (νj) ≥
ν + `∗max

C
, ∀ν ≥ 0 , (12.12)
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where `∗max is an upper bound on the packet size for all flows. The condition
is necessary if the arrival time functions can saturate their traffic envelopes,
and if there exists an additional flow k with k 6= 1, . . . , N with packet arrivals
up to size `∗max and without deadlines.

Observe that the difference between the schedulability conditions of pre-
emptive and non-preemptive SCED is the transmission time of a packet with
maximum size. The necessity of the schedulability condition assumes the ex-
istence of ‘best effort’ traffic, which is represented by an additional flow k

whose arrivals have no deadline (D`k(ν) =∞).

Proof. The proof proceeds in the same way as the proof of Theorem 12.4. We
show sufficiency of the condition, by assuming that (12.12) holds and that a
bit value µ from flow j experiences a deadline violation. Then, according
to Lemma 12.3, the condition in (12.3) is satisfied. Simplifying notation by
dropping the super- and subscripts ‘i, µ’, the lemma provides us with tuples
(ν1, . . . , νN ) and (ν1, . . . , νN ) with ν = ν1+. . .+νN and ν = ν1+. . .+νN ,
such that

max
j=1,...,N

TAj ⊗ γSj (νj) < TA(ν) + ν − ν
C

+ ` i,µ

C
. (12.13)

Using (12.9) and (12.13) we obtain the inequality

max
j=1,...,N

λEj ⊗ γSj (νj − νj) <
ν − ν
C

+ ` i,µ

C
.

Since ` i,µ ≤ `∗max, we have found a tuple (ν1 − ν1, . . . , νN − νN ) with∑N
j=1(νj − νj) = ν − ν that contradicts (12.12), and, therefore, the as-

sumption of a deadline violation is false. With (12.5), we then have that
γS1 , . . . , γSN are max-plus lower service curves.

Suppose that (12.12) is violated for a tuple (ν1, . . . , νN ) with ν = ν1 +
. . .+ νN , that is,

max
j=1,...,N

λEj ⊗ γSj (νj) <
ν + `∗max

C
.

We construct an arrival scenario, where TAj = λEj + ε for each flow j,
where ε is less than the difference between the right hand side and the left
hand side in the inequality. Furthermore, there is an arrival at time t = 0 from
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a packet with size `∗max with no deadline. This packet will be in transmission
at time ε and will complete transmission at time `∗max

C . All bits of the tuple
(ν1, . . . , νN ) have a deadline at or before maxj=1,...,N λEj ⊗ γSj (νj) + ε.
On the other hand, the time to transmit the bits from the tuple as well as the
packet of size `∗max is ν+`∗max

C . Hence, some bits of the tuple must incur a
deadline violation.

We can provide a sufficient schedulability condition for max-plus SCED
at a link with rate C, even if upper bounds on the arrivals in terms of traffic
envelopes are not available or arrivals are not bounded.

Corollary 12.6 (SCHEDULABILITY CONDITION OF MAX-PLUS SCED
WITHOUT INFORMATION ON ARRIVALS). Given a set ofN flows at a work-
conserving link with a fixed rate C that performs max-plus SCED schedul-
ing, with deadlines of flow j computed with γSj ∈ To. Then, γS1 , . . . , γSN
are lower max-plus service curves for the flows at a link with preemption, if

inf
ν1,...,νN

ν=ν1+...+νN

max
j=1,...,N

γSj (νj) ≥
ν

C
, ∀ν ≥ 0 .

At a link without preemption, γS1 , . . . , γSN are lower max-plus service
curves, if

inf
ν1,...,νN

ν=ν1+...+νN

max
j=1,...,N

γSj (νj) ≥
ν + `∗max

C
, ∀ν ≥ 0 .

Proof. The corollary follows from Theorem 12.4 and Corollary 12.5, since
γSj ≤ λj ⊗ γSj for every λj ∈ To. Alternatively, if there is no information
on the arrivals, we can use λj = δ as a worst-case envelope, which allows
arbitrarily large arrivals. Then, the corollary follows from Theorem 12.4 and
Corollary 12.5 with γSj = δ⊗ γSj .

Next we discuss how SCED provides rate guarantees to a flow. A rate
guarantee can be realized with a lower max-plus service curve γS(ν) = ν

R ,
where R > 0 is the guaranteed rate. In general, SCED requires the computa-
tion of TA⊗ γS(ν) for each value of ν. When arrivals occur as discrete-sized
packets, there is an easier method to compute the deadlines. The insight to
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this method can be found in §2, where we saw that the recursive expression
for the packet departure times at a work-conserving buffered link with rate C
given in (2.1) can be phrased in terms of a max-plus convolution of packet
arrival times and the max-plus service curve of a fixed rate link, given by
γS(ν) = ν

C .
We first recall some notation from §2. We denote by `k the size of the k-th

packet and by Ln =
∑n
k=1 `k the total size of the first n packets, where we set

Lo = 0. The data of the k-th packet is given by the interval [Lk−1, Lk). When
all bits of a packet arrive at once, we use T pA(k) to denote the arrival time of
the k-th packet, with TA(ν) = T pA(k) if Lk−1 ≤ ν < Lk. The departure time
of the k-th packet is denoted by T pD(k). Since a packet departs when all its
bits have departed, we have T pD(k) = TD(L−k ). Also, we use `max to denote
the maximum packet size of the flow. (Note the difference between `max and
`∗max, which we earlier defined as an upper bound for the packet sizes from
all flows. Clearly, `max ≤ `∗max).

For the service curve γS(ν) = ν
R , for any ν ≥ 0 belonging to the k-th

packet (Lk−1 ≤ ν < Lk) we have for k > 1 that

TA⊗ γS(ν) = sup
0≤κ≤ν

{
TA(κ) + ν − κ

R

}

= max
[

sup
0≤κ<Lk−1

{
TA(κ) + ν − κ

R

}
,

sup
Lk−1≤κ≤ν

{
TA(κ) + ν − κ

R

}]

= max
[

sup
0≤κ<Lk−1

{
TA(κ) + Lk−1 − κ

R
)
}

+ ν − Lk−1
R

,

T pA(k) +
ν − L−k−1

R

]

= max
{
TA⊗ γS(L−k−1), T pA(k)

}
+ ν − Lk−1

R
. (12.14)

For k = 1 we get

TA⊗ γS(ν) = T pA(1) + ν

r
.

In the second line of (12.14), we divide the supremum into two parts. In the
third line, we use the fact that γS(ν) = ν

R is additive (γS(ν − κ) = γS(ν −
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Lk−1) + γS(Lk−1−κ)) and continuous (γS(ν) = γS(ν−) = γS(ν+)). Also,
we have TA(κ) = T pA(k) for Lk−1 ≤ κ ≤ ν, because we have packetized
arrivals. We therefore have

sup
Lk−1≤κ≤ν

{T pA(k) + γS(ν − κ)} = TA(ν) + γS(ν − Lk−1) .

Hence, for a ν that belongs to the k-th packet, (12.14) expresses the max-
plus convolution TA⊗ γS(ν) in terms of the max-plus convolution computed
at the end of the previous packet (TA⊗ γS(L−k−1)), the arrival time of the
current packet (T pA(k)), and the time to serve the bits of the current packet
(γS(ν − L−k−1) = ν−Lk−1

R ). If ν is part of the first packet, the convolution is
the sum of the packet arrival time and the transmission time ν

R .
Equation (12.14) gives rise to a deadline assignment for a max-plus

SCED scheduler that guarantees a rateR, where deadlines for ν ∈ [Lk−1, Lk)
are computed with

D`(ν) = max
{
D`(L−k−1), T pA(k)

}
+ ν − Lk−1

R
, (12.15)

and D`(L−o ) = −∞. A drawback of this deadline assignment is that each
value of ν is assigned a different deadline, which is not practical. A simpler
approach is to assign all bits of a packet the same deadline. LetD`p(k) denote
the deadline assigned to all bits of packet k, and define D`p(k) = D`(L−k ),
that is, the deadline of a packet is set to the deadline computed from (12.15)
for the end of the packet. Then we get

D`p(k) = max
{
D`p(k − 1), T pA(k)

}
+ `k
R
, (12.16)

with D`p(0) = −∞ Now consider that each ν ∈ [Lk−1, Lk) is assigned
the packet deadline D`p(k). Clearly, the deadline assignment D`(L−k ) satis-
fies (12.4). For values ν < Lk, we haveD`(ν) < D`p(k). Then, it is possible
that D`(ν) < TD(ν) ≤ D`p(k), that is, the departure time TD(ν) meets the
packet-level deadline even though it violates the deadline imposed by the ser-
vice curve γS(ν) = ν

R . The maximal deviation of the departure time from
the packet-level deadline is bounded by the difference between (12.16) and
(12.15). Since D`p(k)−D`(ν) < `max

R , where `max is the maximum packet
size, we can account for the violation by adding a latency `max

R to the service
curve. Defining

γS′(ν) = γS ⊗ δ`max/R(ν) = ν

R
+ `max

R
,
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the convolution of (12.14) becomes

TA⊗ γS′(ν) = TA⊗ γS ⊗ δ`max/R(ν)

= TA⊗ γS(ν) + `max
R

= max
{
TA⊗ γS(L−k−1), T pA(k)

}
+ ν − Lk−1

R
+ `max

R
.

The deadline assignment for a ν ∈ [Lk−1, Lk) with γS′ , denoted by D`′(ν),
is then given by

D`′(ν) = max
{
D`(L−k−1), T pA(k)

}
+ ν − Lk−1

R
+ `max

R
,

where the deadlineD`(L−k−1) inside the maximum is computed with (12.14).
The modified deadline gives us

D`p(k) ≤ D`′(ν) , if Lk−1 ≤ ν < L−k ,

that is, satisfying the packet-level deadline also satisfies the deadline D`′(ν)
of all bits belonging to the k-th packet. Hence, the deadline assignment
from (12.16) realizes SCED with a max-plus lower service curve γS′(ν) =
ν
R + `max

R .
The deadline assignment from (12.16) is known as the VirtualClock al-

gorithm [34]. It provides an elegant recursion that substitutes an otherwise
cumbersome computation of max-plus convolutions. Note, however, that the
recursive formula is limited to service curves of the form γS(ν) = ν

R . By
combining (12.6) and (12.16) we can devise a deadline scheme with packet-
level arrivals for a latency-rate max-plus service curve γS = ν+`max

R + d.
This can be done by separately keeping track of the deadlines needed for
the rate guarantee, and then adding the delay d to obtain the final deadline
of the packet. We first compute the deadline for the rate guarantees D`p(k)
with (12.16), and then compute the final deadline, denoted by D`p(k), as

D`p(k) = D`p(k) + d . (12.17)

The computation of the deadline in two phases is justified since TA⊗ (γS +
d)(ν) = TA⊗ γS(ν) + d for any max-plus service curve γS .

We summarize the above derivations in the following theorem.
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Figure 12.1: Components of a VirtualClock scheduler with a delay guarantee.

Theorem 12.7. Consider a flow with maximum packet size `max. A max-
plus SCED scheduler that computes the deadlines with (12.16) and (12.17)
realizes a lower max-plus service curve

γS(ν) = ν + `max
R

+ d , ∀ν ≥ 0 ,

as long as no arrival experiences a deadline violation.

The theorem describes a VirtualClock scheduler with a rate as well as a
delay guarantee. The corresponding service curve in the min-plus network
calculus is the latency-rate service curve S(t) = [R(t − d) − `max]+. As
shown in Figure 12.1 we can think about this scheduler as having three com-
ponents: one for the rate guarantee (γS1(ν) = ν

R ), one for the delay guar-
antee (γS2(ν) = d), and one for the packetization (γS3(ν) = `max

R ), with
γS = γS1 ⊗ γS2 ⊗ γS3 .

Note that the formulation of Theorem 12.7 is only concerned with the
computation of SCED deadlines. Whether these deadlines are met can be
determined with the appropriate schedulability condition from Theorem 12.4,
or Corollaries 12.5 and 12.6.

Remark: The implementation of VirtualClock with a rate guarantee R
and a delay guarantee d requires a counter for each traffic flow to keep track
of the value of D`pr(k) in (12.16). The counter of a flow is interpreted as its
virtual clock. Denoting the virtual clock of flow j by VCj , which is initialized
to VCj = 0, the counter is updated upon the arrival of a packet with size `
bytes at time t to

VCj ← max {VCj , t}+ `

R
,



12.2. Max-plus Service Curve Earliest Deadline First 247

p6
1

Flow 1

0 1 3 4 5 6 7 8 9 10 11 122 13 14 15 16 time (ms)

Flow 2

p1
1 p2

1 p4
1p3

1 p5
1 p6

1 p7
1 p8

1

p1
2 p2

2 p3
2 p4

2

p4
3p3

3p2
3p1

3

3 6 9 12 15 18 21 24

8 11 14 17

8 11 14 17

Transmission
order

Flow 3

p1
1 p2

1 p4
1p3

1 p5
1 p7

1 p8
1p1

2 p2
2 p3

2 p4
2 p4

3p3
3p2

3p1
3

Packet
arrivals:

Figure 12.2: Transmission scenario with VirtualClock. There are packet arrivals from three
flows that each obtain a rate guarantee of R = 1

3 Mbps. The label pkj denotes the k-th packet
from flow j. All packets have a size of 1000 bits. Deadlines, computed with (12.16), are shown
for each packet. The transmission order shows the sequence of packet transmissions on a link
with C = 1 Mbps.

and the packet is assigned the timestamp VCj + d. VirtualClock transmits all
packets in increasing order of timestamps.

In §7.3 we discussed a drawback when expressing rate guarantees with
a max-plus lower service curve of the form γS = ν

R . Since max-plus SCED
enforces lower max-plus service curves, we expect that the VirtualClock al-
gorithm inherits this drawback. We illustrate this in an example. Consider
the packet-level arrival scenario in Figure 12.2. The scenario features three
flows, where each flow receives a rate guarantee of R = 1

3 Mbps. In the fig-
ure, packet arrivals are indicated by a vertical bar. We use the label pkj for
the k-th packet from flow j. The deadlines of the packets, computed with
(12.16), are plotted at the top of the vertical bars. In the scenario, flow 1 is
active starting at time t = 0 ms, and flows 2 and 3 become active at time
t = 5 ms. We assume that all packets have a size of 1000 bits. Let us com-
pare the deadlines of the packets. Since flow 1 is active before the other flows,
its deadlines increase by 1000 bits

1/3 Mbps = 3 ms for each packet. By the time the
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first packets arrive from flow 2 and flow 3 at time t = 5 ms, the deadlines
of flow 1 have reached 18 ms, whereas packets p1

2 and p1
3 receive a deadline

of 8 ms. The bottom of Figure 12.2 depicts the transmission order of SCED
at a link with rate 1 Mbps. With this rate, each packet requires a transmis-
sion time of 1 ms. All packets depart well before their deadlines. Packets
p1

1, p
2
1, p

3
1, p

4
1 are transmitted as soon as they arrive since there is no backlog

from other traffic. When the other flows become active, a backlog begins to
build up. Then, because transmissions occur in the order of deadlines, flow 2
and flow 3 take turns transmitting packets, while flow 1 is no longer selected.
Flow 1 resumes transmission only after flow 2 and flow 3 packets have com-
pleted their transmissions.

Obviously, from the perspective of flow 1, this is not a desirable realiza-
tion of a rate guarantee, since, in the interval t ∈ [5, 13] ms, the output rate
of flow 1 is zero. It appears that VirtualClock is unfair to flow 1, in that it
punishes flow 1 for being active before the other flows. However, the issue at
hand is not related to fairness, but to a weakness of the implementation of rate
guarantees. When the SCED scheduler guarantees a lower max-plus service
curve γS(ν) = ν

R , it guarantees the rate for the space interval [0, ν]. When
flow 1 has transmitted five packets at time t = 5 ms, the link has satisfied
the guarantees for the time interval [0, 15] ms. Flow 1 can be left out until
t = 15 ms without a violation of its guarantee. The problem experienced by
flow 1 in Figure 12.2 can be avoided by a scheduler that enforces an adaptive
service curve, as we will see next.

12.3 Max-plus SCED with adaptive service guarantees

We have seen that rate guarantees offered by a max-plus lower service curve
of the form γS(ν) = ν

R are not satisfactory since the rate guarantees are
amortized over the interval [0, ν]. Thus, if the first µ bits (µ < ν) receive
a higher service rate, and the remaining ν − µ bits receive a lower rate, the
guarantee TD(κ) ≤ TA⊗ γS(κ) may still be satisfied for each κ ∈ [0, ν]. A
rate guarantee that holds for any sequence of bits can be expressed with an
adaptive max-plus service curve. We can realize an adaptive service curves
at a SCED scheduler by replacing the deadline formula from (12.4) with the
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right hand side of (7.5), yielding

D`(ν) = inf
µ≤ν

{
max

[
TD(µ) + γS(ν − µ) , TA⊗

µ
γS(ν)

]}
. (12.18)

Note that D` ∈ To, and, therefore, D`(ν) = −∞ if ν < 0. With this dead-
line assignment, D` ≤ TD holds if and only if γS is an adaptive max-plus
service curve that satisfies Definition 7.3. We refer to a SCED scheduler that
computes deadlines with (12.18) as an adaptive max-plus SCED scheduler.

The computation of the deadline for an adaptive max-plus SCED sched-
uler appears cumbersome, but that is not always the case. For example, as
shown in (7.8), computing (12.18) for a delay service curve γS(ν) = d re-
sults in the deadline D`(ν) = TA(ν) + d, which is identical to the deadline
computation for a lower service curve.

For an adaptive service curve γS(ν) = ν
R offering a guaranteed rate R,

the deadline computation can be simplified when traffic arrives in packets.
This is similar to the deadline computation for rate guarantees in SCED dis-
cussed in §12.2. We first convey the main idea of the deadline computation
using a packet-level description. Consider the departure time T pD(n) of the
n-th packet relative to the arrival time of the m-th packet (1 ≤ m ≤ n).
If packets m,m + 1, . . . , n arrive at or before their previous packet departs
(T pA(k) ≤ T pD(k − 1) for all m ≤ k ≤ n), we want that a rate guarantee R
satisfies

T pD(n) ≤ T pD(m− 1) + `m + . . .+ `n
R

.

If T pA(m) > T pD(m − 1), that is, if there is a gap between the departure of
packet m − 1 and the arrival of packet m, and no such gap for packets after
packet m, a rate guarantee R should satisfy

T pD(n) ≤ T pA(m) + `m + . . .+ `n
R

.

If T pA(m + 1) > T pD(m), meaning that there is a gap between the departure
of the m-th packet and the arrival of the (m+ 1)-th packet, we expect that

T pD(n) ≤ T pA(m+ 1) + `m+1 + . . .+ `n
R

.

Lastly, if T pA(n) > T pD(n− 1), then a rate guarantee R should satisfy

T pD(n) ≤ T pA(n) + `n
R
.
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At any time, exactly one of the inequalities above is satisfied. This allows us
to summarize all inequalities above by

T pD(n) ≤ max
[
T pD(m− 1) + 1

R

n∑
j=m

`j , max
m≤k≤n

{
T pA(k) + 1

R

n∑
j=k

`j
}]
.

Since this bound can be constructed for any m ≤ n, we have that

T pD(n) ≤ min
1≤m≤n

{
max

[
T pD(m− 1) + 1

R

n∑
j=m

`j ,

max
m≤k≤n

{
T pA(k) + 1

R

n∑
j=k

`j
}]}

=: F p(n) ,

(12.19)

where we set T pD(0) = −∞. (Setting T pD(0) = 0 also works since times-
tamps can safely be assumed to be positive.) Note that the above bound is
structurally similar to the definition of an adaptive service curve in (7.5).
We denote the right hand side of the inequality in (12.19) by F p(n), with
F p(0) = 0. Then we can express the bound on T pD(n) in (12.19) as a recur-
sion by deriving

T pD(n) ≤ F p(n)

= min
{

max
[
T pD(n− 1), T pA(n)

]
+ `n
R
,

min
1≤m≤n−1

(
max

[
T pD(m− 1) + 1

R

n−1∑
j=m

`j ,

max
m≤k≤n−1

{
T pA(k) + 1

R

n−1∑
j=k

`j
}
, T pA(n)

])
+ `n
R

}
= min

{
max

[
T pD(n− 1), T pA(n)

]
,max

[
T pA(n), F p(n− 1)

]}
+ `n
R

= max
{
T pA(n),min

[
T pD(n− 1), F p(n− 1)

]}
+ `n
R
.

We can use this bound for the deadline assignment of a SCED sched-
uler. Denoting the deadline of the k-th packet by D`p(k) and setting
D`p(k) = F p(n) we obtain

D`p(k) = max
{
T pA(k),min

{
D`p(k − 1), T pD(k − 1)

}}
+ `k
R
, (12.20)
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with D`p(0) = T pD(0) = −∞. Compared to the deadline expression for a
rate guarantee with a lower service curve from (12.16), there is an additional
minimum involving the departure time T pD(k−1) and the deadline of the pre-
vious packet. The additional minimum slows down the increase of the dead-
line D`p(k) in situations when a flow receives a service rate exceeding R, so
that there is no penalty when new flows become active.

We can combine the rate guarantee with a delay guarantee. This is done
in the same fashion as discussed in §12.2 by separately keeping track of the
deadlines for the rate guarantee and adding the delay d. The deadline for
the rate guarantee of packet k, D`p(k), is computed with (12.20). Then we
determine the final deadline as

D`p(k) = D`p(k) + d . (12.21)

A SCED scheduling algorithms that computes deadlines with (12.20) and
(12.21) is known as Packet Scale Rate Guarantees (PSRG) scheduler [4].
A difference between the computation of the deadlines in VirtualClock and
PSRG is that the latter requires the departure time of the previous packet.
Therefore, the determination of the deadline of a packet must sometimes be
deferred until the departure time of the previous packet from the same flow.

The above packet-level derivation is not sufficient for arguing that the
deadline assignment results in an adaptive max-plus service curve. For this,
we have to show that the assignment satisfies (7.5) for every ν ≥ 0. The
next theorem states that, as long as the service curve is increased by `max

R ,
the deadline assignment in (12.20) and (12.21) satisfies the requirement of an
adaptive service curve. In §12.4, we present the proof of the theorem.

Theorem 12.8. Consider a flow with maximum packet size `max. An
adaptive max-plus SCED scheduler that computes deadlines with (12.20)
and (12.21) realizes an adaptive max-plus service curve

γS(ν) = ν + `max
R

+ d , ∀ν ≥ 0 ,

if no arrival experiences a deadline violation.

As with the VirtualClock scheduler, we can think about the scheduler as
a concatenation of three network elements as shown in Figure 12.1.

We do not offer schedulability conditions to verify if a set of flows at a
work-conserving link with rateC with an adaptive max-plus SCED scheduler
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results in a violation of the assigned deadlines. It is an open question whether
the schedulability conditions in Theorem 12.4 and Corollaries 12.5 and 12.6
extend to adaptive max-plus SCED.

Remark: Similar to VirtualClock, the implementation of PSRG with a
rate guarantee R and a delay guarantee d requires a counter VCj for each
flow j that keeps track of the value D`pj (k) in (12.20). The scheduler has a
transmission queue of packets with assigned deadlines and transmits pack-
ets from that queue in increasing order of deadlines. For packets that are
not assigned a deadline upon their arrival, PSRG additionally maintains a
FIFO queue, FIFOj , for packets from flow j without deadlines. Packets in
this queue are timestamped with their arrival time. If the k-th packet from
flow j with size ` arrives at time t after the previous packet has departed
(t > T pDj (k − 1)), the counter of flow j is updated to

VCj ← t+ `

R
,

where ` is the size of the k-th packet. Denoting by TSkj the timestamp of
the k-th packet from flow j, the packet is timestamped with its deadline by
setting TSkj = VCj + d and added to the transmission queue. Otherwise, if
t ≤ T pDj (k − 1), the packet is timestamped with its arrival time by setting
TSkj = t and added to FIFOj . If the k-th packet from flow j departs at time t,
and this happens after the arrival time of the next packet (t > T pAj (k + 1)),
the (k + 1)-th packet from flow j resides at the head of FIFOj and has been
timestamped (upon its arrival) with its arrival time. In this case, the counter
of flow j is updated to

VCj ← max{TSk+1
j ,min {VCj , t}}+ `

R
,

where ` is the size of the (k + 1)-th packet . Then, packet k + 1 is removed
from FIFOj , its timestamp is set to its deadline by setting TSkj = VCj +d, and
it is added to the transmission queue. Note that, with this implementation, the
transmission queue contains at most one packet from each flow.

In Figure 12.3, we present an arrival and departure scenario that illustrates
the operation of PSRG scheduling. The arrival scenario and all parameters are
identical to the VirtualClock example in Figure 12.2. All packet arrivals are
labeled with the deadline assigned according to (12.20). Except for the first
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Figure 12.3: Transmission scenario with PSRG. The arrival scenario and all parameters are
identical as in Figure 12.2.

arrival from a flow, the deadlines can be computed only when the previous
packet from the same flow has departed. At time t = 5 ms, when flows 2
and 3 become active, the deadlines of packets p6

1, p
1
2 and p1

3 are identical.
Hence, flow 1 is not penalized for having been active before the other flows.
The transmission schedule at the bottom of the figure shows that flow 1 does
not experience any disruption of its service. The transmission of packets with
equal deadlines occurs in an arbitrary order. In the depicted transmission or-
der, packets from flow 1 are selected last.

12.4 Proof of Theorem 12.8

We begin with (7.5), which bounds the departure time at a network element
with an adaptive service curve. For an arbitrary value ν ≥ 0, we let F (ν)
denote the right hand side of (7.5) for the service curve γS(ν) = ν

R , that is

F (ν) = inf
µ≤ν

{
max

[
TD(µ) + ν − µ

R
, sup
µ≤κ≤ν

{
TA(κ) + ν − κ

R

}]}
. (12.22)
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Assuming that ν belongs to packet k, that is, ν ∈ [Lk−1, Lk), we will express
F (ν) in terms of F (L−k−1), with the goal to create a recursive expression
similar to the formula for the deadline in (12.20). We first consider values
ν ≥ L1, that is, ν belongs to the second or a later packet. We proceed by
splitting the range of the infimum into three partially overlapping intervals:
Lk−1 ≤ µ ≤ ν, Lk−2 ≤ µ < Lk−1, and µ < Lk−1, where k ≥ 2. Note
that the second and third intervals overlap. We define three functions F1,
F2, and F3, each evaluating F for one of the intervals, and then take their
minimum. The derivations take advantage of the next lemma.

Lemma 12.9. Consider a network element that offers an adaptive service
curve γS(ν) = ν

R and experiences packetized arrivals. Then, for each value ν
that belongs to the k-th packet, that is, Lk−1 ≤ ν < Lk, we have

TD(ν) = inf
Lk−1≤µ≤ν

{
TD(µ) + ν − µ

R

}
.

Proof. Two values µ and ν that belong to the same packet k, with Lk−1 ≤
µ ≤ ν < Lk, satisfy

TD(ν) ≤ max
[
TD(µ) + ν − µ

R
, sup
µ≤κ≤ν

{
TA(κ) + ν − κ

R

}]
= TD(µ) + ν − µ

R
.

This follows since TA(κ) = TA(µ) for κ ∈ [Lk−1, Lk) and TD(µ) ≥ TA(µ).
Considering all values µ ∈ [Lk−1, ν], we obtain

TD(ν) ≤ inf
Lk−1≤µ≤ν

{
TD(µ) + ν − µ

R

}
≤ TD(ν) ,

where the second equality follows by setting µ = ν.

Now we evaluate the functions F1, F2, and F3 for the three intervals. For
the first interval we get

F1(ν) = inf
Lk−1≤µ≤ν

{
max

[
TD(µ) + ν − µ

R
, sup
µ≤κ≤ν

{
TA(κ) + ν − κ

R

}]}
= inf

Lk−1≤µ≤ν

{
TD(µ) + ν − µ

R

}
= TD(ν) .
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The second line uses that TA(κ) = TA(µ) for κ ∈ [Lk−1, Lk), as well as
TD(µ) ≥ TA(µ). We arrive at the third line with Lemma 12.9. For the second
interval of the infimum, denoted by F2(ν), we can derive

F2(ν) = inf
Lk−2≤µ<Lk−1

{
max

[
TD(µ) + ν − µ

R
, sup
µ≤κ≤ν

{
TA(κ) + ν − κ

R

}]}
= inf

Lk−2≤µ<Lk−1

{
max

[
TD(µ) + ν − µ

R
, sup
µ≤κ<Lk−1

{
TA(κ) + ν − µ

R

}
,

sup
Lk−1≤κ≤ν

{
TA(κ) + ν − κ

R

}]}
= inf

Lk−2≤µ<Lk−1

{
max

[
TD(µ) + Lk−1 − µ

R
,

TA(µ) + Lk−1 − µ
R

, T pA(k)
]}

+ ν − Lk−1
R

= inf
Lk−2≤µ<Lk−1

{
max

[
TD(µ) + Lk−1 − µ

R
, T pA(k)

}
+ ν − Lk−1

R

= max
[
T pA(k), inf

Lk−2≤µ<Lk−1

{
TD(µ) + Lk−1 − µ

R

}]
+ ν − Lk−1

R

= max
{
T pA(k), T pD(k − 1)

}
+ ν − Lk−1

R
.

In the second step, we extract the term ν−Lk−1
R , and split the supremum into

two parts. Since γS(ν) = ν
R is continuous, we have γS(ν) = γS(ν−). The

third step evaluates the two suprema. The next step uses TD ≥ TA. Then we
rearrange the infimum and the maximum. The last step takes advantage of
Lemma 12.9 and uses T pD(k − 1) = TD(L−k−1).

We now proceed with the derivation of F3, the last part of the infimum.

F3(ν) = inf
µ<Lk−1

{
max

[
TD(µ) + ν − µ

R
, sup
µ≤κ≤ν

{
TA(κ) + ν − κ

R

}]}
= inf

µ<Lk−1

{
max

[
TD(µ) + ν − µ

R
, sup
µ≤κ<Lk−1

{
TA(κ) + ν − κ

R

}
,

sup
Lk−1≤κ≤ν

{
TA(κ) + ν − κ

R

}]}
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= inf
µ<Lk−1

{
max

[
TD(µ) + Lk−1 − µ

R
,

sup
µ≤κ<Lk−1

{
TA(κ) + Lk−1 − κ

R

}
, T pA(k)

}]}
+ ν − Lk−1

R

= max
[
T pA(k), inf

µ<Lk−1

{
max

(
TD(µ) + Lk−1 − µ

R
,

sup
µ≤κ<Lk−1

{
TA(κ) + Lk−1 − κ

R

})}]
+ ν − Lk−1

R

= max
(
T pA(k), F (L−k−1)

)
+ ν − Lk−1

R
.

Here, we split the supremum into two parts, and use that one part eval-
uates to T pA(n) + ν−Lk−1

R . Since, infµ<Lk−1 f(µ) = infµ≤L−
k−1

f(µ) and

supµ≤κ<Lk−1 f(κ) = supµ≤κ≤L−
k−1

f(κ), we can replace the second term

in the maximum (the infimum) by F (L−k−1). We now summarize the three
terms, and write (12.22) as

F (ν) = min
(
F1(ν) , F2(ν) , F3(ν)

)
= min

(
TD(ν) ,max

{
T pA(k), T pD(k − 1)

}
+ ν − Lk−1

R
,

max
(
T pA(k), F (L−k−1)

)
+ ν − Lk−1

R

)
≤ max

(
T pA(k) ,min

{
T pD(k − 1), F (L−k−1)

})
+ ν − Lk−1

R
, (12.23)

where dropping the term TD(ν) creates the inequality.
Now we consider ν ∈ [0, L1), that is, ν belongs to the first packet. To

compute (12.22) in this range, we split the infimum into two intervals 0 ≤
µ ≤ ν and µ < 0. The infimum for the first interval, denoted by F1, is

F1(ν) = inf
0≤µ≤ν

{
max

[
TD(µ) + ν − µ

R
, sup

0≤κ≤ν

{
TA(κ) + ν − κ

R

}]}
= inf

Lk−1≤µ≤ν

{
TD(µ) + ν − µ

R

}
= TD(ν) ,

where we used Lemma 12.9 for the second line with Lo = 0.
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The infimum of the second interval, denoted by F2, gives

F2(ν) = inf
µ<0

{
max

[
TD(µ) + ν − µ

R
, sup
µ≤κ≤ν

{
TA(κ) + ν − κ

R

}]}
= inf

µ<0

{
sup

µ≤κ≤ν

{
TA(κ) + ν − κ

R

}}
= T pA(1) + ν

R
,

where we used TD(ν) = TA(ν) = −∞ for ν < 0. Summarizing the results
we obtain

F (ν) = min
(
F1(ν) , F2(ν)

)
≤ T pA(1) + ν

R
.

With Lo = 0 and T pD(0) = 0, and by setting F (L−o ) = 0, we have shown
that (12.23) holds for all values ν ≥ 0.

The expression for F (ν) in (12.23) can be used for a deadline assignment
of an adaptive max-plus SCED algorithm, by defining the deadline

D`(ν) = max
(
T pA(k) ,min

{
T pD(k − 1), D`p(k − 1)

})
+ ν − Lk−1

R
,

(12.24)

for ν ∈ [Lk−1, Lk), where we use D`p(k) = D`(L−k ) to denote the deadline
of packet k, and with D`p(0) = T pD(0) = −∞.

If deadlines are computed for the end of the k-th packet (D`(L−k )) then
the deadline in (12.24) is that of (12.20). On the other hand, if ν < Lk,
we have D`(ν) < D`p(k). In this case it is possible, that the departure time
meets the packet-level deadline (TD(ν) ≤ D`p(k)), yet the deadline imposed
by the adaptive service curve γS(ν) = ν

R is violated (D`(ν) < TD(ν)). The
violation can be addressed by an adjustment of the service curve analogous to
the derivation of Theorem 12.7. The difference between the continuous-space
deadline D`(ν) in (12.24) and the packet-level deadline D`p(k) in (12.20) is
bounded by D`p(k) − D`(ν) < `max

R , with `max denoting the maximum
packet size of the flow. Let us consider a modified service curve γS′(ν) =
ν
R + `max

R and recompute (7.5). For this, we let F ′(ν) denote the right hand
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side of (7.5) with service curve γS′(ν) to obtain

F ′(ν) = inf
µ≤ν

{
max

[
TD(µ) + ν − µ

R
+ `max

R
,

sup
µ≤κ≤ν

{
TA(κ) + ν − κ

R
+ `max

R

}]}
= F (ν) + `max

R
,

where F (ν) is as given in (12.22). With (12.23), we get for ν ∈ [Lk−1, Lk)
that

F ′(ν) ≤ max
(
T pA(k) ,min

{
T pD(k − 1), F (L−k−1)

})
+ ν − Lk−1

R
+ `max

R
,

which suggests the deadline assignment

D`′(ν) = max
(
T pA(k) ,min

{
T pD(k − 1), D`p(k − 1)

})
+ ν − Lk−1

R
+ `max

R
,

where we again use D`p(k) = D`(L−k ). Comparing D`′(ν) with (12.20)
yields

D`p(k) ≤ D`′(ν) , if Lk−1 ≤ ν < L−k .

Hence, a deadline assignment from (12.20) realizes an adaptive max-plus
SCED algorithm with service curve γS′(ν) = ν

R + `max
R , when all deadlines

are satisfied.
To account for the delay guarantee d, we use the adaptive service curve

γS′′(ν) = ν
R + `max

R + d This is verified by recomputing (7.5) with γS′′ .
If F ′′(ν) denotes the right hand side of (7.5) with γS′′ , we get F ′′(ν) =
F ′(ν) + d. Therefore, the deadline assignment

D`′′(ν) = D`′(ν) + d

ensures that D`p(k) as given in (12.21) satisfies

D`p(k) ≤ D`′′(ν) , if Lk−1 ≤ ν < L−k .

In summary, the deadline assignment of (12.20) and (12.21) ensures an adap-
tive max-plus SCED algorithm with service curve γS′′(ν) = ν

R + `max
R + d,

as long as no deadline violations occur.
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12.5 Traffic shaping

The results on SCED scheduling with rate and delay guarantees can be ap-
plied to create efficient implementations of greedy shapers with a rate compo-
nent. In §6, we presented a greedy shaper as a network element that enforces
a max-plus traffic envelope λE on the departing traffic. Since a greedy shaper
offers an exact max-plus service curve λE (Theorem 6.2), greedy shaping can
be accomplished by a max-plus convolution, where TA⊗λE(ν) determines
the departure time of ν. For traffic envelopes that express a traffic rate, the
departure times can be computed in the same fashion as deadlines at a SCED
scheduler with rate guarantees. In particular, for packetized traffic arrivals,
we can take advantage of the recursive expression for SCED deadlines with
rate guarantees from §12.2.

A key difference between a SCED scheduler and a greedy shaper is that
SCED realizes a lower service curve, whereas a greedy shaper implements an
exact service curve. Therefore, the need for an adaptive guarantee does not
arise in the context of greedy shaping. In SCED, the convolution TA⊗ γ(ν)
is used to compute the deadline D`(ν). With a greedy shaper, we use the
convolution to compute the earliest departure time of ν, which we refer to as
the release time R`(ν), that is, we set

R`(ν) = TA⊗λE(ν) . (12.25)

In a perfect implementation of a greedy shaper we have TD(ν) = R`(ν) for
every ν, that is, each bit departs at its release time.

Let us consider a greedy shaper for the rate-based max-plus traffic enve-
lope λE(ν) = ν

r with rate r > 0. If all arrivals are packetized, we can, as
in (12.14), express the convolution by the recursive expression

TA⊗λE(ν) = max
{
TA⊗λE(L−k−1), T pA(k)

}
+ ν − Lk−1

r
, (12.26)

for every ν ∈ [Lk−1, Lk), with Lo = 0. With packetized traffic, all bits of
a packet depart the shaper at the same time. Denoting by R`p(k) the release
time of the k-th packet, we set R`p(k) = R`(L−k ), that is, packet k departs
at the release time assigned to the end of the packet. This yields the recursive
expression

R`p(k) = max
{
R`p(k − 1)), T pA(k)

}
+ `k

r
, (12.27)
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with R`p(0) = −∞. Collecting (12.25), (12.26), and (12.27), for ν ∈
[Lk−1, Lk) it holds that

R`p(k) = R`(ν) + Lk − ν
r

. (12.28)

With packetized departures, all bits of the k-th packet are set to depart at the
release time of the packet, that is, TD(ν) = R`p(k) for ν ∈ [Lk−1, Lk).
With (12.28), the departure time of ν ∈ [Lk−1, Lk) is bounded by

R`(ν) + Lk − ν
r

= TD(ν) ≥ R`(ν) .

Since Lk − ν ≤ `k ≤ `max, where `max is the maximum packet size of the
flow, we have with (12.25) that

TA⊗λE ⊗ δ`max/r ≥ TD ≥ TA⊗λE .

In other words, the release time assignment for a greedy shaper in (12.27)
ensures an upper service curve ν

r and a lower service curve ν
r ⊗ δ`max/r =

ν
r + `max

r . While the exact service curve property TD = TA⊗λE is lost by
the packetization, the deviation from the exact service curve is less than `max

r .
If a max-plus traffic envelope of a greedy shaper has an earliness al-

lowance e in addition to a rate r, the envelope is λE(ν) =
[
ν
r − e

]+. In
this case, for computing TA⊗λE , we maintain the recursion (12.27) for each
packet, and subtract from it the earliness allowance. Using R`p(k) to denote
the release time of packet k after taking into account the earliness allowance,
we have

R`p(k) = [R`p(k − 1)− e]+ , (12.29)

with R`p(k) as given in (12.27). Recall that this greedy shaper is equivalent
to a token bucket with rate r and burstiness er. For traffic envelopes with
multiple tuples (ri, ei)i=1,...,N , e.g., as given in (6.4) for N = 2, we compute

release times separately for each traffic envelope λEi(ν) =
[
ν
ri
− ei

]+
, and

then take their maximum.
The above realization of a greedy shaper for max-plus traffic envelopes

suggests an alternative take on a token bucket implementation. Recall from

the Example in §11.1, that λE(ν) =
[
ν−b
r

]+
is the upper pseudo-inverse of

the min-plus traffic envelope E(t) = b + rt. A greedy shaper that realizes
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the min-plus envelope E is referred to as token bucket. It enforces a long-
term rate r > 0 and a maximum burst size of b > 0. The implementation
of a token bucket often draws on an analogy to a bucket which is filled with
tokens at rate r. Once the bucket contains b tokens, it is considered full, and
no more tokens are added. A packet can depart only if there are sufficient
tokens in the bucket. For a packet of size ` bits or bytes, the bucket must
contain at least ` tokens. If the number of available tokens is insufficient,
a packet must wait until the required number of tokens are available. The
computation of the release times for a max-plus traffic envelope with a rate
and an earliness allowance, as given by (12.29), suggests an analogy that
is closer to the VirtualClock implementation described at the end of §12.2.
When a packet of size ` bytes arrives at time t, the virtual clock VC is set to

VC = max {VC, t}+ `

r
,

with initial value VC = 0. If VC− b
r ≤ t, then the packet departs immediately.

Otherwise, the departure time of the packet is set VC− b
r .
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Related Literature

The textbooks by LeBoudec and Thiran [7] and Chang [9] have a compre-
hensive coverage of the deterministic network calculus. Both books discuss
the min-plus and the max-plus versions of the network calculus, but use the
min-plus network calculus as their main point of reference. Many of the con-
cepts and results presented in §3–9 are covered in these textbooks, as well as
in a survey paper [20]. Results on a probabilistic extension of the max-plus
network calculus are presented in [31, 32, 33].

The earliest and most thorough development of a max-plus network cal-
culus is presented by Chang [9, Chp. 6] and Chang and Lin [10]. The analysis
takes a packet-level approach. Instead of using a single arrival time func-
tion TA, arrivals to a network element are characterized by two functions,
one describing the arrival time instants and the other the packet sizes. An ex-
ample of such a characterization of arrivals is given in Figure 3.2. Then, a
packet-level max-plus convolution operation is defined for n ∈ No as

F �H G(n) = max
0≤k≤n

{F (k) +G(H(n)−H(k))} ,

where F and G are non-decreasing real-valued functions, and H(n) is a
non-decreasing integer-valued function. The output at a work-conserving link

262
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with rate C is expressed in [9, Example 6.3.7] as

τ2(n) = τ �L′ γS(n) + `′n
C
, (13.1)

with γS(ν) = ν
C , where the index n indicates the (n + 1)-th packet, τ2(n)

is the departure time of the (n + 1)-th packet, τ(n) is the arrival time of
the (n + 1)-th packet, `′n denotes the size of the (n + 1)-th packet, and
L′(n) =

∑n−1
k=0 `

′
k is the cumulative size of the first n packets. Evaluating

the convolution yields

τ2(n) = max
0≤k≤n

{
τ(k) + L′(n)− L′(k)

C

}
+ `′n
C
.

Note that packets are numbered starting with index zero for the first packet,
with `′0 the size of the first packet, `′1 the size of the second packet, and so on.
Relating this notation to our notation in §2 by setting

τ2(n) = T pD(n+ 1) , τ(n) = T pA(n+ 1) , `′n−1 = `n ,

and evaluating (2.2) for the departure time of the (n+1)-th packet, we obtain

T pD(n+ 1) = max
0≤k≤n

{
T pA(n+ 1− k) + `n+1−k + . . .+ `n+1

C

}
= max

0≤k≤n

{
T pA(k + 1) + `k+1 + . . .+ `n

C

}
+ `n+1

C

= max
0≤k≤n

{
τ(k) + 1

C
(L′(n)− L′(k))

}
+ `n+1

C

= τ �L′ γS(n) + `′n
C
,

with γS(κ) = κ
C . Hence, the departure function given in (2.2) is compatible

with (13.1).
The �L′-convolution expresses the waiting time of a packet in the buffer,

before it begins transmission. In the special case of unit-sized packets, where
`n = 1 for all n ≥ 0, the departure time is

T pD(n+ 1) = τ �L′ γS(n) + 1
C

= max
0≤k≤n

{
τ(k) + n− k

C

}
+ 1
C
,
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which is equivalent to the bit-level description of the departure time in (2.6).
Note that the recovery of (2.6) necessitates that packet indices start with
zero. With general packet sizes, the �L′-operation is neither associative
nor commutative, therefore, the resulting algebra is limited. On the other
hand, if `n = 1, the algebra of increasing functions endowed with opera-
tions ∨ and �L′ is a dioid. The argument can be extended to equally sized
packets, by adjusting the service function γS . The fact that dioid properties
are recovered only in the special case of equal packet sizes is the main rea-
son that works applying or extending the max-plus network calculus from [9,
Chp. 6][10] assume that packet sizes are identical or unit-sized.

The application of upper and lower pseudo-inverses for relating the max-
plus network calculus to the min-plus network calculus also originates in [9,
Chp. 6][10]. Due to the packet-level characterization of the max-plus network
calculus in [9, Chp. 6], the mapping of max-plus results into the min-plus al-
gebra does not perfectly match those derived within the min-plus network
calculus. As an example, the mapping of a packet-level max-plus traffic reg-
ulator of the form λ(ν) = 1

r [ν − b]+ maps to the min-plus traffic envelope
E(τ) = b + rτ + `max, whereas an application of the lower pseudo-inverse
results in E(τ) = b+ rτ . The difference between these envelopes is a conse-
quence of the packet-level interpretation of traffic algorithms, and not due to
a rounding error or an inaccuracy of the analysis. The packet-level max-plus
network calculus can be viewed as integrating each network element with a
packetizer. An alternative explanation is that all bits belonging to the same
packet receive the same timestamp, which, in a continuous-space view, is
the timestamp assigned to the end of the packet. As discussed in the context
of the VirtualClock and PSRG scheduling algorithms (in §12), ensuring that
all bits are compliant with a given timestamp algorithm requires adding the
transmission time of the longest packet.

The mapping between envelope functions and lower service curves in the
min-plus and max-plus algebras are presented in [32]. The max-plus algebra
adopts the packet-level description from [10]. The mapping deviates from the
mapping of traffic envelopes and service curves in [9, Lemma 6.2.8] and [9,
Lemma 6.2.8], respectively, which may be due to a different use of pseudo-
inverses.

Obviously, the packet-level network calculus with the �L′-convolution
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does not lead to an isomorphism, or even a homomorphism between max-
plus and min-plus algebras. Even for the special case of unit-sized packets,
the need to add terms `max = 1 or `max

R = 1
R to pseudo-inverses leaves

the mapping between algebras imperfect. This may have led to conclusions
about a lacking correspondence between the min-plus and max-plus network
calculus, as cited in §1.

A special case of a mapping between backlog in the time domain and
delay in the space domain is considered in [25]. Using a packet-level descrip-
tion as in [10] with unit size packets, and under the assumption of strictly
increasing packet-level arrival and departure time functions T pA and T pD, the
relationship for the n-th packet is

B(T pD(n)) = A(T pD(n))−A(T pD(n)−W (n))
= A(T pA(n) +W (n))−A(T pA(n)) ,

where W (n) = T pD(n)− T pA(n) is the delay associated with packet n. If T pA
and T pD are strictly increasing, the functions are injective, and A(T pA(n)) =
D(T pD(n)) = n holds. In a continuous space domain, the requirement that TA
and TD be strictly increasing is limiting since it does not allow burst arrivals
or departures.

An extensive discussion of mappings between dioid algebras can be
found in [3, §4.4]. The mappings exploit the lattice structure of complete
dioids, and apply results from the residuation theory for lattices [5]. The prop-
erties of pseudo-inverse functions, summarized in Theorems 4.50 and 4.51
in [3, §4.4], correspond to some of the inequalities in properties (P1)–(P4)
in §10. The mapping applies to all complete dioids, and is not limited to the
dioids (T ,∨, ⊗ ) and (F ,∧,⊗). When applying the change of notation:

Π −→ F , Π] −→ F ↑ , Π[ −→ F ↓ ,

and the change of terminology:

residual −→ upper pseudo-inverse,
dual residual −→ lower pseudo-inverse,
isotone mapping −→ non-decreasing function,
isotone and upper semi-continuous −→ right-continuous,
isotone and lower semi-continuous −→ left-continuous,
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residuated mapping −→ left-continuous and non-
decreasing function,

dual residuated mapping −→ right-continuous and non-
decreasing function,

and using I to denote the identity of a dioid, the expressions can be matched
as follows:

Equation in [3]: Property:
(4.19) Π ◦Π] ≤ I ←→ F (F ↑(y)) ≤ y (P4)
(4.20) Π] ◦Π ≥ I ←→ x ≤ F ↑(F (x)) (P2)
(4.23) Π ◦Π[ ≥ I ←→ y ≤ F (F ↓(y)) (P3)
(4.23) Π[ ◦Π ≤ I ←→ F ↓(F (x)) ≤ x (P1)

The second inequality appearing in properties (P1)–(P4) does not follow from
general residuation theory.

A set of papers [16, 17, 18] has applied residuation theory with the goal of
deriving max-plus network calculus results from corresponding expressions
in the min-plus network calculus. The papers describe several relationships
of operations that involve minima, maxima, min-plus and max-plus convolu-
tions, and min-plus and max-plus deconvolutions, but do not perform a map-
ping of the entire algebra.

The SCED algorithm was originally developed within the framework of
the min-plus algebra [15, 30]. The max-plus version of SCED is discussed
by Chang in [9, §6.4.2]. An advantage of max-plus SCED is that deadlines
for traffic arrivals are directly obtained from a max-plus convolution, whereas
min-plus SCED computes deadlines from a pseudo-inverse of a min-plus con-
volution. Chang also points out the similarity of max-plus SCED for rate
guarantees and the VirtualClock algorithm.

Adaptive service curves are proposed and investigated in [2, 26] using the
min-plus network calculus. The definition in (9.3) is a simplified version of
the adaptive service curve in [2, 26]. The complete definition, given by

D(t) ≥ sup
s≤t

{
min

[
D(s) + S1(t− s) , A⊗

s
S2(t)

]}
,

has two functions S1 and S2 to describe the service times. We have not used
the more general definition previously, since it is not needed when expressing
rate guarantees. Note that, with the original definition, the convolution of
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multiple adaptive service curves is more complex, but it retains the adaptive
property.

The PSRG algorithm is proposed in [4] as a solution to a scheduling prob-
lem that ensures bounds on the service rate as well as delay variations (delay
jitter). PSRG, as presented in [4], has a rate and a latency component. For
didactic reasons, the exposition in §12.2 separates the two components, and
first introduce PSRG as a scheduler for rate guarantees only. The relationship
between PSRG and adaptive service curves is discussed in [7, Chp. 7], where
PSRG is presented as the max-plus analogue to an adaptive min-plus service
curve for rate guarantees. By presenting a definition of adaptive max-plus
service and establishing the one-to-one relationship to the adaptive service
curve in [2], we have made the analogy rigorous.

A number of studies, e.g., [11, 12, 22, 27], have addressed similarities of
and differences between network calculus and queueing theory as methods
for performance evaluation of networked systems. In [22] the min-plus and
max-plus convolutions are juxtaposed with the Lindley equation [24] as dis-
tinct methods for characterizing the behavior of a queueing system. We want
to point out that the Lindley equation at a buffered link is in fact equivalent
to the max-plus convolution from (2.8). The Lindley equation is a recursive
expression that expresses the time that a packet resides in the buffer at a work-
conserving link. It states that for n ≥ 2,

Wn = max
{
0,Wn−1 + Sn−1 −An−1

}
,

where

Wn is the waiting time (or queueing time) of the n-th packet
arrival in the buffer before transmission,

Sn−1 is the service time (or transmission time) of the (n− 1)-th
packet, and

An−1 is the time elapsed between the arrival of the (n − 1)-th
and the n-th packet.

Since the first packet arrival does not have to wait in the buffer, we have
W 1 = 0. Assuming a buffered link with rate C, we have Sn = `n

C . With the
notation from §2, we have An = T pA(n)− T pA(n− 1). Denoting the delay of
the n-th packet by Wn, we have

Wn = Wn + Sn ,
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so we can rewrite the Lindley equation as

Wn = max
{
0,Wn−1 −An−1

}
+ Sn .

With Wn = T pD(n)− T pA(n) we can derive

T pD(n) = Wn + T pA(n)
= max

{
0,Wn−1 − (T pA(n)− T pA(n− 1))

}
+ Sn + T pA(n)

= max
{
T pA(n), (T pD(n− 1)− T pA(n− 1))

− (T pA(n)− T pA(n− 1) + T pA(n))
}

+ Sn

= max
{
T pA(n), T pD(n− 1))

}
+ `n
C
.

This equation is equal to (2.1), which, in turn, is equal to the max-plus con-
volutions in (2.6) and (2.8).
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Conclusions

We presented a continuous-space version of the max-plus network calculus
and showed that it has an isomorphic relationship with a continuous-time
min-plus network calculus. This clarifies a previously held belief that the two
versions of the network calculus are closely related, but not equivalent. Being
able to switch between the min-plus and max-plus points of view without a
loss of accuracy provides flexibility in the characterization and analysis of
traffic control algorithms. For example, the implementation of traffic control
algorithms with timestamps is more efficient in a max-plus algebra, since
it avoids the computation of inverse function values required in a min-plus
setting. On the other hand, computing capacity requirements, which demands
the consideration of aggregated traffic flows, is more straightforward using a
min-plus algebra.

Our formulation of the max-plus network calculus dispenses with the as-
sumption of equal packet sizes, which is found in most recent applications
of the max-plus network calculus, e.g., [25, 31, 32, 33]. Different from the
min-plus network calculus, where results derived for continuous-time func-
tions seem to hold in a discrete-time setting, we found differences between
the continuous-space and discrete-space versions of the max-plus network
calculus, e.g., for the service curve of a work-conserving link (§2) and the
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definition of busy sequences (§5). It could be useful to quantify these differ-
ences.

Even though descriptions for arrivals, departures, and service are isomor-
phic, backlog and delay in the time domain and space domain could not
be precisely mapped to each other. This is noteworthy since the worst-case
bounds in the two domains are identical. It is an open question if this still
holds when arrivals and service are governed by random processes.

The schedulability conditions for adaptive max-plus SCED scheduling
at a work-conserving link with rate C is left as an open question for future
research.
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A
Proofs of Lemma 4.1 and Lemma 4.2

We present proofs of the properties in Lemmas 4.1 and 4.2 for a continuous-
space domain. We assume that F , G, and H are right-continuous and non-
decreasing (in T ). When a property requires one-sided functions (in To), we
state so. In this way, we prove the properties in their broadest generality.

Closure of ⊗ . If the ranges of F andG are R+
o ∪{∞}∪{−∞}, then the sum

F (κ) +G(ν − κ) cannot be a finite negative value for any choice of κ ∈ R.
Therefore, the range F ⊗G must be R+

o ∪ {∞} ∪ {−∞}. For continuous-
time processes, we show that the max-plus convolution of right-continuous
functions is again right-continuous. We only need to assume that one of the
functions, say G, is right-continuous. Consider the max-plus convolution

F ⊗G(t+ ε) = sup
s∈R
{F (s) +G(t− s+ ε)} .

G is right-continuous if and only if for ε → 0 we have G(t + ε) → G(t). It
follows that F ⊗G(t + ε) → F ⊗G(t) for ε → 0. Hence, F ⊗G is right-
continuous.

Now consider that F and G are non-decreasing. Select values ν ∈ R and
µ ≥ 0 and assume there exists a κ∗ ∈ R such that

F ⊗G(ν + µ) = F (κ∗) +G(ν + µ− κ∗) .
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We show that F ⊗G is non-decreasing by exploiting that

F (κ∗) +G(ν + µ− κ∗) ≥ F (κ∗) +G(ν − κ∗) ≥ F ⊗G(ν) .

In general, if the supremum is not attained for a κ∗ ∈ R, we can use that for
any ε > 0, we can find a κε, such that F ⊗G(ν + µ) + ε > F (κε) +G(ν +
µ− κε) ≥ F ⊗G(ν). Letting ε→ 0, proves that F ⊗G is non-decreasing.

The above establishes that F ⊗G ∈ T . Now suppose that F,G ∈ To.
Then, for all ν < 0,

F ⊗G(ν) = sup
κ∈R
{F (κ) +G(ν − κ)}

= max
{
sup
κ>ν
{F (κ) +G(ν − κ)}, sup

κ≤ν
{F (κ) +G(ν − κ)}

}
= max

{
sup
κ>ν
{F (κ) + (−∞)}, sup

κ≤ν
{−∞+G(ν − κ)}

}
= −∞ .

Hence, F ⊗G ∈ To.

Associativity. The following holds for any three F,G and H in T . We first
expand the expressions and rearrange the applications of the ‘sup’ operators.
Then we perform a substitution η = κ− µ.

(F ⊗G)⊗H(ν) = sup
κ∈R

{
sup
µ∈R
{F (µ) +G(κ− µ)}+H(ν − κ)

}
= sup

κ∈R

{
sup
µ∈R
{F (µ) +G(κ− µ) +H(ν − κ)}

}
= sup

µ∈R

{
F (µ) + sup

κ∈R
{G(κ− µ) +H(ν − µ− (κ− µ))}

}
= sup

µ∈R
{F (µ) + sup

η∈R
{G(η) +H(ν − µ− η)}}

= sup
µ∈R
{F (µ) +G⊗H(ν − µ)}

= F ⊗ (G⊗H)(ν) .
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Commutativity. Let F,G ∈ T . We show the property with a substitution
κ = ν − µ.

F ⊗G(ν) = sup
µ∈R
{F (µ) +G(ν − µ)}

= sup
ν−κ∈R

{F (ν − κ) +G(κ)}

= sup
κ∈R
{G(κ) + F (ν − κ)}

= G⊗F (ν) ,

where we have used that the supremum over ν − x ∈ R is equivalent to the
supremum over x ∈ R.

Distributivity. Let F,G,H ∈ T . For any choice ν ∈ R, we have

((F ∨G)⊗H)(ν) = sup
µ∈R
{max{F (µ), G(µ)}+H(ν − µ)}

= sup
µ∈R

{
max{F (µ) +H(ν − µ), G(µ) +H(ν − µ)}

}
= max{sup

µ∈R
{F (µ) +H(ν − µ)}, sup

µ∈R
{G(µ) +H(ν − µ)}}

= ((F ⊗H) ∨ (G⊗H))(ν) .

The crucial step is in the third line, where we exploit that the order of maxi-
mization can be exchanged.

Neutral element δ.

F ⊗ δ(ν) = sup
κ∈R
{F (κ) + δ(ν − κ)}

= sup
κ≤ν
{F (κ)}

= F (ν) .

The second line follows since δ(ν − κ) = −∞ for κ ≤ ν. The third line
follows since F is non-decreasing.
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Time shift.

F ⊗ δT (ν) = sup
κ∈R
{F (κ) + δT (ν − κ)}

= sup
κ∈R
{F (κ) + δ(ν − κ)}+ T

= F (ν) + T .

Order preserving. Select values ν and ν+µ (µ ≥ 0) and assume there exists
an κ∗ ∈ R such that

F ⊗H(ν) = F (κ∗) +H(ν − κ∗)
≤ G(κ∗) +H(ν − κ∗)
≤ sup

κ∈R
{G(κ) +H(ν − κ)}

= G⊗H(ν) .

When the supremum of the max-plus convolution is not attained, we can
make a construction such that for any ε > 0, there exists a κε, with
F ⊗H(ν) + ε ≤ F (κε) +H(t−κε). The property follows by taking ε→ 0.

Boundedness of ⊗ . Since G ∈ To , we have G ≥ δ. With the order preserv-
ing property, we obtain for each F ∈ T that F ⊗G ≥ F ⊗ δ = F . If F ∈ To,
we have F ⊗F ≥ F ⊗ δ = F .

Existence of maximum. Recall that for functions F,G ∈ To, the computa-
tion of the convolution F ⊗G(ν) must only consider the interval [0, ν]. In a
discrete-space domain, the maximum exists since the elements in the interval
is finite. With a continuous-space domain, the existence of the maximum can
be quickly argued if we borrow a result from real analysis about upper semi-
continuous functions. An upper semi-continuous function f is defined by the
property that for all values of x,

lim sup f(x) ≤ f(x) ,

where ‘lim sup’ denotes the limit superior.1 This means that the function
value at a point is never below the function values close to that point. The

1 The limit superior for a sequence {xn}n=1,2,... with limn→∞ xn = x is defined as
lim sup f(x) = limn→∞ supm≥n f(xm).
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definition does not assume that f is non-decreasing. On the other hand, if a
function is right-continuous and non-decreasing, it is upper semi-continuous.
Likewise, a function is upper semi-continuous, if it is left-continuous and
non-increasing. Now, a property of upper semi-continuous functions is that
the supremum of the function over a finite interval is always attained. That
is, if f is an upper semi-continuous function, then for any supremum over
a finite interval [a, b], there exists a value y∗ with a ≤ y∗ ≤ b such that
f(y∗) = supa≤y≤b f(y). If we consider the max-plus convolution

F ⊗G(ν) = sup
0≤κ≤ν

{F (κ) +G(ν − κ)} ,

we have that F (κ) is non-decreasing and right-continuous, G(ν − κ) (as a
function of κ) is non-increasing and left-continuous. Therefore, both F (κ)
andG(ν−κ) are upper semi-continuous, and so is the sum F (κ)+G(ν−κ).
Applying the property for upper semi-continuous functions gives that there
exists an κ∗ with 0 ≤ κ∗ ≤ ν, such that F ⊗G(ν) = F (κ∗) +G(ν − κ∗).

The existence property can be used to simplify the proofs of some other
properties above (e.g., monotonicity), as long as F,G ∈ To.

Operation � not closed. We provide a proof with a counter example. Con-
sider the delay functions δ1, δ2, δ4 ∈ To and ν ≥ 0. Then, we can write

δ2� δ4(ν) = inf
κ≥0
{δ2(ν + κ)} − δ4(κ)}

= inf
κ≥0
{2− 4}

= −2 .

So, δ2� δ4 6∈ To since it violates non-negativity for ν ≥ 0.
We can show that � is not even closed in T . Define

F (ν) =


−∞ , ν < 0 ,
δ1 , 0 ≤ ν < 2 ,
δ2 , ν ≥ 2 .

Clearly, F ∈ To. If we compute δ4�F at ν = 1 and ν = 2, we get

δ4�F (1) = δ4� δ1 = 3 ,
δ4�F (2) = δ4� δ2 = 2 .
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This shows that δ4�F 6∈ T since it is not non-decreasing.

Operation � not associative. This is also shown using a counter example.

(δ4� δ2)� δ1 = (4− 1)− 2 = 1 ,
δ4� (δ2� δ)1 = 4− (1− 2) = 5 .

Operation � not commutative. This follows from the following counter
example.

δ4� δ2 = 4− 2 = 2 ,
δ2� δ4 = 2− 4 = −2 .

Composition of ⊗ and � . We first expand the operators, and then substitute
η = µ+ κ.

(F �G)�H(ν) = inf
µ≥0
{F �G(ν + µ)−H(µ)}

= inf
µ≥0

{
inf
κ≥0
{F (ν + µ+ κ)−G(κ)} −H(µ)

}
= inf

µ≥0
inf
η≥µ
{F (ν + η)−G(η − µ)−H(µ)}

= inf
µ≥0

{
F (ν + η)− sup

µ≤η
{G(η − µ) +H(µ)}

}
= F � (G⊗H)(ν) .

Duality of � . We first show that if F ≥ G⊗H then F �H ≥ G. We
rewrite F ≥ G⊗H as

∀ν ∈ R,∀κ ∈ R : F (ν) ≥ G(κ) +H(ν − κ) .

Substituting µ = ν − κ, the above is equivalent to

∀κ ∈ R,∀µ ∈ R : G(κ) ≤ F (µ+ κ)−H(µ) .

This is equivalent to

∀µ ∈ R : G(µ) ≤ inf
κ∈R
{F (u+ s)−H(u)} ,
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which implies

∀µ ∈ R : G(µ) ≤ inf
κ≥0
{F (u+ s)−H(u)} = F �H(µ) .

Now we show that F �H ≥ G implies F ≥ G⊗H . We write F �H ≥ G

as
∀ν ∈ R ,∀κ ≥ 0 : F (ν + κ) ≥ G(ν) +H(κ) .

With a change of variables µ = ν + κ, we have

∀ν ∈ R , ∀µ ≤ ν : F (µ) ≥ G(ν) +H(µ− ν) ,

which is equivalent to

∀µ ∈ R , ∀ν ≤ µ : F (µ) ≥ G(ν) +H(µ− ν) ,

and which we can rewrite as

∀µ ∈ R : F (ν) ≥ sup
ν≤µ
{G(ν) +H(µ− ν)} .

This implies

∀µ ∈ R : F (ν) ≥ sup
0≤ν≤µ

{G(ν) +H(µ− ν)} = G⊗H(µ) .
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