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Some of the applications in modern data networks are delay sensitive (e.g., video and voice).

An end-to-end delay analysis is needed to estimate the required network resources of delay

sensitive applications. The schedulers used in the network can impact the resulting delays to

the applications. When multiple applications are multiplexed in a switch, a scheduler is used

to determine the precedence of the arrivals from different applications.

Computing the end-to-end delay and queue sizes in a network of schedulers is difficult and

the existing solutions are limited to some special cases (e.g., specific type of traffic). The theory

of Network Calculus employs the min-plus algebra to obtain performance bounds. Given an

upper bound on the traffic arrival in any time interval and a lower bound on the available service

(called the service curve) at a network element, upper bounds on the delay and queue size of

the traffic in that network element can be obtained. An equivalent end-to-end service curve of a

tandem of queues is the min-plus convolution of the service curves of all nodes along the path.

A probabilistic end-to-end delay bound using network service curve scales with O(H logH)

in the path length H . This improves the results of the conventional method of adding per-node

delay bounds scaling with O(H3).

We have used and advanced Network Calculus for end-to-end delay analysis in a network of

schedulers. We formulate a service curve description for a large class of schedulers which we

call ∆-schedulers. We show that with this service curve, tight single node delay and backlog

bounds can be achieved. In an end-to-end scenario, we formulate a new convolution theo-
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rem which considerably improves the end-to-end probabilistic delay bounds. We specify our

probabilistic end-to-end delay and backlog bounds for exponentially bounded burstniess (EBB)

traffic arrivals. We show that the end-to-end delay varies considerably by the type of schedulers

along the path. Using these bounds, we also show that a if the number of flows increases, the

queues inside a network can be analyzed in isolation and regardless of the network effect.
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Chapter 1

Introduction

Conventional telephony network was based on circuit switched networks in which a communi-

cation channel is assigned between each sender and receiver before they start to communicate

(see [12]). In a telephony network, a fixed bandwidth is allocated to each user regardless of the

traffic it is injecting in the network. This allocated bandwidth is available for the whole dura-

tion of communication. If the rate of traffic generation of a user is smaller than its dedicated

bandwidth, the leftover bandwidth cannot be used by other users and will be wasted. To obviate

the problem of inefficient use of bandwidth, data networks have emerged, where the informa-

tion is sent in small batches called packets. Data networks are also known as packet switched

networks. Sharing a link by packets from multiple flows is called statistical multiplexing. If at

a certain time, a packet arrives at a link, and the link is busy serving another packet, then the

newly arrived packet will be stored in a buffer to be served later. The aggregate of all packets in

the buffer at any time is called backlog. There is no preassigned dedicated bandwidth to a user

in packet switched networks. All buffered packets from all users share the total bandwidth.

Statistical multiplexing avoids bandwidth allocation to inactive users, and this increases the

bandwidth utilization compared to circuit switched networks considerably. This gain is known

as the statistical multiplexing gain.

Packet switched networks are employed to serve packets from different applications in

1
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modern data network. The applications are either delay sensitive (e.g., video and voice) or

not delay sensitive (e.g., email). When packets from different applications are multiplexed

in a bottleneck, managing the available capacity among applications is crucial. A scheduling

algorithm decides which packet from which application to serve next, among all packets in the

buffer. A scheduler is called work-conserving if it cannot be idle when the buffer is not empty.

See [8] for a review of the gain obtained by the scheduling algorithms in terms of throughput

and managing the available resources. In the sequel, we review some of the most widely used

schedulers.

• First-In-First-Out (FIFO): In this scheduler, the packet with the earliest arrival time

among all stored packets in the buffer will be served first. Although FIFO is an at-

tractive scheduler because of the simple implementation, it cannot differentiate services

between flows. For instance, FIFO is not a proper scheduler if traffic flows have largely

different delay constraints.

• Static Priority (SP): All flows are categorized into a set of classes. A priority level is

assigned to each class. SP can integrate applications with different service requirements

by placing them in different priority classes. Packets from a certain class will be served

only if there is no buffered packet from higher priority classes. Arriving packets from

the same class will be served in a FIFO order. A SP scheduler is simple to implement

and offers service differentiation for different applications. However, a problem with

SP schedulers is that the lower priority classes may experience starvation (unfair usage

of bandwidth by higher priority classes). Treating a traffic flow as if it belongs to the

lowest priority class in a SP scheduler is also known as blind multiplexing (BMux) in the

literature and has a special property that receives the lowest amount of service among all

work-conserving schedulers.

• Earliest Deadline First (EDF): An a priori delay bound is assigned to each flow in this

type of scheduler. Suppose d∗i is the a priori delay bound for flow i. Then, if there is
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an arrival from flow i at time t, the deadline assigned to that arrival is t + d∗i . Packets

waiting to be transmitted in the buffer will be served in the order of their deadlines. EDF

is relatively difficult to implement, since upon arrival of any packet, a search is required

to find the position of that newly arrived packet among all previously stored packets. It is

proved in [75] that EDF is the optimal scheduler in an underloaded regime to serve a set

of delay sensitive flows in an isolated link. In an overloaded regime, however, Locke’s

[77] experiments discover a shortcoming of EDF schedulers known as domino effect. If

one packet misses its deadline, then, this might cause the subsequent packets to miss

their deadlines as well, and the deadline violation propagates.

• Rate-schedulers: This class of schedulers seeks to provide rate fairness to the flows. Rate

fairness is ideally obtained in a fluid flow model, where the cumulative traffic arrival is

a continuous function. The fluid flow model of the ideal scheduler with rate fairness

is named Generalized Processor Sharing (GPS) in [81]. GPS is a generalization of the

uniform processor sharing proposed in [57]. In GPS, a weight is assigned to each flow

and the total link capacity is shared according to those weights. Suppose thatN is a set of

traffic flows arriving to a GPS link with capacity C. Represent the set of all backlogged

flows at time t by B(t). If φi > 0 is the weight of flow i ∈ N , then, the bandwidth

assigned to flow i with instantaneous arrival rate ri(t) at time t is

r0(t) =

 ri(t) if i 6∈ B(t)

φiCP
j∈B(t) φj

if i ∈ B(t) .

Consequently, the guaranteed service rate to flow i for such a system is φiCP
j∈N φj

.

When a fluid flow assumption is not valid (e.g., packet sizes are not very small with re-

spect to the link capacity), then GPS cannot be implemented accurately. There are packet

schedulers in the literature which approximate the mechanism of processor sharing algo-

rithms, e.g., Weighted Fair Queuing (WFQ) [33], Weighted Round Robin (WRR) [52],

and Virtual Clock (VC) [105].
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A0

Through flow
QHQ1 Q2

AHA2A1

Figure 1.1: A tandem network of packet switches

1.1 Problem Definition

Suppose that a through flow A0 passes through a tandem network consisting of H packet

switches as depicted in Fig. 1.1. Each packet switch uses a scheduling algorithm to serve

the packet arrivals. We use the term node to refer to a packet switch frequently throughout

the thesis. At each node h there are cross flows with the aggregate process represented by Ah.

Cross flows and through flow are not necessarily independent of each other. The problems

which we consider in this thesis are the following: What is the end-to-end delay and backlog

that through flow packets experience? How does this delay differ if scheduling algorithms of

some or all nodes in the path change? How are the end-to-end delay and backlog affected by

the choice of schedulers if the path length H is large?

The above problems may depend on the type of traffic arrivals and consequently on the type

of applications in the network. Given the traffic statistics or type of applications, the answers

to the above questions are needed to estimate the required bandwidth to support multiple delay

sensitive applications in a network of schedulers (e.g., for Internet service providers to know

the required bandwidth to support a certain number of customers). Moreover, the end-to-end

backlog analysis is needed for switch designs and estimating the required buffer size at each

switch in a network. Indeed, end-to-end scheduling analysis is difficult and has been mostly

studied with simplifying assumptions or considering special cases.

The delay and backlog of a traffic flow in a scheduler is well-studied in single node sce-
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narios. One of the insightful items which can be used to compare schedulers is the schedu-

lable region. Consider a set N of applications which generate traffic flows to a scheduler.

Each application has a delay constraint. ni represents the number of flows from application

i ≤ |N |. The deterministic schedulable region is a |N |-dimensional area which includes any

point (n1, . . . , n|N |) corresponding to the flow numbers for which all delay constraints of all

applications are satisfied. The larger the schedulable region, the better the scheduler to serve

delay sensitive applications. It is shown in [75] that EDF leads to the largest deterministic

schedulable region among all schedulers. If rare violations of delay constraints are allowed, a

probabilistic schedulable region is obtained which is much larger than the deterministic one.

Statistical multiplexing gain can be captured in a probabilistic schedulable region. The com-

parison of the probabilistic schedulable regions of EDF with GPS in [1], [67], with SP in [9],

[67], and with FIFO (via simulation) in [88] show that EDF outperforms other schedulers in

the probabilistic settings as well. However, the improvement achieved by the choice of sched-

uler is not considerable compared to the statistical multiplexing gain [9], [67]. Under a many

sources asymptotic regime, where the number of flows converges to infinity while the per-flow

capacity and per-flow buffer size remains fixed, it is shown in [38], [102] that scheduling is

not important and all schedulers perform the same as a SP scheduler which assigns the highest

priority to the through flow.

Although the effect of schedulers on the per-flow delay is well-studied in single queue sce-

narios, in end-to-end scenarios, there are only observations in special cases. Via simulation,

Grossglauser and Keshav [47] show that if constant bit rate (CBR) through flow traffic is mul-

tiplexed with a small (up to 30) number of CBR cross flows, FIFO and WRR perform similarly

in terms of end-to-end delay percentiles. Replacing CBR cross flows with Poisson ones, FIFO

yields much smaller end-to-end delays compared to WRR, especially at a high utilization. The

analytical end-to-end delay bounds of EDF schedulers are compared with those of GPS [1],

[91], and FIFO [87], [90]. However, the assumptions and system models are different from

what we consider in this thesis. In particular, in the above works, through flow and cross flow
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are independent. The bounds are obtained by assuming a shaper before each scheduler [91],

[87], [90], or by modifying the schedulers of all queues h = 2, . . . , H such that the traffic

distortion is controlled by the scheduler and dropping those packets which exceed a certain

threshold [1].

Although the existing observations on end-to-end delay and backlog in a network of sched-

ulers are insightful, they do not provide conclusive answers to the raised questions.

1.2 Scheduling Analysis and Traffic Characterizations

Scheduling analysis in data networks was started by the evolution of Queuing Theory [58] in

the early 20th century. The joint steady state distribution of the backlog status of all queues in a

network is shown to be the product of the state probabilities of all queues in Jackson networks

[57], BCMP networks [4], or Kelly networks [53] which all share the assumptions that external

arrivals are Poisson and that service time distributions are independent. Although Queueing

Theory has been influential in understanding the behavior of queuing systems, its traffic model

assumption is not adequate for modern data network [82]. In particular, by the emergence of

high-speed data network, applications such as voice and video are transmitted via links which

are more bursty than Poisson traffic.

There are many alternative traffic models proposed in the literature to capture the burstiness

of voice and video traffic. An ON-OFF model is used for voice traffic in [11]. Assuming a fluid

flow model, Markov-Modulated Fluid (MMF) models are used for voice [31] and video traffic

[78]. If packet sizes are not small compared to the link capacities, fluid flow assumption is not

practical. Markov-Modulated Poisson Process (MMPP) is a packet model for the analysis of

voice and video [86]. Burstiness of traffic is captured in MMF and MMPP models by using

different transmission rates for different states of the underlying Morkov chains.

Via measurement studies, Internet aggregate traffic was shown to exhibit long-range de-

pendency and self similarity [5], [24]. Long range dependent arrival processes (also referred to
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as processes with large memories) are illustrated by the coupling between arrivals in different

time intervals which decreases slowly as the distance between time intervals increases. Long

range dependency of an arrival process can be examined by computing the autocorrelation of

that process. Markov-modulated processes are short range dependent (short memory), and

Poisson traffic has zero memory. Self similar processes are referred to those which have identi-

cal distributions in any time scale. More precisely, X is a self similar process if for any a > 0,

X(t) ∼dist a−HX(at), 1 where H ∈ (0, 1) is known as the Hurst parameter. Several traffic

models have been proposed to capture the self similarity and long range dependency of the

Internet traffic. For instance, using the properties of α-stable processes, self similar processes

are characterized by envelopes in [42], [51]. In another work, Laskin et al. [65] introduce Frac-

tional Levy Motion (FLM), which is a non-Gaussian self-similar stochastic process, to model

Internet aggregate traffic. Exploiting the properties of FLM, an asymptotic lower bound for the

probability of buffer overflow is computed and shown to decrease hyperbolically as a function

of the buffer size.

To analyze non-Poisson traffic models, some traffic characterizations have been introduced.

One of these traffic characterizations is the effective bandwidth [55] which was influential in

the network performance analysis. One can also name Exponentially Bounded Burstiness [98]

and effective envelope [9] as two important traffic characterizations in the literature.

The idea of the effective bandwidth is to compute a probabilistic upper bound on the per-

flow required bandwidth similar to the concept of the dedicated per-user bandwidth in circuit

switched networks. The effective bandwidth of a flow is a scalar between the average rate and

peak rate of that flow and determines a minimum decay rate of exponentially decreasing delay

or backlog bound violation probability. Effective bandwidth is defined in various forms in the

literature. We review two of the most widely used ones in the following. For an arrival process

1X ∼dist Y for random variables X and Y if P{X ≤ x} = P{Y ≤ x} for any x.
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A and some α ≥ 0, the effective bandwidth EbA associated with A is defined by

EbA(α) = lim
t→∞

1

αt
sup
u≥0

log
(
E[eαA(u,u+t)]

)
, (1.1)

where A(s, t) is the total arrival from A in [s, t) for any non-negative s, t ≥ 0. Multiple flows

can be served in a link if the sum of their effective bandwidths does not exceed the total capacity

[54].

Backlog bounds were shown to decrease exponentially fast in the steady state for arrivals

with bounded, differentiable effective bandwidths. More precisely, if A is an arrival process to

a link with capacity C, and EbA is the corresponding effective bandwidth, then from [56], the

steady state backlog B satisfies the following asymptotically as b→∞

P (B ≥ b) ∼ Ke−α
∗b , (1.2)

where EbA(α∗) = C, f(x) ∼ g(x) means limx→∞
f(x)
g(x)

= 1 for any functions f and g, and K

is a constant. There is some work to improve the above bounds based on the type of traffic by

evaluating K and including more complex functions of b in Eq. (1.2). For instance, Elwalid

et al. [34] improve bounds for MMF models, and Guerin et al. [48] improve the bounds for

ON-OFF sources. Skelly et al. [92] use histograms of the backlog distributions to improve the

bounds for the case of video traffic.

The effective bandwidth of an aggregate of some flows is the sum of the effective band-

widths of all individual flows. However, it is shown in [18] that the effective bandwidth from

Eq. (1.1) cannot capture the multiplexing gain fully if the traffic is more bursty than Poisson

traffic. By incorporating the notion of time in effective bandwidth functions proposed by Kelly

[55] the statistical multiplexing is captured. The effective bandwidth function of process A at

any time t ≥ 0 and some α > 0 is defined as

EbA(α, t) =
1

αt
sup
u≥0

log
(
E[eαA(u,u+t)]

)
. (1.3)

There is extensive work to compute effective bandwidths (functions) for different traffic

sources. For example, the effective bandwidth is formulated for CBR traffic, memoryless
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sources, and Markov modulated sources in [56]. The effective bandwidth functions for reg-

ulated traffic, periodic sources, two-state Markov chain, and FBM sources are derived in [55].

Another traffic description is Exponentially Bounded Burstiness (EBB) traffic [98], [99].

This class of arrivals includes sources such as Markov modulated processes. Each EBB traffic

is characterized by a rate and the likelihood of exceeding that rate. The probability that the

total traffic in any time interval exceeds the rate in that interval is exponentially decreasing.

More precisely, a traffic arrival A is called an EBB traffic with parameters M,ρ, α > 0 and is

represented by A ∼ (M,ρ, α) if it satisfies the following for any σ ≥ 0 and s ≤ t:

P{A(s, t) > ρ(t− s) + σ} ≤Me−ασ . (1.4)

The exponential tail bound of EBB traffic can be used to construct a probabilistic delay and

backlog. For instance, a backlog bound is obtained by applying Reich’s equation which for-

mulates the total backlog in a link with capacity C as follows

B(t) = sup
0≤s≤t

{A(s, t)− C(t− s)} . (1.5)

Using Reich’s equation and Boole’s inequality, if A ∼ (M,ρ, α), then for any b ≥ 0

P{B(t) > b} ≤ Ke−αb ,

where K = M
1−e−α(C−ρ) .

Effective envelope [9] is another useful traffic description. A non-decreasing non-negative

function G is a local effective envelope for arrival process A with bounding function ε, if it

satisfies the following for some σ ≥ 0 and any s, t ≥ 0

P{A(s, t) > G(t− s;σ)} ≤ ε(σ) , (1.6)

where both G and ε can be functions of σ ≥ 0. In fact, this definition is more general than

EBB and effective bandwidth. Li et al. [67] formulate the relationship between the effective

bandwidth functions and the effective envelopes.
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The backlog behavior of this type of traffic characterization is determined by how fast ε in

Eq. (1.6) decays in σ. Having effective envelopes for the traffic arrivals in a link, probabilistic

delay and backlog bound can be computed using different techniques. For instance by defining

ε as a special decreasing integrable function of t − s in Eq. (1.6) or using an upper bound on

the busy period [67].

In a single queue scenario, combining the useful features of one of the above traffic char-

acterizations and the properties of each specific scheduler facilitates transient queue analysis

for a large class of traffic models such as those for voice and video and even heavy-tailed self-

similar (HTSS) traffic [70], and for a variety of schedulers, e.g., SP [9], [60], FIFO [17], [37],

EDF [88], [90], and GPS [79], [84].

1.3 Challenges of End-to-end Scheduling Analyses

As the traffic traverses the first node in a network, the traffic statistics will be distorted. This

distortion makes the scheduling analysis of the nodes inside the network (e.g., nodes h =

2, . . . , H in Fig. 1.1) more complicated since the scheduler operation is based on the traffic

arrival times. In some scenarios, the distortion is bounded. The following are two of these

cases.

1. Using traffic shapers and controllers:

In [43], [103] the concept of traffic shaper is introduced which enforces an envelope to a

traffic flow. Placing a traffic shaper before each node in a network, the original statistics

of the traffic arrival to the network can be restored. This enables a per-node delay and

backlog analysis regardless of other nodes in the network. Traffic shapers are not work-

conserving, i.e., there might be packets in the buffer waiting to be served, but the shaper

does not pass it to the scheduler. This induces a delay of size dsh to the end-to-end delay

[43]. Suppose that dh is a delay bound at node h assuming that the arrival traffic matches

the envelope that the shaper enforces. An end-to-end delay bound dnet for the through
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flow is

dnet = dsh +
H∑
h=1

dh . (1.7)

End-to-end scheduling analysis in the presence of shapers is extensively studied in the

literature, e.g., [59], [87], [104].

2. Coordinated scheduling:

This type of schedulers modifies the scheduling algorithms of the nodes inside the net-

work (not the nodes on the edges of the network) such that the original traffic distortion

can be controlled. Consider a tandem network of schedulers as in Fig. 1.1. In plain

schedulers, the packets at any node are scheduled based on their local arrival times disre-

garding their deadlines at previous nodes. A Coordinated Multi-hop Schedulers (CMS)

[68], however, determines the level of precedence of the packets at node h = 2, . . . , H by

considering their arrival times at the first node h = 1. Assume that flow i passes through

some schedulers. Suppose we have a tagged virtual arrival from flow i that arrives to the

first scheduler at time ti. CMS assigns the following deadline to the tagged arrival at its

h’th node

Di
h =

 ti + d∗1 h = 1

Di
h−1 + d∗h h > 1 ,

(1.8)

where d∗h is called the local deadline at node h. The arrivals at each node are served

in the order of earliest deadline. The packet arrival times at any node h = 2, . . . , H

inside the network is bounded by a constant shifted versions of the arrival times to the

first node h = 1. Coordinated versions of some important schedulers are proposed in the

literature, e.g., coordinated EDF (CEDF) [1], [2], FIFO (known as FIFO+) [22], and rate

schedulers [94].

In this thesis, we do not assume the use of shapers or coordinated schedulers since they do

not always appear in all network scenarios. We aim to compute a statistical end-to-end delay
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and backlog bound for a through flow when it passes through a cascade of schedulers shared

by cross flows. The conventional method to obtain an end-to-end delay bound is to compute

single node delays at each node along the end-to-end path, and add them up [64], [93], [98].

To do so, an output characterization at each node is required. In a tandem network, the through

flow arrival to node h is the through flow departure from node h − 1. This method, however,

leads to loose bounds by overestimating the traffic burstiness. Indeed, it is assumed that the

increase of traffic burstiness can happen simultaneously at all nodes. This event does not occur.

Thus, accounting for this event to compute bounds makes the resulting end-to-end delay bound

obtained by this method looser as the path length increases.

The problem of the looseness of adding per-node delay bounds has been addressed and

resolved in Network Calculus. There are books [10], [16], [50], [63], and surveys [40], [80]

which explore the concepts of Network Calculus. Network Calculus was originally proposed

as a theory for deterministic worst case analysis in [25], [26]. In Network Calculus, the ar-

rival traffic is represented by upper bounds and the available service is lower bounded by so-

called service curves. Deterministic Network Calculus employs these bounds to compute upper

bounds on the worst-case delay, backlog, and the departure traffic. The strength of the Network

Calculus lies in the fact that it turns an end-to-end performance analysis to a single node one

by computing an end-to-end equivalent network service curve.

Deterministic Network Calculus always considers the worst-case scenarios and does not

capture the statistical multiplexing gain. Thus, Deterministic Network Calculus was extended

soon to probabilistic settings in many subsequent papers such as [64] and named as the Stochas-

tic Network Calculus. This theory is very general in terms of the traffic characterizations it

assumes. Network Calculus needs upper bounds on the traffic arrivals and such bounds are

available for a wide range of traffic models including any traffic with valid effective bandwidth

functions [67], EBB descriptions [20], or effective envelopes [20], [67].

Ciucu et al. [20] provide a statistical network service curve formulation and compute an

end-to-end analysis in a tandem of SP which assigns the lowest priority to the through flow. All
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traffic flows are assumed to be EBB arrivals. The resulting end-to-end delay bound is shown

to scale by O(H logH), compared to adding per queue delay bounds which scales by O(H3).

By computing lower bounds on the end-to-end delay, it is shown in [14] that the statistical

end-to-end delay scales by Θ(H logH). The lower bound is obtained by removing the cross

flow in a FIFO tandem network with packetized through flow. Combining the properties of

moment generating functions and the concepts of the Network Calculus, Fidler [39] shows that

if the assumption of independence of through flow and cross flow is also added to the model,

then similar to the deterministic worst case scenarios, the delay bound scales linearly with path

length, i.e., dnet = O(H).

1.4 Thesis Statement and Contribution

In spite of extensive improvements in the network analysis using Network Calculus, the state-

of-the-art on the end-to-end delay and backlog analysis are not conclusive yet. The statistical

end-to-end analysis in [20] assumes that all queues are SP with the lowest priority assigned to

the through flow (BMux).

In this thesis, we advance the Stochastic Network Calculus for end-to-end delay and back-

log analysis in the presence of packet scheduling. The results of this thesis facilitate the

scheduling analysis and gain new insights on the impact of schedulers on the end-to-end delay

and backlog.

Thesis Statement: The Stochastic Network Calculus can be used to formulate end-to-end

delay and backlog bounds (tight in some regimes) in a tandem network of schedulers.

The contributions of this thesis are in two directions: theory and studying the impact of

scheduling on EBB traffic sources.

Theory: We use the Stochastic Network Calculus to advance scheduler analysis. Our results

are applied to a large class of schedulers which we define and call ∆-schedulers, which includes

some schedulers such as FIFO, SP, and EDF.
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In a single node, we formulate a tight service curve formulation for all ∆-schedulers, in the

sense that it leads to a necessary and sufficient condition for deterministic (worst-case) delay

bounds.

In a tandem network, we provide a new statistical network service curve which leads to

considerably tighter end-to-end scheduling analyses. We do not assume traffic shapers, or

scheduling algorithm modifications as in CMSs. Moreover, our analyses are applicable to the

cases where through flows and cross flows are correlated. For such scenarios, we provide a

methodology to compute statistical bounds for end-to-end delay, backlog, and departure pro-

cesses.

Studying the impact of scheduling on EBB traffic sources: We study the effect of schedulers

on the end-to-end delay for EBB traffic arrivals. Employing our new statistical network service

curve formulation, we show that the end-to-end delay bounds for different schedulers can be

extremely different on long paths. We also observe that the effect of passing through one SP

which assigns the lowest priority (BMux) in a tandem of FIFO schedulers still exists even on

long paths.

We apply our performance bounds to compute an end-to-end backlog bound in a tandem

of schedulers. We show that the end-to-end backlog might be negligible for some schedulers

if there are a few hundred flows. This implies that the input and output traffic processes to

a link are similar and traffic is not distorted considerably as it passes through a network of

schedulers. This allows us to decompose a network and analyze queues in isolation. Network

decomposition is a well-studied research area in a network of FIFO or blind multiplexors and

in an asymptotic regime when the number of flows converges to infinity. This thesis considers

the network decomposition in a non-asymptotic regime and in a network of ∆-schedulers.

Finally, we show that long-term average rate of the departure process of a traffic in a FIFO

scheduler converges to that of a tandem of blind multiplexors.
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1.5 Thesis Structure

The remainder of the thesis is structured as follows.

In Chapter 2, we review definitions and the concepts of the Deterministic and Stochastic

Network Calculus which will be used in this thesis. We start by providing the definitions of

arrival envelopes and service curves, and computations of single node performance bounds.

Then, we discuss network service curves, end-to-end delay bound computations, and pay burst

only once phenomenon. In the stochastic regime, we review arrival envelope and service curve

definitions, statistical network service curve, and probabilistic performance bound formulation.

In Chapter 3, we review methods for computing performance bounds in single node sce-

narios. Then, as a deterministic analysis, we introduce our class of schedulers. We provide

a tight service curve description for our schedulers. The tightness is proved by showing that

applying this service curve to the Network Calculus provides a necessary and sufficient con-

dition for any delay bound. As an example of our analysis, we consider leaky bucket arrivals

in the deterministic regime and Exponential Bounded Burstiness in the stochastic regime. We

compute the probabilistic scheduling regions of different scheduling algorithms and different

envelopes with numerical examples.

In Chapter 4, we first introduce existing approaches for statistical end-to-end analysis.

Then, we provide a departure characterization in a network of FIFO schedulers. The charac-

terization is in the context of long-term average rate, and in both overloaded and underloaded

regimes. We also use this result for an end-to-end departure characterization in a large tandem

network. We show that the long-term average rate in a network of FIFO schedulers converges

to that of a network of blind multiplexors as the path length increases. In the second part of

the chapter, we extend the single queue performance bound computations for ∆-schedulers to

an end-to-end scenario. This is achieved by providing a new statistical network service curve,

with which we can obtain end-to-end performance bounds. To examine our bounds, we con-

sider leaky-bucket arrivals in the deterministic setting. We compute a lower bound for the

end-to-end delay to show that our analysis leads to good end-to-end delay bounds and tight
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bounds in some cases. In the probabilistic setting, we consider EBB arrivals. We examine our

results with those obtained from the previous network service curve formulation. We also study

the effect of schedulers on the end-to-end delay and backlog bounds with numerical examples.

In Chapter 5, we review the literature on network decomposition in asymptotic regimes.

Then, we use the end-to-end backlog and output bounds from Chapter 4 to analytically examine

the viability of network decomposition in a network of schedulers as a function of scheduling

mechanisms. The numerical results indicate that network decomposition might be valid for

medium number (few hundreds) of sources for some schedulers.

Finally, in Chapter 6, we conclude the thesis and discuss future work.



Chapter 2

Network Calculus Review

In this chapter, we introduce the Network Calculus for end-to-end network analysis. We start

by exploring the analogy between Network Calculus and systems theory. Then, we describe

our model and our notations. We explore the concepts of the Deterministic Network Calculus,

the bounds, and the advantage of using Network Calculus in terms of end-to-end delay bounds.

Finally, we review the Stochastic Network Calculus, and how it can be used to compute prob-

abilistic performance bounds.

2.1 Systems Theory vs. Network Calculus

Systems theory is a multi-disciplinary approach that considers a system as a set of indepen-

dent and interacting parts. This theory provides an elegant method for end-to-end departure

characterization in a tandem of linear time invariant (LTI) systems. Suppose that the system

responses to arbitrary inputs Xi(t) and Yi(t) are, respectively, X0(t) and Y0(t). The system is

called linear if the system response to aXi(t) + bYi(t) is aX0(t) + bY0(t) for any real-value

a and b. Moreover, the system is called time-invariant if the system response to Xi(t + τ) is

X0(t+ τ) for any real-value τ . In fact, for a LTI system, it is possible to describe the operation

of the system by so-called transfer functions which are independent of the input signal and

which characterize the output signal. The equivalent transfer function of a cascade of systems

17



CHAPTER 2. NETWORK CALCULUS REVIEW 18

Figure 2.1: Systems theory vs. Network Calculus.

is simply, the convolution of all systems in the cascade. For instance, systems theory is used for

circuit design by formulating the transfer functions of the components of a complex circuit and

convolving those transfer functions to obtain the end-to-end functionality of the whole circuit.

The transfer function of a LTI system is defined as the output of the system to the Dirac

impulse function δ, where

δ(t) =

 undefined if t = 0

0 if t 6= 0 ,

and
∫∞
−∞ δ(τ)dτ = 1. The output signal D can be characterized by convolving the transfer

function, S and the input signal A, that is D(t) =
∫ +∞
−∞ A(t − τ)S(τ)dτ . A system is called

causal if S(t) = 0 for any t < 0. For a causal system the convolution is reduced to D(t) =∫ t
0
A(t− τ)S(τ)dτ .

Network Calculus shares similar characteristics as systems theory and can be viewed as a

systems theory for analyzing networks. The mapping between systems theory and Network

Calculus is illustrated in Fig. 2.1. The input signal in the systems theory is replaced by input

traffic. There exists a comparable concept to the transfer functions in the Network Calculus

called service curves which describe the available service at each network element indepen-

dent of the input. Network Calculus is based on min-plus algebra, which substitutes the basic

operands in the conventional algebra (+, ×) with (min, +). Some of the operations in the con-

ventional algebra can be directly translated into min-plus algebra using the direct substitution

of (+,×) with (min,+). For example, min-plus convolution of two positive non-decreasing

functions f and g can be obtained by the direct substitution from the convolution definition
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in the conventional algebra. That is, the min-plus convolution of two arbitrary non-negative

functions f and g is

f ∗ g(t) , inf
0≤s≤t

{
f(t− s) + g(s)

}
. (2.1)

Min-plus convolution is commutative and associative. The min-plus deconvolution of f and g

is defined by

f � g(t) , sup
s≥0

{
f(t+ s)− g(s)

}
. (2.2)

In a min-plus linear system, the output traffic is the convolution of the input traffic and the

service curve. Suppose that the system responses to arbitrary input traffic flowsXi(t) and Yi(t)

are, respectively, X0(t) and Y0(t). The system is called min-plus linear if the system response

to min{a + Xi(t), b + Yi(t)} is min{a + X0(t), b + Y0(t)} for any real-value a and b. Fidler

and Recker [41] show that Legendre transform serves as the counterpart of Fourier transform

in the system theory which provides a dual computational environment and sometimes is easier

to work with. In the following, we will elaborate on this analogy and the basics of the Network

Calculus.

2.2 Network Model

Suppose that a traffic flow enters a node. The node can be a link with fixed capacity, a packet

switch, a router, a modem, etc. We assume a left-continuous arrival process and denote the total

arrival from process A in time interval [0, t) by A(t). For the sake of simplicity of notation we

define

A(s, t) , A(t)− A(s),

for any 0 ≤ s ≤ t.

The backlog from flow A at a node at time t is defined as the total flow A which has arrived

to the node at that time and has not departed the node yet. If D represents the corresponding
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Figure 2.2: Computing delay and backlog visually.

departure process of flow A in that node, then the backlog is represented by

B(t) = A(t)−D(t) , (2.3)

for any t ≥ 0. The backlog at time t is the vertical difference between arrival A and departure

D processes at that time as shown in Fig. 2.2. In addition, the delay at time t is defined by

W (t) = inf{s ≥ 0 | A(t) ≤ D(t+ s)} . (2.4)

The delay is the horizontal difference between the arrival A and departure D processes at that

time as shown in Fig. 2.2. Eqs. (2.3) and (2.4) are used as the definitions of backlog and delay

in this thesis. Network Calculus computes upper bounds for delay and backlog. The bounds

are tight for some scenarios.

2.3 Deterministic Network Calculus

The Network Calculus was originally developed as a theory for a worst-case network per-

formance analysis. The Deterministic Network Calculus formulates end-to-end deterministic

delay and backlog bounds. These bounds can never be violated in any scenario including the

worst-case scenario which leads to the maximum end-to-end delay or backlog.
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2.3.1 Deterministic arrival envelopes

The Deterministic Network Calculus characterizes each arrival by an envelope. These en-

velopes are defined as follows.

Definition 2.1 (Deterministic arrival envelope). A deterministic arrival envelope E for an ar-

rival process A, must satisfy the following for any t ≥ 0

∀τ ≤ t : A(τ, t) ≤ E(t− τ) . (2.5)

One of the most frequently used deterministic arrival envelopes is the multi-level leaky

bucket envelope. An arrival process is said to be bounded by a K-level leaky bucket with

parameters (σj, ρj) for any j = 1, . . . , K if

E(t) = min
1≤j≤K

{σj + ρjt}It>0

is a deterministic envelope for the arrival process satisfying Eq. (2.5), and I is the indicator

function defined as

Iexpr =

 1 if expr is true

0 if expr is false ,
(2.6)

where expr is a logical expression, e.g., an inequality. A special case of this envelope is

the single leaky bucket envelope for which K = 1. A process A is a leaky bucket arrival

with parameters (ρ, σ). We write A ∼ (ρ, σ), if E(t) = (σ + ρt)It>0 is a deterministic

arrival envelope for A. So called shapers are sometimes used to enforce a deterministic arrival

envelope to a traffic flow and such a flow is referred to as regulated traffic in the literature.

2.3.2 Deterministic service curves

For the purpose of network performance analysis, it is desirable to describe the operation of

the network elements independent of the arrival and characterize the output process as a result.

Service curves [85] are analogous concepts to the transfer functions in the systems theory and

are defined as follows.
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Definition 2.2 (Deterministic service curve). Assume that A is the arrival process to a node

and D is the corresponding departure process. A non-decreasing non-negative function S is a

deterministic service curve at that node if

∀t ≥ 0 : A ∗ S(t) ≤ D(t) , (2.7)

where ‘∗’ in the above equation is the min-plus convolution. Moreover, S is an exact service

curve if Eq. (2.7) holds with equality.

Similar to the transfer functions in the systems theory, the exact service curves in the Net-

work Calculus can be considered as the departure process of the δ0 function, where

δa(t) =

 0 if t ≤ a

∞ if t > a ,
(2.8)

for any real-value a. This function δa is known as the shift function in the Network Calculus

since for any non-negative function f and any t ≥ 0

f ∗ δa(t) = f(t− a) . (2.9)

Another useful property of the δ function is that

δb ∗ δa(t) = δa+b(t) , (2.10)

for any value of a and b. Now, let us review some of the most widely used service curves in the

literature.

• Aggregate flow in a general work-conserving scheduler: An example of an exact service

curve is the service curve for a work-conserving scheduler with total capacity C. If A is the

aggregate of the arrival process to that scheduler, then for any fixed time t, there exists a time

s0 ≤ t which is the last time before t that the backlog in the system is zero. That is

s0 = sup{s ≤ t | A(s) = D(s)} , (2.11)
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Thus, A(s0) = D(s0) and since the link is work conserving it is serving arrivals with rate C in

[s0, t)

D(t) = A(s0) + C(t− s0) .

The above equation proves that S(t) = Ct is a service curve. However, to prove that this is

also an exact service curve, we need to show that

inf
0≤s≤t

{A(s) + C(t− s)} = A(s0) + C(t− s0) .

Contradiction can be employed to prove the correctness of the above equality. Suppose that the

above infimum happens at s1 6= s0. Then,

A(s1) + C(t− s1) < A(s0) + C(t− s0) ,

or equivalently  A(s0, s1) < C(s1 − s0) if s1 > s0

A(s1, s0) > C(s0 − s1) if s1 < s0 .
(2.12)

Both inequalities in the above equation contradict the definition of s0 in Eq. (2.11), and that

s1 6= s0. The inequality in the first line implies that if backlog is zero at s0 it is also zero at

s1. The second line inequality implies that the system backlog cannot be zero at time s0 if the

system is causal. Thus, the proof is complete and by Def. 2.2, S(t) = Ct is an exact service

curve for a work conserving link with total capacity C.

• Rate-latency service curves [30]: Another widely used model for service curves is rate-

latency service curve. This service curve corresponds to the combination of a work-conserving

link with a fixed capacity and a delay element. Assume that C is the capacity of the link and d

is the value of the delay. Then, the rate-latency service curve at time t for such a system in the

sense of Eq. (2.7) is

S(t) = C[t− d]+,
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Figure 2.3: A single node with two traffic arrivals.

where for any real-valued x

[x]+ , max{0, x} .

• Leftover service curves: Another service curve we review here is the service curve allocated

to a through flow in a link with fixed capacity and shared with cross flows as in Fig. 2.3. It is

assumed that all cross flows have higher precedence than the through flow. Thus, the through

flow arrival are served only if there is a fraction of the total capacity unused by cross flows. The

corresponding service curve is called leftover service curve. The following theorem formulates

a leftover service curve.

Theorem 2.1 (Leftover service curve [10]). Suppose that an arrival process A0 enters a work-

conserving link with total capacity C. There is another flow Ac using that node as in Fig. 2.3.

If Ec is the deterministic arrival envelope for Ac in the sense of Eq. (2.5), then, a service curve

available to A0 is

S(t) = [Ct− Ec(t)]+ . (2.13)

Here we sketch the proof. Assume thatD0 andDc, respectively represent the corresponding

departures of A0 and Ac. Fix t ≥ 0 and define s0 to be the first time before or at time t such

that the system backlog is zero (Eq. (2.11)). This implies that

D0(t) ≥ A0(s0) . (2.14)
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Then, since the link is work conserving, we have

D0(s0, t) +Dc(s0, t) = C(t− s0) .

Thus,

D0(t) = D0(s0) + C(t− s0)−Dc(s0, t)

= A(s0) + C(t− s0)−Dc(s0, t)

≥ A(s0) + [C(t− s0)− Ec(t− s0)] , (2.15)

where the definition of s0 from Eq. (2.11) is used in the second line. The last line uses the

assumption thatEc is a deterministic arrival envelope for the cross flow. Combining Eqs. (2.14)

and (2.15) completes the proof.

2.3.3 Worst-case performance bounds

The Deterministic Network Calculus provides upper bounds on the worst-case backlog and

delay of an arrival process to a node if an arrival envelope and a service curve at that node is

known. The bounds are presented in the following theorem.

Theorem 2.2 (Deterministic performance bounds [10]). Assume that an arrival process A

with a deterministic arrival envelope E satisfying Eq. (2.5) enters a node with a deterministic

service curve S, satisfying Eq. (2.7). Suppose that D is the departure process of A. Define the

backlog and delay respectively by Eqs. (2.3) and (2.4), then the following upper bounds exists:

1. Output burstiness bound: The departure at any time interval [s, t) is lower bounded by

D(s, t) ≥ E � S(t− s) . (2.16)

2. Backlog bound: The backlog at any time t is upper bounded by

B(t) ≤ E � S(0) . (2.17)
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Figure 2.4: Network service curve definition.

3. Delay bound: The delay at any time t is bounded by

W (t) ≤ inf{s | ∀t ≥ 0 : E(t) ≤ S(t+ s)} . (2.18)

These bounds are proved to be tight if E is a sub-additive function, and E(0) = S(0) = 0

(see Le Boudec and Thiran [10], pp. 27).

The proof of the bounds in Theorem 2.2 are similar. We sketch the proof of the output

burstiness as an example. The total departure in [s, t) can be expressed as

D(s, t) = D(t)−D(s) ≤ A(t)− A ∗ S(s)

= sup
0≤u≤s

{A(t)− A(u)− S(s− u)}

≤ sup
0≤u≤s

{E(t− u)− S(s− u)}

≤ sup
w≥0
{E(t− s+ w)− S(w)}

= E � S(t− s) ,

where the first lines uses the definition of the deterministic service curve in Eq. (2.7) and that

A(t) ≥ D(t) for any t ≥ 0. The second line applies the definition of min-plus convolution.

The third line uses the assumption that E is a deterministic arrival envelope for A and applies

the definition from Eq. (2.5). In the next line, a new variable has been introduced w = s − u.

Finally, the last line uses the definition of the min-plus deconvolution from Eq. (2.2).
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2.3.4 Convolution theorem

The elegance of the Network Calculus analysis lies in extending a single node analysis to a

multi-node analysis. This is an essential analogy between systems theory and Network Cal-

culus. In systems theory, an equivalent transfer function of multiple systems in tandem is the

convolution of the transfer functions of all systems along the path. Similarly, in the Network

Calculus, an equivalent end-to-end service curve of a cascade of nodes is the min-plus con-

volution of the service curves of all nodes along the path. This is expressed in the following

theorem.

Theorem 2.3 (Deterministic network service curve). Consider the scenario depicted in Fig. 2.4.

A through flow traverses a cascade of H nodes. Represent the arrival and departure at node

h, respectively, by Ah and Dh. Denote the arrival traffic to the first node by Anet and the de-

partures from node H by Dnet. The traffic arrival at node h is the departures from the previous

node, i.e., Ah = Dh−1. At each node h, there exists a service curve function Sh satisfying

Eq. (2.7). Then, the convolution of the service curves of all nodes along the path is a network

service curve, that is

Dnet(t) ≥ Anet ∗ Snet(t) ,

where

Snet(t) = S1 ∗ S2 ∗ . . . ∗ SH(t) ,

and ∗ is the min-plus convolution defined in Eq. (2.1).

The proof of the above theorem iterates the definition of the deterministic service curve
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Figure 2.5: A tandem network of schedulers with cross flow.

from Eq. (2.7) as follows:

Dnet(t) ≥ AH ∗ SH(t)

≥ (AH−1 ∗ SH−1) ∗ SH(t)

= AH−1 ∗ (SH−1 ∗ SH)(t)

...

≥ Anet ∗ (S1 ∗ S2 ∗ . . . ∗ SH)(t) ,

where the first line uses the definition of the service curve at node H . The second line uses

AH = DH−1 and replaces DH−1 with the lower bound obtained by applying the service curve

definition at node H − 1. The third link uses the associativity of the min-plus convolution.

Iterating this method leads to the last line and proves the theorem.

2.3.5 Pay bursts only once

Using the concepts we have reviewed so far, an end-to-end delay bound for the through flow in

the scenario illustrated in Fig. 2.5 can be obtained in two different fashions. One way is to ob-

tain an arrival envelope by Theorem 2.2 at any node, and then apply that in Theorem 2.2 once

more to attain per-node delay bounds. Adding per-node delay bounds along the path yields an

end-to-end delay bound. The other method is to compute a network service curve and then ap-

ply the network service curve along with a network arrival envelope to Theorem 2.2. The latter

method is the Network Calculus approach and is proved to be a tighter computation. Indeed,
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the delay induced to a traffic arrival at a certain node consists of two parts: The delay caused

by the burstiness of the traffic itself and the delay added as a consequence of non-availability

of service at the node. Adding per-node delay bounds overestimates the traffic burstiness delay

by considering it at all nodes, while the network service curve counts it only one. This phe-

nomenon is known as pay burst only once and makes Network Calculus a promising method.

In the following we discuss this phenomenon in detail.

Consider the scenario depicted in Fig. 2.5, where a through flow traverses a path of H

nodes. Assume that E0(t) = r0t+ σ0 is a deterministic arrival envelope for a through flow for

some r0 and σ0. The total capacity at each node h is Ch, and there exists a cross flow Ah at that

node as well.

To simplify notation, consider a homogeneous network, where all nodes are identical.

Then, we can replace the subscript h with c for all h = 1, . . . , H . Suppose that the cross

flows at each node have the same deterministic arrival envelope Ec(t) = rct + σc. Replacing

this deterministic envelope in the leftover service curve in Eq. (2.13), a service curve for the

through flow at any node 1 ≤ h ≤ H is given by

S(t) = [(C − rc)t− σc]+ . (2.19)

The following are two methods to compute an end-to-end delay bound for the through flow in

the above scenario.

• Using network service curve: In this method, per-node service curves from Eq. (2.19) are

applied to Theorem 2.3 to compute a network service curve. First, the per-node service curve

in Eq. (2.19) is reformulated by incorporating the shift functions from Eq. (2.8)

Sh(t) = [(C − rc)(t−
σc

C − rc
)]+It> σc

C−rc

= [(C − rc)t]It>0 ∗ δ σc
C−rc

(t) . (2.20)
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Then,

Snet(t) = S1 ∗ S2 ∗ . . . ∗ SH(t)

=
H⊗
h=1

[
[(C − rc)t]It>0 ∗ δ σc

C−rc
](t)

= [(C − rc)t]It>0 ∗ δ Hσc
C−rc

(t)

= [(C − rc)t−Hσc]It> Hσc
C−rc

= [(C − rc)t−Hσc]+ . (2.21)

where
⊗H

h=1 fh = f1 ∗ f2 ∗ . . . ∗ fH for any non-negative functions fh. Eq. (2.20) is used

to obtain the second line. The third line uses the fact that the convolution of rate functions is

the minimum rate, and one of the properties of the δ function from Eq. (2.10). The next line

rearranges terms using the definition of the δ function and the indicator function.

An end-to-end delay bound can be obtained by applying Eq. (2.21) into Theorem 2.2. That

is, d ≥ 0 is a deterministic delay bound for the scenario depicted in Fig. 2.5 if it is computed

as

d = inf{τ | ∀t ≥ 0 : Snet(t+ τ) ≥ r0t+ σ0} .

By replacing the value of Snet(t) from Eq. (2.21), and if the system is stable, i.e., r0 + rc ≤ C,

we have

d =
σ0 +Hσc
C − rc

. (2.22)

This shows that the delay bound obtained by using the network service curve scales linearly

(with O(H)) with the number of nodes H on the end-to-end path.

• Adding per-node delay bounds: Another method to compute the end-to-end delay bound

in the above scenario is by computing per-node delay bounds along the path and sum them up.

This can be achieved by computing an upper bound for the departure process at node h which

is the arrival process to node h+ 1. Starting from the first node, an output envelope computed
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by Theorem 2.2 is as follows:

D1(s, t) ≤ E0 � S1(t− s)

= sup
u≥0

{
r0(t− s+ u) + σ0 − [(C − rc)u− σc]+

}
= r0(t− s) + σ0 + r0

σc
C − rc

,

where the last line uses the stability assumption r0 +rc ≤ C. Iterating the above computations,

the departures at node h is upper bounded by

Dh(s, t) ≤ r0(t− s) + σ0 + hr0
σc

C − rc
. (2.23)

The output envelope at node h can be considered as the input envelope to node h + 1 in a

tandem network. Thus, applying Dh−1 from Eq. (2.23) as an arrival envelope at node h in

Theorem 2.2, a delay bound for the through flow at node h (dh) is computed as

dh = inf
{
τ | ∀t > 0 : Sh(t+ τ) ≥ r0t+ σ0 + (h− 1)r0

σc
C − rc

}
(2.24)

= inf
{
τ ≥ σc

C − rc
| ∀t > 0 : (C − rc)(t+ τ − σc

C − rc
)

≥ r0t+ σ0 + (h− 1)r0
σc

C − rc

}
(2.25)

=
σ0 + σc
C − rc

+
(h− 1)r0σc
(C − rc)2

, (2.26)

where in the second line, we inserted the service curve from Eq. (2.20). The last line enforces

the inequality inside the bracket in Eq. (2.24) at t = 0. Enforcing the inequality at t = 0

together with the stability condition r0 + rc ≤ C provides a sufficient condition for Eq. (2.24).

Thus, an end-to-end delay bound would be

H∑
h=1

dh = H
σ0 + σc
C − rc

+
H(H − 1)r0σc

2(C − rc)2
. (2.27)

The above equation shows that adding per-node delay bound scales quadratically with the

number of nodes in the path O(H2), and thus is not as tight as the delay bound computed by

using a network service curve.
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Figure 2.6: Multiplexing N periodic ON-OFF sources, worst case (right hand side) vs. a general case

(left hand side).

2.4 Stochastic Network Calculus

The Deterministic Network Calculus is an appropriate theory if worst case scenario matters.

However, worst-case scenarios may occur very rarely. As an example, consider an aggregate of

N periodic ON-OFF sources as illustrated in Fig. 2.6. Each flow transmits with rate X in On

period and is idle in the off period. Let us represent the instantaneous rate of flow i, 1 ≤ i ≤ N ,

at time t by ai(t). The rate of the aggregate of N flows is NX if all flows are synchronous

(which is the worst-case) and it is much smaller if they have independent shifts in time. More

precisely, as also illustrated in Fig. 2.6, the maximum aggregate rate in the worst-case scenario

is NX while it can be much smaller in practice specially if N is a large number. Accounting

for this difference leads to a larger utilization and the corresponding gain is referred to as

statistical multiplexing gain. The Stochastic Network Calculus is an extension of the Network

Calculus which accounts for the statistical multiplexing gain by replacing deterministic bounds

with statistical ones.

Suppose that AN is an aggregate of N independent identically distributed flows enter a link

with total capacity C. By Reich’s equation, the backlog tail bound can be formulated as the
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following

P{B(t) > σ} = P
{

sup
0≤s≤t

(
AN(s, t)− C(t− s)

)
> σ

}
. (2.28)

There are two challenges in evaluating the expression on the right hand side. First, this is the

place where the multiplexing gain can be captured by exploiting the independence of different

flows. This has been accomplished using different methods in the literature such as Central

Limit Theorem [9], [60], [61], Chernoff bound [1], [9], [67] and Hoeffding bound [95]. In this

thesis, we apply the Chernoff bound which states that for a random variable X and a constant

k, we have

P{X > k} ≤ E[eαX ]

eαk
, (2.29)

for any α ≥ 0. We choose Chernoff bound because it provides an upper bound rather than an

approximation or asymptotic bounds. Moreover, it uses moment generating functions of the

sources and there are many traffic sources for which the exact or upper bounds on the moment

generating function are known (even includes heavy-tailed traffic [70]).

The second challenge for evaluating the right hand side of Eq. (2.28) is to compare the

probability of a supremum of a set. There are various methods to resolve this difficulty in the

literature [62].

1- Using an approximation: For the case of Gaussian arrivals, Knightly and Shroff [62] prove

that

P
{

sup
0≤s≤t

(
AN(s, t)− C(t− s)

)
> σ

}
≈ sup

0≤s≤t
P
{(
AN(s, t)− C(t− s)

)
> σ

}
. (2.30)

The right hand side of the above inequality holds as a lower bound in general. Since this lower

bound simplifies the analysis, it is used in the literature for computing queue tail bounds, e.g.,

[9], [59], [60], [61].

2- Using Martingale bounds: In this method, super martingales and Doobe’s inequality are

used to compute an upper bound on Eq. (2.28) ([16], pp. 339), [19], [21]. Construct the process

Z(s) = AN(t− s, t)− Cs . (2.31)
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For the filtration of σ-algebra

Fs = σ{AN(t− s, t)} (2.32)

and independent increment traffic sources, eαZ(s) is a supermartingale for any α > 0 [21].

Applying Doobe’s inequality to Eq. (2.30) yields

P
{

sup
0≤s≤t

(
AN(t− s, t)− Cs

)
> σ

}
= P

{
sup

0≤s≤t
eαZ(s) > eασ

}
≤ E[eαZ(0)]e−ασ

= e−ασ .

3- Using the union bound: This method provides a valid upper bound for the queue tail

probability by applying the union bound as the following:

P
{

max
0≤s≤t

(
AN(s, t)− C(t− s)

)
> σ

}
≤

t∑
s=0

P
{(
AN(s, t)− C(t− s)

)
> σ

}
.

This method has been used extensively in the literature, e.g., [9], [98], [99].

In the rest of this chapter, we focus on the state-of-the-art in the Stochastic Network Calcu-

lus.

2.4.1 Statistical arrival envelopes

The deterministic arrival envelope defined in Eq. (2.5) cannot be violated at any s and t, where

0 ≤ s ≤ t. The arrival envelope extensions in the probabilistic regime is relaxed such that

they allow a small violation probability. Statistical arrival envelopes have many variations in

the literature (see [80]). Bounds are defined either as a sequence of random variables [64],

[97], [104], or by deterministic functions [9], [20]. The former bounds are stochastic processes

which are stochastically larger than the corresponding traffic processes at any time interval.

Statistical arrival envelopes as deterministic functions have various definitions in the liter-

ature [9], [50]. They can be divided into two groups. Some envelopes bound the total arrivals
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in any time interval of fixed size (which we refer to as local effective envelopes [9]). The other

group allow the interval to vary such that the past history or arrivals are also taken care of

(which we refer to as statistical sample path envelopes). These bounds are introduced in the

literature under different names. There are effective envelope formulations for different traf-

fic sources in the literature; regulated traffic [9], MPEG video traces [69], Markov-Modulated

ON-OFF sources and FBM in [67]. ForN independent regulated traffic, the following local ef-

fective envelope is formulated in [9] using an upper bound on the moment generating functions

and central limit theorem

G(t;σ) = Nρt+ zt
√
N
√
RV (t) , (2.33)

where z =
√
| log(2πε(σ))|, ρ = limt→∞

A(t)
t

, and RV (t) = V ar
(
A(t)
t

)
. This bound has also

been obtained in [61] using the concept of rate variance envelopes introduced in [60].

In another work, Li et al. [67] extracted a local effective envelope from the effective band-

width function. If A is an arrival process with effective bandwidth function EbA(α, t) in the

sense of Eq. (1.3), then the following is a local effective envelope for A

G(t;σ) = inf
α>0

{
tαA(α, t)− log ε(σ)

α

}
. (2.34)

Another important category of envelopes which falls into the definition of the local effective

envelopes are Stochastically Bounded Burstiness (SBB) traffic arrivals [93]. SBB traffic model

is a more general class of EBB traffic (Eq. (1.4)). A traffic arrival A is SBB if it satisfies the

following for any σ ≥ 0 and s ≤ t

P{A(s, t) > ρ(t− s) + σ} ≤ ε(σ) , (2.35)

where ε is an n-fold integrable function, meaning that∫ ∫
. . .︸ ︷︷ ︸

n

ε(w)dw <∞ .

If ε(σ) in Eq. (2.35) is equal to Me−ασ for some M and α, then we will have an EBB traffic

with parameters (M,ρ, α). SBB models a large class of traffic sources including Markov-

Modulated ON-OFF sources and even Gaussian Fractional Brownian Motion (FBM) but it



CHAPTER 2. NETWORK CALCULUS REVIEW 36

excludes some, e.g., heavy tailed traffic. EBB is a subset of SBB and excludes some SBB

traffic sources such as FBM. However, it is yet a large group encompasses important arrivals

such as Markov-Modulated ON-OFF sources. In the following we review some examples of

EBB sources.

2.4.2 Examples of EBB sources

In the following we introduce two types of EBB sources.

• Traffic sources with a special effective bandwidth:

There exists an EBB characterization for a traffic flow A, if its effective bandwidth from

Eq. (1.1) satisfies the following:

EbA(α) = sup
t≥0

1

αt
sup
u≥0

log(E[eαA(u,u+t)]) . (2.36)

For such a case, there exists an EBB characterization for that flow for any α ≥ 0. This can be

verified by employing the Chernoff Bound as follows:

P{A(s, t) > EbA(α)(t− s) + σ} ≤ E[eαA(s,t)]

eα(EbA(α)(t−s)+σ)

≤ eα(EbA(α)(t−s))

eα(EbA(α)(t−s)+σ)

= e−ασ , (2.37)

where in the second line, we use Eq. (2.36). Comparing Eq. (2.37) with the definition of an

EBB arrival in Eq. (1.4), shows that A is an EBB arrival with parameters (1, Eb(α), α). There

are important traffic sources which fit into this group, e.g., Poisson process and many Markov-

Modulated processes.
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• Regulated traffic:

As explained in Sec. 2.3.1, any traffic which passes through a shaper is called regulated

traffic. One of the most widely used regulated traffic flows are peak-rate constraint leaky bucket

regulated traffic flows which have the following deterministic arrival envelope for some P , ρ,

and σ ≥ 0,

E(t) = min{Pt, ρt+ σ} . (2.38)

Assume that there is an aggregate of N independent peak-rate constraint leaky bucket flows.

A local effective envelope for the aggregate flow is computed in [9] as follows. For each flow

an upper bound for the moment generating function is computed. These bounds are applied to

the Chernoff Bound to yield the following for any α ≥ 0

P{A(s, t) ≥ Nx} ≤ e−αNx
(

1 +
ρ(t− s)
E(t− s)

(
eαE(t−s) − 1

))N
. (2.39)

From Eq. (1.6), the above equation implies a local effective envelope of the form

G(t;x) = N min{x,E(t)}; ε(x) = inf
α≥0

{
e−αNx

(
1 +

ρt

E(t)

(
eαE(t) − 1

))N}
. (2.40)

If the violation probability is fixed to ε∗, then x is the minimum value for which ε(x) ≤ ε∗. For

a fixed x, the optimum value of α in the above equation is computed in [9], and it is chosen so

that

eαE(t) =
x

ρt

E(t)− ρt
E(t)− x

.

We can formulate another local effective envelope for regulated traffic by computing the

corresponding EBB characteristics. Choose x in Eq. (2.39) to be x = ρ′(t − s) + σ
N

, for any

σ ≥ 0, and fixed ρ′, α such that ρ < ρ′ < P and α ≥ 0. Then, we have

P (A(s, t) > Nρ′(t− s) + σ) ≤ e−ασ
[
e−αρ

′(t−s)
(

1 +
ρ(t− s)
E(t− s)

(eαE(t−s) − 1)
)]N

. (2.41)

Compare the above equation with the EBB definition in Eq. (1.4). If there exists a constant M

such that

∀t ≥ 0 :

[
e−αρ

′t
(

1 +
ρt

E(t)
(eαE(t) − 1)

)]N
≤M , (2.42)
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then from Eqs. (2.41) and (2.42), (M,Nρ′, α) is an EBB characterization for the aggregate

flow. Note that since limt→∞
E(t)
t

= ρ < ρ′, M in the above inequality is bounded in t. Hence,

we choose M to be

M = sup
t≥0

[
e−αρ

′t
(

1 +
ρt

E(t)
(eαE(t) − 1)

)]N
. (2.43)

If we fix ρ′ and α such that ρ < ρ′ < P and α ≥ 0, and compute M from Eq. (2.43), then we

can construct another local effective envelope for a peak rate constraint leaky bucket for any

σ ≥ 0 as follows

G(t;σ) = Nρ′t+ σ; ε(σ) = Me−ασ . (2.44)

The above envelope is valid for any choice of ρ′ and α satisfying their constraints. Thus, we can

obtain a new local effective envelope by varying ρ′ and α. If G1, G2, . . . , Gk are local effective

envelopes for the same traffic process with bounding functions ε1, ε2, . . . , εk, then, at any time

t, min1≤i≤kGi(t) is also a local effective envelope for that process with bounding function

ε = max1≤i≤k εi. Using this fact, we can improve the local effective bound in Eq. (2.44) as

follows:

G(t;σ) = min
ρ′,α
{Nρ′t+ σ}; ε(σ) = max

ρ′,α
{Me−ασ} . (2.45)

In the rest of this section, we study some technical issues on computing the above envelopes.

First, we decrease the time interval we need to consider to compute M from Eq. (2.43). To

find the time index in which the supremum in Eq. (2.43) is happening at, we can disregard the

powerN . We aim to find tmax which maximizes the expression inside the bracket in Eq. (2.43).

Using the above simplification, tmax can also be obtained from the following:

tmax = arg sup
t≥0

{(
1− ρt

E(t)

)
e−αρ

′t +
ρt

E(t)
eα(E(t)−ρ′t)

}
. (2.46)

We search for the supremum index separately for two subintervals.

Case 1 (t ≤ σ
P−ρ): In this case, E(t) = Pt. Thus, the expression inside the bracket in

Eq. (2.46) is simplified to

X := sup
t≥0

{(
1− ρ

P

)
e−αρ

′t +
ρ

P
eα(P−ρ′)t

}
. (2.47)
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Taking the second derivative of X from the above equation, we have

d2X

dt2
= α2ρ′2(1− ρ

P
)e−αρ

′t + α2(P − ρ′)2eα(P−ρ′)t ,

which is always positive (since ρ′, ρ < P ), showing that X is a convex function. Therefore,

the supremum value in [0, σ
P−ρ ] can occur either at t = 0, or t = σ

P−ρ .

Case 2 (t ≥ σ
P−ρ): In this range, E(t) = σ + ρt. Thus, the expression in the bracket in

Eq. (2.46) is simplified to

Y := sup
t≥0

{( σ

ρt+ σ

)
e−αρ

′t +
( ρt

ρt+ σ

)
eα((ρ−ρ′)t+σ)

}
. (2.48)

Taking the first derivative of the above expression, we have

dY

dt
=

1

(ρt+ σ)2

[(
−σρ− αρ′σ(ρt+ σ)

)
e−αρ

′t

+
(
σρ− αρt(ρ′ − ρ)(ρt+ σ)

)
eα((ρ−ρ′)t+σ)

]
. (2.49)

The first term in the derivative is always negative. The second term is decreasing in t. Define

tmax to be the time when the second term turns negative, which is

tub = inf{u | σρ− αρu(ρ′ − ρ)(ρu+ σ) < 0}

=
ασ(ρ′ − ρ) +

√
(ασ(ρ′ − ρ))2 + 4αρσ(ρ′ − ρ)

2αρ(ρ′ − ρ)
,

where in the second line we took the maximum root of the inequality in the first line. Then, it

is guaranteed that for any t > tub the derivative dY
dt

is negative. Combining the above results

in Case 1 and Case 2, with Eq. (2.46), we have that tmax = 0 (for which M = 1), or tmax ∈

[ σ
P−ρ , tub]. Hence,

M = max
{

1, sup
σ

P−ρ≤t≤tub

{
e−Nαρ

′t

(
1 +

ρt

E(t)

(
eαE(t) − 1

))N}}
. (2.50)

The second technical issue on the numerical computations is how to improve the local ef-

fective envelope we can get for regulated traffic by EBB characterization with a fixed violation

probability ε∗. We use the following algorithm to achieve this goal.
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Algorithm 1 Computing local effective envelopes for regulate traffic flows using EBB charac-

teristics
Input N

ε∗ ← 10−6

for t = 1 to 200 do

for α = 10−10 : 0.01 : 10 do

for all ρ′ such that ρ < ρ′ < P do

Compute M(ρ′, α) from Eq. (2.50)

Compute σ by setting ε(σ) = ε∗ from Eq. (2.44)

Compute G(t;α, ρ′) = ρ′t+ σ
N

.

end for

end for

return G(t) = minα,γ G(t;α, ρ′).

end for

Table 2.1: Regulated traffic parameters

P (Mbps) ρ (Mbps) σ (Kb)

Type 1 1.5 0.15 95.4

Type 2 6 0.15 10.345
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Figure 2.7: Two different arrival envelopes for N = 100 regulated flows with parameters as shown in

Table 2.1, and ε∗ = 10−6.

It is not clear whether characterizing an arrival process by two parameters (burstiness and

long-term average rate) as EBB is an accurate characterization of that arrival. For instance,

although regulated traffic is categorized as an EBB process as shown above, there is some

inaccuracy induced by characterizing a regulated traffic with EBB parameters. We examine it

with numerical examples.

Suppose there are two types of peak-rate constraint leaky bucket traffic flows with parame-

ters as in Table 2.1 which are also used in [9]. We want to compute a local effective envelope

for an aggregate of N independent flows with violation probability ε∗ = 10−6. For each type

of traffic, we compare the local effective envelope from Eq. (2.40) with the corresponding en-

velope obtained by EBB characterization described above. We plot the normalized per-flow

envelopes, G(t;ε∗)
N

,which makes the multiplexing gain analysis easier. However, Figs. 2.7a

and 2.7b show that this is not the case at least for peak-rate constraint leaky buckets, and

the resulting envelope from EBB is very close to that of Eq. (2.40), especially if the leaky-

bucket burstiness is not large (as in Type 2 flow). The local effective envelopes are plotted

for N = 100, 1000. As shown in the plots, the envelopes capture the multiplexing gain by

comparing the local effective envelope, and EBB envelopes with the deterministic envelope
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(which cannot capture the multiplexing gain and serves as an upper bound-bench mark), and

the average rate (which assumes a constant bit rate arrival with the long-term average rate.

2.4.3 Sample path arrival envelopes

To formulate probabilistic performance bounds a more stringent envelope which bounds the

whole past history of arrivals is required. Such an envelope is called statistical sample path

envelope and defined in the following.

Definition 2.3 (Statistical sample path arrival envelope). For an arrival process A, a non-

decreasing non-negative function G is a statistical arrival envelope for A if for any t > 0 it

satisfies

P
{

sup
s≤t

(
A(s, t)− G(t− s;σ)

)
> 0
}
≤ ε(σ) , (2.51)

for any σ ≥ 0.

A special case of this definition is gSBB [100] which extends the concept of SBB to statis-

tical sample path envelops. A process A is gSBB with parameters ρ and bounding function ε

if it satisfies the following for any σ ≥ 0 and any time t ≥ 0

P{ sup
0≤s≤t

(A(s, t)− ρ(t− s)) > σ} < ε(σ) , (2.52)

where ε is a non-increasing function on [0,∞), such that 1− ε is a distribution function. This

restricts the bounding function to be always smaller than 1. gSBB includes some traffic sources

which are not SBB including non-Gaussian self-similar processes such as α-stable sources.

While gSBB is inherently a statistical sample path envelope, statistical sample path en-

velopes can be extracted from local effective envelopes using different techniques. We review

the methods in the following

1. EBB assumption [20]: If A is EBB with parameters (M,ρ, α) then, for any γ > 0, there

is a statistical sample path envelope satisfying Eq. (2.51) given by

G(t;σ) = (ρ+ γ)t+ σ, ε(σ) = Me
(

1 +
ρ

γ

)
e−ασ . (2.53)
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This is proved by discretizing time and applying Boole’s inequality for the violation

probabilities at each time unit. Here we sketch the proof. Let us assume that the time

unit is τ0. Then, for any 0 ≤ s ≤ t, there exists a unique i ≥ 1 satisfying

(i− 1)τ0 ≤ t− s < iτ0 . (2.54)

Since A and G are non-decreasing functions of time, the following holds

A(s, t)− G(t− s;σ) ≤ A(t− iτ0, t)− G((i− 1)τ0;σ) . (2.55)

The proof also uses an inequality which is based on the Riemann integral and holds for

any a, b ≥ 0, and non-increasing function ε

∞∑
j=1

ε(a+ bj) ≤ 1

b

∫ ∞
a

ε(u)du . (2.56)

Starting from sample path arrival envelope definition, we have

P
{

sup
0≤s≤t

{A(s, t)− G(t− s;σ)} > 0
}

(2.57)

≤ P
{

max
1≤j≤d t−s

τ0
e
{A(t− jτ0, t)− G((j − 1)τ0;σ)} > 0

}
(2.58)

≤ P{ max
1≤j≤d t−s

τ0
e
{A(t− jτ0, t)− (ρ+ γ)(j − 1)τ0 − σ} > 0} (2.59)

≤
∑

1≤j≤d t−s
τ0
e

P{A(t− jτ0, t) > (ρ+ γ)(j − 1)τ0 + σ} (2.60)

≤
∞∑
j=1

ε(jγτ0 + σ − (ρ+ γ)τ0) (2.61)

≤ M

αγτ0

e−α(σ−(ρ+γ)τ0) , (2.62)

where the second line uses Eq. (2.55). The third line replaces the assumed value of the

statistical arrival envelope from Eq. (2.53). Eq. (2.60) applies Boole’s inequality, and

Eq. (2.61) extends the boundaries of the summation to infinity. ε in that equation is the

bounding function of an EBB traffic from Eq. (1.4). Finally, the last line uses Eq. (2.56).

Minimizing the last line for τ0 completes the proof.
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2. Special Violation Probability [67]: If the violation probability of the local effective en-

velope is defined as a special function of time then the following sample path envelope

exists in the sense of Eq. (2.67). This function is defined in discrete time setting. Thus,

we need to first discretize time as in Eq. (2.54). Then, define the local effective envelope

violation probability at time t by

εG(t) =
2ε

π(1 + d t
τ0
e2)

, (2.63)

for some 0 < ε < 1 and τ0 > 0. Then the following is a sample path arrival envelope

G(t;σ) = G(t+ τ0;σ) , εG(σ) = ε . (2.64)

It can be proved as follows.

P
{

sup
0≤s≤t

{A(s, t)− G(t− s;σ)} > 0
}

≤ P
{

max
1≤j≤d t−s

τ0
e
{A(t− jτ0, t)− G((j − 1)τ0;σ)} > 0

}
≤

∞∑
j=1

P{A(t− jτ0, t) > G(jτ0;σ)}

≤
∞∑
j=1

2ε

π(1 + j2)

≤ ε ,

where the second line uses Eq. (2.55). The third line replaces G from Eq. (2.64). The

last line uses the inequality
∑∞

j=1
1

1+j2
≤ π

2
.

3. Time Scale Limit [67]: A time scale limit is an upper bound over the maximum time that

the events in the network are correlated. For example, an upper bound over the maximum

busy period length is a time scale limit. A probabilistic upper bound on the busy period

length is computed in [67] as follows. Assume that multiple traffic flows with aggregate

statistical sample path envelope Gtot with bounding function εb (from Eq. (2.64)) enter a

link with capacity C. The maximum busy period in the system is statistically bounded
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by

T εb = sup{t ≥ 0 | Gtot(t) > Ct} . (2.65)

In the sense that at any time t ≥ 0 if x̂t is the start of the busy period containing t, then

P{t− x̂t > T εb} < εb . (2.66)

The concept of time scale limit can be used to construct other sample path envelopes.

Since it limits the interval that the sample path must be valid. If G is a local effective

envelope for A with bounding function εG, then a sample path envelope (in the sense of

Eq. (2.51)) can be obtained as follows

G(t;σ) = G(t+ τ0;σ) , εG(σ) =

⌈
T εb

τ0

⌉
εG(σ) + εb , (2.67)

for any τ0 > 0. To verify that, let τ0 be the time unit and define i as introduced in

Eq. (2.54). Then

P
{

sup
0≤s≤t

{A(s, t)− G(t− s;σ)} > 0
}

≤ P
{(

sup
0≤s≤t

{A(s, t)− G(t− s;σ)} > 0
)
∩ (t− x̂t < T εb)

}
+ P

{(
sup

0≤s≤t
{A(s, t)− G(t− s;σ)} > 0

)
∩ (t− x̂t ≥ T εb)

}
≤ P

{
sup

t−T εb≤s≤t
{A(s, t)− G(t− s;σ)} > 0

}
+ εb

≤ P
{

max
1≤j≤dT

εb
τ0
e
{A(t− jτ0, t)−G((j − 1)τ0 + τ0;σ)} > 0

}
+ εb

≤
dT

εb
τ0
e∑

j=1

P {A(t− jτ0, t) > G(jτ0;σ)}+ εb

≤
⌈
T εb

τ0

⌉
εG(σ) + εb ,

where in the second line we use the total probability theorem. In the next line we use the

assumption that the busy period is bounded by T εb , and the fact that P (X ∩ Y ) ≤ P (X)

for any X and Y . We also use the fact that the statistical sample path envelope does not
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need to take care of intervals larger than the time scale limit. The fifth line uses Eq. (2.55)

and Eq. (2.67). By applying Boole’s inequality in the next line and Eq. (2.67) in the last

line the proof is complete.

4. Global Effective Envelope [9], [74]: A global effective envelope for an arrival processA,

is a non-decreasing function of time G defined in any time interval of length ` ([u, u+`]),

if it satisfies the following

P
{

sup
u≤s≤t≤u+`

( A(t− s, t)− G(s; `)) > 0
}
≤ εG(`), (2.68)

where 0 < ε < 1, and ` is the size of time interval that this envelope is valid in. Com-

paring Eq. (2.51) with Eq. (2.68), it can be verified that the global effective envelope is a

more stringent definition than the sample path statistical arrival envelope. As derived in

[74], the global effective envelope can be expressed using a local effective envelope. If

G and εG are respectively the local effective envelope and its bounding function A, then

the following describe a statistical sample path envelope for that process:

G(s; `) = G(γs+ a) , εG(`) = εG ·
`

a

√
γ + 1
√
γ − 1

,

where γ > 1, and a ≈ √γ(γ − 1)s.

We compare the above statistical sample path envelope construction methods for two types

of traffic sources in numerical examples. Before starting the numerical results, we point out

some remarks on numerical computations.

First, to obtain each sample path envelope, there might be some free parameters. For in-

stance, EBB sample path envelopes for regulated traffic as described in this section have three

free parameters: γ, α, ρ′. We can take the point-wise minimum of all sample paths by vary-

ing the free parameters. The bounding function of the resulting sample path is the sum of the

bounding functions of all considered sample path envelopes, or
∑

α,γ,ρ′ ε(σ). By increasing

the set we choose our sample path from, we increase the chance to get a smaller point-wise
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(a) Regulated traffic
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(b) Discrete-time MMP traffic

Figure 2.8: Sample path envelope comparisons for N = 100, 1000 regulated or discrete time MMP

flows with ε∗ = 10−6.

minimum but at the same time we are increasing the equivalent violation probability. Thus, we

have to choose the range of α, γ, ρ′ just large enough to include critical choices.

Second, to compute γ for an EBB sample path characterization of regulated traffic if the

sample path bounding function ε∗ is fixed. From Eq. (2.53), we have

σ = − 1

α

(
log

ε∗

Me
− log

(
1 +

ρ

γ

))
. (2.69)

Inserting this value in the EBB sample path bound formulation in Eq. (2.53) yields

G(t;σ) = (ρ+ γ)t− 1

α

(
log

ε∗

Me
− log

(
1 +

ρ

γ

))
. (2.70)

Taking the first derivative of the above equation with respect to γ and setting it to zero gives us

γopt =
−αρt+

√
(αρt)2 + 4αρt

2αt
. (2.71)

Algorithm 2 explains the steps we follow to compute a statistical sample path envelope for

regulated traffic using EBB characteristics. Note that in this algorithm, we compute a sample

path in discrete time for the time interval t = 1 ∼ 200. Thus, the resulting point-wise minimum

sample path envelope can be at most from 200 sample paths regardless of how large the set of
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different choices for γ, α, ρ′ are. This justifies ε∗ = 10−6

200
, in the first line of the algorithm if the

sample path envelope violation probability is supposed to be 10−6.

Algorithm 2 Computing statistical sample path envelope for regulated traffic flows using EBB

characteristics
Input N

ε∗ ← 10−6

200

for t = 1 to 200 do

for α = 10−10 : 0.01 : 10 do

for all ρ′ such that ρ < ρ′ < P do

Compute M(ρ′, α) from Eq. (2.50)

Compute γopt from Eq. (2.69)

Compute σ by setting ε(σ) = ε∗ from Eq. (2.69)

Compute G(t;α, ρ′) = ρ′t+ γoptt+σ

N
.

end for

end for

return G(t) = minα,γ G(t;α, ρ′).

end for

With these remarks, we can now compare the sample path envelopes. We have N inde-

pendent flows with the same characteristics. For each type of flow we compute the normalized

sample path envelopes G(t,ε∗)
N

using all methods we reviewed, where the violation probability is

fixed to ε∗ = 10−6. For the methods which are based on a busy period bound (time scale limit

sample path, and global effective envelope), we assume that the traffic enters a link in which it

creates a link utilization of 90%, i.e., C = 10
9
Nρave, where ρave is the long-term average rate

of the aggregate flows. This assumption is applied to Eq. (2.65) to obtain a time sale limit. In

case there is no deterministic arrival envelope, we choose εb = ε∗.

We consider two traffic types for our numerical examples. The first traffic source is Type 1

peak-rate constraint leaky bucket flow from Table 2.1. In Fig. 2.8a we plotted the per-flow
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Figure 2.9: Discrete time Markov-Modulated Process (MMP).

statistical envelopes constructed by each method for the aggregate traffic. The plot shows that

the sample path envelopes do not considerably differ from each other. The global effective

envelope is slightly looser than the other two bounds. This stems from the fact that global

effective envelope has a more stringent definition than other envelopes as discussed before.

Another interesting point is the capability of capturing the multiplexing gain in these bounds

which is noticeable by comparing the bounds for N = 100, with those of N = 1000.

Markov-Modulated Process (MMP) (See Fig. 2.9). At each time slot, the MMP source is

either at state ‘0’ which is the idle state, or at state ‘1’ which generates traffic with rate P . The

transition between states can happen at the start of each time slot. The transition probability of

0→ 1 and 1→ 0 are, respectively, 1− p00 and 1− p11, as shown in Fig. 2.9. A bound on the

effective bandwidth for such a flow is [16]

Eb(α) ≤ 1

α
log(p00 + p11e

αP +
√

(p00 + p11eαP )2 − 4(p00 + p11 − 1)eαP ) , (2.72)

for any α ≥ 0. Thus, there exists an EBB characterization for discrete time MMP traffic from

Eq. (2.37). The comparison of sample path bounds in Fig. 2.8b shows that since there is no

deterministic time scale bound in this case, the time scale limit sample path is not among the

best envelopes anymore. In both plots we see that there is no considerable difference between

different sample path descriptions.
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2.4.4 Statistical service curves

There are different definitions for a statistical service curve in the literature. One of the impor-

tant categorization might be representing the service curve in the stochastic regime by either

a deterministic function such as [15], or a stochastic process as in [97]. In this thesis, we use

a deterministic function service curve description which is simpler to manipulate. We use the

following definition for the stochastic service curve.

Definition 2.4 (Statistical service curve). Given an arrival processA at a node and a departure

process D. A non-decreasing non-negative function S is a statistical service curve for process

A with a non-increasing bounding function ε, if it satisfies the following at any time t ≥ 0

P{D(t) > A ∗ S(t;σ)} < ε(σ) , (2.73)

for any σ ≥ 0.

As an example of a statistical envelope, consider the following.

Theorem 2.4. Assume that a through flow enters a node with the total capacity C. There is

also a cross flow at that node. If Gc is a statistical sample path envelope for the cross flow

arrival in the sense of Eq. (2.51) with bounding function εc, then for any σ ≥ 0, the following

is a statistical service curve for the through flow at that node in the sense of Eq. (2.73)

S(t) = [Ct− Gc(t;σ)]+ , (2.74)

with bounding function εc(σ) .

The proof is similar to the proof of Theorem 2.1 except that the arrival envelope in this

setting is not deterministic and can be violated with some violation probability. This turns the

deterministic service curve to a statistical one in the sense of Def. 2.4. The bounding function

of the corresponding statistical service curve is equal to the bounding function of the cross flow

statistical sample path envelope [20].
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2.4.5 From fluid flow model to packet model

In this thesis, we use a fluid flow model. The extension of the analysis can be obtained in the

expense of adding notation and by using the method introduced in [14]. In a packet model,

packet transmission cannot be interrupted even if packets with higher precedences arrive. The

following theorem establishes the bridge between fluid and packet model.

Theorem 2.5. Assume that a through flow enters a node with statistical service curve Sf in

the sense of Eq. (2.73) with bounding function εs. There are also some cross flows in that node.

The packet size of the through flow and cross flows are, respectively, represented by P0 and Pc

with the following probabilistic bounds for any σ ≥ 0

P{P0 > σ} ≤ εp0(σ) (2.75)

P{Pc > σ} ≤ εpc(σ) . (2.76)

For any σf , σp0 , σp0 ≥ 0, define σ = (σf , σp0, σ
p
c ). Then, Sp from the following is a service curve

for the through flow in the packet model

Sp(t;σ) = [Sf (t;σf )− σp0 − σpc ]+ (2.77)

with bounding function

εps(σ) = εfs (σs) +
1

E[Pc]

∫ ∞
σpc

εpc(u)du+
1

E[P0]

∫ ∞
σp0

εp0(u)du . (2.78)

Proof. If Df
0 and Dp

0 are, respectively, the through flow departure process in the fluid flow and

packet model, then

Df
0 (t) = Dp

0(t) + Z̃0(t) + Z̃c(t) , (2.79)

where Z̃0(t) is the portion of the through flow packet that is being served and has already been

completed. Z̃c(t) is the portion of the cross flow packet which is being served and has already

been completed and would not be served in a fluid model by time t. This cross flow packet has
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a lower precedence than an existing through flow backlogged packet, thus, will not be served

in a fluid model. By conditioning on the through flow packet size and from [14]

P{Z̃0(t) > σ} ≤ 1

E[P0]

∫ ∞
σ

εp0(u)du . (2.80)

Similar bound exists for Z̃c. Combining all of the above results,

P{Dp
0(t) < A0 ∗ [S(t;σ)− σp0 − σpc ]+} (2.81)

≤ P{Df
0 (t) < A0 ∗ S(t;σ)}+ P{Z̃0(t) > σp0}+ P{Z̃c(t) > σpc} (2.82)

≤ εfs (σs) +
1

E[Pc]

∫ ∞
σpc

εpc(u)du+
1

E[P0]

∫ ∞
σp0

εp0(u)du . (2.83)

2.4.6 Statistical performance bounds

Having a statistical arrival envelope and a statistical service curve, probabilistic upper bounds

for the output burstiness, backlog, and delay have been computed in [20].

Theorem 2.6 ([20]). Assume that an arrival process A with statistical sample path arrival

envelope G satisfying Eq. (2.5) with bounding function εg enters a node with a statistical service

curve S satisfying Eq. (2.7) with bounding function εs. Suppose D is the departure process

from the node, and the backlog and delay at that node are as defined in Eqs. (2.3) and (2.4).

Also define ε(σg, σs) as

ε(σg, σs) = εg(σg) + εs(σs) , (2.84)

for any σg, σs ≥ 0. Then, the following probabilistic bounds exists for any arbitrary σg, σs ≥ 0

1. Output burstiness bound: The departure at any time interval [s, t) is bounded by

P{D(s, t) ≥ G � S(t− s;σg, σs)} ≤ ε(σg, σs) . (2.85)

2. Backlog bound: The backlog at any time t is bounded by

P{B(t) ≤ G � S(0;σg, σs)} ≤ ε(σg, σs) . (2.86)
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3. Delay bound: The delay at any time t is bounded by

P
{
W (t) ≤ inf{s | ∀u ≥ 0 : S(u+ s;σs) ≥ G(u;σg)}

}
≤ ε(σg, σs) . (2.87)

The proofs of the above bounds are similar. Here we only sketch the proof of the output

burstiness from [20]. Fix, s and t, such that s ≤ t. Suppose that we want to compute a lower

bound for D(s, t). Assume that u0 is the time that the infimum value of A ∗ S(s) is happening

at, that is

A(s− u0) + S(u0) = A ∗ S(s) . (2.88)

Then, we have

P
{
D(s, t) > sup

u≥0
{G(t− s+ u;σg)− S(u;σs)}

}
(2.89)

≤ P{D(s, t) > G(t− s+ u0;σg)− S(u0;σs)} (2.90)

= P
{(
D(s, t) > G(t− s+ u0;σg)− S(u0;σs)

)
∩
(

sup
u≤t

(A(u, t)− G(t− u;σg)) ≤ 0
)}

+ P
{(
D(s, t) > G(t− s+ u0;σg)− S(u0;σs)

)
∩
(

sup
u≤t

(A(u, t)− G(t− u;σg)) > 0
)}

(2.91)

≤ P{D(t)−D(s) > A(t)− A(s− u0)− S(u0;σs)}

+ P{
(

sup
u≤t

(A(u, t)− G(t− u;σg)) > 0
)
} (2.92)

≤ P{D(s) < A(s− u0) + S(u0;σs)}+ P
{(

sup
u≤t

(A(u, t)− G(t− u;σg)) > 0
)}

(2.93)

≤ εs(σs) + εg(σg) , (2.94)

where the second line uses the fact that the inequality inside the bracket of the first line must

hold for any u ≥ 0. The third line uses the total probability theorem. Eq. (2.92) is obtained by

using the fact that P (U ∩W ) ≤ P (W ) for events U and W . Eq. (2.93) is obtained by using

D(t) ≤ A(t) at any time t ≥ 0. Finally, the last line uses the definition of the service curve in

Eq. (2.73) and statistical arrival envelope in Eq. (2.51).
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2.4.7 Statistical convolution theorem

In order to extend the probabilistic performance bound analysis to multiple-node scenarios,

an end-to-end statistical service curve is required. Statistical network service curve is not the

convolution of the per-node statistical service curves along the path as in the deterministic case.

To clarify, the additional complexity with respect to the deterministic case, consider a tandem

network consisting of node 1 and node 2. The arrival traffic to node 2 is the departure traffic

from node 1. S1 and S2, are respectively, statistical service curves for node 1 and node 2 in the

sense of Def. 2.4 with bounding functions ε1 and ε2. Then, the departure at the second node

satisfies the following

D2(t) ≥ inf
0≤s≤t

{A2(s) + S2(t− s)} . (2.95)

To compute an end-to-end service curve, the relation between A2 and S1 must be incorporated

in the above equation which is

∀0 ≤ s ≤ t : A2(s) ≥ inf
0≤u≤s

{A1(s) + S1(t− s)} .

However, by the definition of the statistical service curve, ε1 is only bounding the violation

probability of the above inequality for a fixed time interval (i.e., fixed s in the above equa-

tion) and not for the entire past history of the departures. The following theorem resolves this

problem and formulates a statistical network service curve.

Theorem 2.7 (Statistical network service curve [20]). Assume that a traffic flow traverses a

path consisting of H nodes. Denote the arrival and departure to node h, respectively, by Ah

andDh. The through flow departure at node h in the path is the traffic flow arrival to node h+1,

that is,Dh = Ah+1. At each node h, there exists a function Sh that serves as a statistical service

curve in the sense of Def. 2.4. This service curve function is in the form of Sh(t; a) = Sh(t)−a

for any a > 0 and with bounding function εh satisfying
∫∞
−∞ εh(w)dw < ∞. Then, for any

choice of γh, τh ≥ 0, h = 1, . . . , H − 1, the following is a statistical network service curve

Snet(t;σ) =
(
S1 ∗ Sγ12 ∗ . . . ∗ S

PH−1
h=1 γh

H (t−
H−1∑
h=1

τh)
)
−

H−1∑
h=1

γhτh − σ , (2.96)
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where Shγh (t) = Sh(t)− hγt, in the sense that

P{DH(t) > A1 ∗ Snet(t;σ)} ≤ εnet(σ) ,

and

εnet(σ) = infPH
h=1 σh=σ

{
εH(σH) +

H−1∑
h=1

1

γhτh

∫ ∞
σh

εh(w)dw
}
. (2.97)

Here we sketch the proof from [20]. Fix time t, then for any fixed τh > 0 and u ≤ t there

exists an i ≥ 1 such that

(i− 1)τh ≤ t− u < iτh .

By the monotonicity of Ah, Dh, and Sh, we have

Dh(u) ≥ Dh(t− iτh); Ah ∗ Sh(u− τh) ≤ Ah ∗ Sh(t− iτh) . (2.98)

Using the above results, we can obtain an upper bound for the bounding function of the fol-

lowing expression which will be needed for the proof.

P
{

inf
0≤u≤t

{Dh(u)− Ah ∗ Sh(u− τh) + σh + γh(t− u+ τh)} < 0
}

≤ P
{

min
1≤j≤d t

τh
e
{Dh(t− jτh)− Ah ∗ Sh(t− jτh) + σh + jγhτh} < 0

}
≤

∞∑
j=1

εh(σh + jγhτh)

≤ 1

γhτh

∫ ∞
σh

εh(w)dw , (2.99)

where the second line uses Eq. (2.98) and the monotonicity of the consisting functions. The

third line uses the definition of the statistical service curve and the union bound. The last line

uses Riemann sums.

To simplify notation, define

σ′h = σh + γhτh . (2.100)
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Also

Xh = inf
0≤u≤t

{Dh(u)− Ah ∗ Sh(u− τh;σh) + γ(t− u+ τh)} < 0 .

Note that we used S(t;σ) to mean S(t) − σ in the above formulation (and for the rest of the

proof as well) to simplify notation. Denote the compliment of the eventXh byXc
h. Using these

notations, the departure process at node H is characterized by

P{DH(t) ≥ inf
0≤u≤t

{AH(u) + SH(t− u;σH)}}

= P
{(
DH(t) ≥ inf

0≤u≤t
{AH(u) + SH(t− u;σH)}

)
∩Xc

h

}
+ P

{(
DH(t) ≥ inf

0≤u≤t
{AH(u) + SH(t− u;σH)}

)
∩Xh

}
≤ P

{(
DH(t) ≥ inf

0≤u≤t
{AH(u) + SH(t− u;σH)}

)
∩Xc

h

}
+ P{Xh}+ P{DH(t) ≥ inf

0≤u≤t
{AH(u) + SH(t− u;σH)}}

≤ P{DH(t) ≥ inf
0≤s≤u≤t

{AH−1(s) + SH−1(u− s;σ′H−1)

− γ(t− u) + SH(t− u;σH)}+
1

γH−1τH−1

∫ ∞
σ′H−1

εH−1(w)dw + εH(σH)

= P{DH(t) ≥ inf
0≤s≤u≤t

{AH−1(s) + SH−1(u− s− τH−1;σ′H−1) + S−γH−1

H (t− u;σH)}

+
1

γH−1τH−1

∫ ∞
σH−1

εH−1(w)dw + εH(σH)

= P{DH(t) ≥ AH−1 ∗ (SH−1 ∗ S−γH−1

H )(t;σ′H−1, σH))}

+
1

γH−1τH−1

∫ ∞
σH−1

εH−1(w)dw + εH(σH) ,

where the second line uses the total probability theorem. The next line uses the fact that for two

events W and U , P (W ∩ U) ≤ P (W ) + P (U). The next line combines the events in the first

probability term, uses notational simplification from Eq. (2.100), and also uses the statistical

service curve definition at node H , along with Eq. (2.99). The last two lines rearrange terms

and use the convolution definition.

Iterating the above method backwards to the first node proves the theorem. Note that for

each node 1 ≤ h ≤ H − 1, Eq. (2.99) must hold. Adding up all corresponding bounding
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functions from Eq. (2.99) proves the validity of Eq. (2.102).

Remark: A network service curve can be implied in the discrete time model from Theorem 2.7.

By setting τh, γh = 0 for any h = 1, . . . , H − 1,

Snet(t;σ) =
(
S1 ∗ Sγ12 ∗ . . . ∗ S

PH−1
h=1 γh

H (t)
)
− σ , (2.101)

and

εnet(σ) = infPH
h=1 σh=σ

{
εH(σH) +

H−1∑
h=1

∞∑
k=0

εh(σh + kγ)
}
. (2.102)

To compute the infimum value in Eq. (2.97), a lemma is provided in [20] which can be used

when the bounding function decays exponentially fast as for EBB traffic sources.

Lemma 2.1 ([20]). For any positive αh, Mh, and any σh (h = 1, . . . H)

infPH
h=1 σh=σ

H∑
h=1

Mhe
−αhσh =

H∏
h=1

(Mhαhν)
1

αhν e−
σ
ν ,

where ν =
∑H

h=1
1
αh

.

As an example of a probabilistic network service curve, consider the homogeneous network

in Fig. 2.5. We replace the subscript h with c for any 1 ≤ h ≤ H . Assume that cross flow at

each node is an EBB traffic with parameters (Mc, ρc, αc). Thus, from Theorem 2.4, a per-node

statistical service curve for the cross flow for any σc ≥ 0 is

Sc(t;σc) = [(C − ρc − γc)t− σc]+ ,

for any γc ≥ 0 with bounding function εc(σc) = Mce(1 + ρc
γc

)e−αcσc . Applying this per-node

service curve to Theorem 2.7, an end-to-end probabilistic network service curve is

Snet(t;σ) = (C − ρc − γc)t− (H − 1)γcτc − σ , (2.103)

with bounding function

εnet(σ) = infPH
h=1 σ

h=σ

{
Mce(1 +

ρc
γc

)e−αcσc +
(H − 1)

γcτcαc
Mce(1 +

ρc
γc

)e−αcσc
}

(2.104)

= Mce(1 +
ρc
γc

)

(
H

γcαcτc

)H−1
H

e−
αc
H
σ , (2.105)

where Lemma 2.1 is used to obtain the last line.



Chapter 3

Single Node Analysis

In this chapter we compute single node delay bounds for a large class of schedulers (which we

call ∆-schedulers) using Network Calculus. The main difficulty in attaining tight delay bounds

is to formulate a tight service curve description for the schedulers.

We begin this chapter by reviewing the main analytical approaches in queueing analysis to

date. Then, we introduce the class of schedulers we consider in this thesis. We formulate a

service curve applicable to any scheduler in that class. Using this service curve we compute

delay bounds and show that this bound is necessary and sufficient. As two examples, we

specify our results for leaky bucket arrivals in the deterministic regime and EBB arrivals in the

probabilistic one. The probabilistic bounds are examined by computing the schedulable region

for two types of EBB sources (regulated traffic, and discrete time MMP traffic). The results of

this chapter were developed in joint works with Liebeherr and Burchard (see [72], [73]).

3.1 Literature Review

The first packet scheduling analyses were in the context of Queueing Theory [46], [57]. The

best results in Queueing Theory correspond to M/M/1 queues. Relaxing the assumption of

Poisson arrivals, only few results remain. The average delay expression in a M/G/1 queue

and in the presence of some schedulers including FIFO and SP is formulated and named after

58
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its creators Pollaczek-Khinchine [57]. Finally, the most important result in G/G/1 queues is

the average delay computation in the heavy traffic asymptotic regime [46].

3.1.1 Envelope-based scheduling analysis

We call all analytical results which are based on upper bounds on the traffic arrivals, or comput-

ing upper delay and backlog bounds rather than computing the exact distributions as envelope

based methods. This type of analysis is much broader than Queuing Theory and extends the

queue analysis to a broad range of traffic sources (e.g., regulated traffic [9], EBB [98], SBB

[93], gSBB [50], [100] heavy tailed self similar processes [70]). The literature on this method

is extensive and includes many schedulers, e.g., SP [9], [50], [60], FIFO [9], [17], [21], [36],

[50], EDF [1], [9], [87], [90], and GPS [50], [79]. We discuss them in detail in the following.

Elwalid et al. [37] assume a fixed buffer size and compute the loss probability (buffer

overflow probability) for two classes of peak rate constraint leaky bucket arrivals in a FIFO

link. (For each class j of arrivals, the per-flow required bandwidth ej0 to exhaust the link

capacity C and buffer size at the same time is formulated.) Multiplexing a number of Nj flows

from class j, a loss probability is defined as the probability that the total instantaneous demand

bandwidth exceeds the total capacity, or

P{B > b} = P
{ 2∑
j=1

Nj∑
k=1

ξjke
j
0(b) > C

}
,

where ξjk is an indicator function which is set to one if flow k from class j is backlogged in the

steady state. The above probability is then computed using a large deviation method derived

in [83]. This method was extended to a two-class priority scheduler in [35] by characterizing

the highest priority (class 1) output process and noting that the lowest priority class (class 2)

can only use the leftover capacity of the link. The highest priority output lossless effective

bandwidth R1 is formulated using Markov state probabilities for Markov modulated ON-OFF
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sources. Then, the loss probability of the lower priority class is

P{B2 > b} = P
{
R1 +

N2∑
k=1

ξ2
ke

2
0(b) > C

}
.

In another work, Elwalid and Mitra [36] compute per-flow loss probability for a two-class peak

rate constraint leaky buckets in a GPS scheduler. Given a delay bound d∗j for each class j,

the per-flow lossless effective bandwidth required bandwidth ej0 for class j to satisfy its delay

bound is computed. Then, the loss probability for each flow from class 1 is the following

P (B1 > b) = P

{
e1

0 >
φ1C

φ1(1 +
∑N1−1

k=1 ξ1
k) + φ2

∑N2

k=1 ξ
2
k

}
,

where φj is the GPS weight for class j. Large deviation results in [83] are used to compute the

above probability.

The deterministic schedulable region in a multi-class arrivals in FIFO, SP, or EDF sched-

ulers is computed in [75]. Assume that there is a tagged arrival from flow i at time t. Denote

Ai,tj (t1, t2) the arrivals from flow j in [t1, t2) which must be served before the tagged arrival.

Define x̂ti to be the last time before or at time t, when there is no traffic in the queue that must

be served before the tagged arrival. It can be expressed by the following

x̂ti = sup
{
s ≤ t | ∀j ∈ N : Ai,tj (s) ≤ Dj(s)

}
,

where N is the set of all arrivals. The above definition implies that Aj(x̂ti) = Dj(x̂
t
i) for any

j ∈ N . A sufficient condition that the tagged arrival leaves the system before its delay bound

has expired (i.e., before t + d∗i ) is that the workload ahead of the tagged arrival at time t + d∗i

is negative. That is,

∑
j∈N

Aj(x̂
t
i, t+ τi,j)− C(t+ d∗i − x̂ti) ≤ 0 , (3.1)

where τi,j depends on the type of scheduler; τi,j = 0 for FIFO, τi,j = max{x̂ti − t, d∗i − d∗j}

for EDF, and τi,j = d∗i in SP if j has higher priority than i, and τi,j = x̂ti − t, otherwise.

Thus, a sufficient condition that flow i delay bound is never violated at any time is obtained by
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employing the deterministic arrival envelopes in Eq. (3.1), which yields

sup
t≥0

(∑
j∈N

Ej(t+ τi,j)− C(t+ d∗i )
)
≤ 0 .

In case Ej for any j ∈ N is a concave function, the above condition is also shown to be

a necessary condition meaning that if it does not hold, there exists a scenario in which, the

achievable delay violates the delay constraints [75]. The extension of this work to the statistical

regime is considered in [9]. If each flow j has a local effective envelope Gj with bounding

function εGj , Eq. (3.1) yields a statistical delay constraint for any σj ≥ 0 as follows:

sup
t≥0

(∑
j∈N

Gj(t+ τi,j;σj)− C(t+ d∗i )
)
≤ 0 . (3.2)

Two methods are used in [9] to limit the violation probability of Eq. (3.2). The first method is

to use the lower bound approximation in Eq. (2.30) which yields a bounding function of size∑
j∈N ε

G
j (σj). The second method is to replaceGj with a global effective envelope (Eq.(2.68))

Gj with bounding function εGj for any flow j in Eq. (3.2). Then, Eq. (3.2) provides a statistical

schedulable region constraint with bounding function
∑

j∈N ε
G
j (σj). The statistical multiplex-

ing gain is captured in [9] by employing central limit theorem and Chernoff bound.

Sivaraman and Chiussi [89] consider a set |N | of traffic arrivals Ai with a priori delay

bounds d∗i for any i ∈ N . The delay constraints are sorted as d∗1 ≤ . . . ≤ d∗|N |. It is assumed

that d∗|N | − d∗1 is small compared to d∗|N | and there exists a stationary backlog distribution B.

With the above assumptions, a loss probability which is the probability that a delay bound is

violated is formulated as follows:

P (loss) ≈ P{B +

|N |∑
i=1

A(d∗|N | − d∗i ) > Cd∗|N |} .

The above equation is bounded by using the stationary backlog tail bound for ON-OFF Markov

Modulated processes from Eq. (1.2) with K = 1.

Ciucu and Liebeherr [21] obtain backlog and output burstiness bounds when there is a

through flow and a cross flow, respectively, represented by index 0 and c in a FIFO scheduler.
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To do so, the following property of FIFO schedulers is used that for any σj ≥ 0

B0(t) > σ ⇒ {∃s ≤ t : A0(s, t) > σ andBtot(s) ≥ C(t− s)} , (3.3)

where Btot = B0 + Bs. The first inequality in the bracket is bounded by sample path arrival

envelopes. The second inequality is bounded by using Doobe’s inequality.

Jiang and Liu (see [50] pp. 150-155) formulate per-flow statistical violation probabilities

for gSBB traffic sources in a general work-conserving scheduler (with one flow), FIFO, SP, or

GPS. Consider a discrete time model and a tagged arrival from process A at time t. The delay

W that this virtual arrival experiences exceeds d if the backlog is positive in [t, t+ d− 1]. That

is

P{W (t) ≥ d} ≤ P{BC(t+ s) > 0; s = 0, 1, . . . , d− 1} , (3.4)

whereBC(t) represents Reich’s backlog equation with arrival processA in a link with capacity

C, i.e.,

BC(t) = sup
0≤s≤t

(
A(s, t)− C(t− s)

)
. (3.5)

With this notation and assuming that A is a gSBB traffic in the sense of Eq. (2.52) with rate ρ

and bounding function ε, then

P{Bρ(t) > σ} ≤ ε(σ) . (3.6)

By showing that

Bρ(t) ≥ BC(t) + (C − ρ) (3.7)

and employing induction, it is proved that a sufficient condition to have the left hand side event

in Eq. (3.4) is to have

Bρ(t+ d− 1) ≥ BC(t+ d− 1) + (C − ρ)d . (3.8)
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Combining all above, yields

P{W (t) ≥ d} ≤ ε((C − ρ)d) . (3.9)

For a single flow in a FIFO scheduler, a statistical delay bound is obtained by using a

property of FIFO that W (t) ≥ d is equivalent to BC(t) > C(d− 1), and consequently

P{W (t) ≥ d} = P{BC(t) > C(d− 1)}

≤ P{Bρ(t) > Cd− ρ}

≤ ε(Cd− ρ) , (3.10)

where the second line uses Eq. (3.7).

For SP, it is assumed that there are P classes of arrivals. The arrival process Ap of any

class p ≤ P is a gSBB traffic with rate ρp and bounding function εp. The highest priority class

(class 1) can be viewed as a single flow in a FIFO link with the capacity C. Thus, the delay

bound for the highest priority class is obtained from Eq. (3.10) to be

P{W1(t) ≥ d} ≤ ε1(Cd− ρ1) . (3.11)

For the other classes, p > 1, a general scheduler can be assumed with aggregate flow of arrivals

from class 1 to p, i.e.,
∑

1≤k≤pAk. Thus, from Eq. (3.9)

P{Wp(t) ≥ d} ≤ ε1...p((C −
∑

1≤k≤p

ρk)d) , (3.12)

where ε1...p(x) = ε1 ∗ . . . ∗ εp(x).

For GPS, there exists a guaranteed service φiCP
j φj

for each flow i. Thus, each flow i can be

considered as a single flow in a FIFO link with the guaranteed rate. Hence, from Eq. (3.10)

P{Wi(t) ≥ d} ≤ εi

(
φiCd∑
j φj
− ρi

)
. (3.13)

By the evolution of Network Calculus, service curves are introduced as a tool for scheduling

analysis. Computing delay and backlog bounds using service curves has an advantage over any
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other envelope based analyses. It can be extended to multi-node analysis, or more complicated

per-flow scenarios much easier than others.

Network Calculus can be used for any system for which we can compute a service curve.

Thus, scheduling analysis in the context of Network Calculus requires a per-flow service curve

formulation.

3.1.2 Using service curves for scheduling analysis

This method is inspired by Cruz in [27]. Given a service curve and an arrival envelope for a

traffic process in a link, Theorem 2.6 can be applied to compute performance bounds for that

arrival. There are some service curve formulations for the schedulers in the literature which we

review in the sequel.

Characterizing a per-flow service curve requires a per-flow output characterization (see

Eq. (2.7)) as a function of the capacity, scheduler parameters and input processes of other

flows. We review the departure characterization for the case of SP from [10] in the following.

Define x̂tp to be the last time before time t that there is no backlogged arrival from classes 1 to

p. That is

x̂tp = sup {s ≤ t | ∀j ≤ p : Aj(s) ≤ Dj(s)} . (3.14)

Then,

Dp(t) = Ap(x̂
t
p) +

p∑
j=1

(Dj(t)−Dj(x̂
t
p))−

p−1∑
j=1

(Dj(t)−Dj(x̂
t
p))

≥ Ap(x̂
t
p) + [C(t− x̂tp)−

p−1∑
j=1

(Aj(t)− Aj(x̂tp))]+

≥ Ap(x̂
t
p) + [C(t− x̂tp)−

p−1∑
j=1

Ej(t− x̂tp)]+ , (3.15)

where the first line uses the fact that Ap(x̂tp) = Dp(x̂
t
p). The second line uses the fact that

the link is busy in [x̂tp, t) and the fact that Dp(t) ≥ Ap(x̂
t
p). The third line assumes that Ej
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is a deterministic arrival envelope for class j. Comparing Eq. (3.15) with the service curve

definition in Eq. (2.7), a deterministic service curve for class p arrivals is

Sp(t) =
[
Ct−

∑
1≤j≤p−1

Ej(t)
]

+
. (3.16)

For FIFO schedulers, Cruz [28] derived the following service curve

Si(t) =
[
Ct−

∑
j∈N\{i}

Ej(t− θ)
]

+
It>θ , (3.17)

where θ ≥ 0 is a free parameter. This service curve can be considered as a family of service

curves which is valid for any non-negative θ. The special case of θ = 0 yields the service curve

for the lowest priority in a SP scheduler (SP in Eq. (3.16)).

Finally, service curve description for EDF schedulers has also been explored in the lit-

erature, e.g., [67], [97]. The following is the per-flow service curve formulation for EDF

schedulers in [67]

Si(t) =
[
Ct−

∑
j∈N\{i}

Ej(t− [d∗j − d∗i ]+)
]

+
, (3.18)

where d∗j is the a priori delay bound for any flow j.

Service curve method is advantageous for end-to-end analysis, and also computing bounds

for correlated through flow and cross flows. However, it is not clear (expect for FIFO schedulers

in some special network scenarios as discussed above) how tight the delay bounds are. We

reviewed a list of existing service curves for schedulers in the literature. Interested readers are

referred to [40] for a survey on service curves.

3.2 ∆-schedulers

We define a class of schedulers which we call ∆-schedulers for which we are able to provide a

service curve formulation.

Definition 3.1 (∆-schedulers [72], [73]). Suppose there is a set N of flows that enter a sched-

uler. The scheduler is called a ∆-scheduler if for any two flows i, j ∈ N , there is a constant
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Aj

Ak

t

t+ ∆j,k

C

∆-scheduler

Figure 3.1: ∆-scheduler mechanism.

∆i,j which determines the precedence between the arrivals of those flows. More precisely,

if there is a tagged arrival from flow i at time t, then the arrivals from flow j have higher

precedence than the tagged arrival if and only if they arrive before t+ ∆i,j (Fig. 3.1).

• Remark: If we represent ∆ values in a matrix form, i.e., ∆ =
(

∆i,j

)
i,j∈N

then ∆ is an

anti-symmetric square matrix of size |N | × |N |. That is ∆i,j = −∆j,i and ∆j,j = 0 ∀j ∈ N

(i.e., arrivals from the same flow are scheduled in FIFO order).

By the above definition, the following relative arrival dependent schedulers can be catego-

rized as ∆-schedulers:

• FIFO: If ∆i,j = 0 for any i, j ∈ N .

• SP: If ∆i,j = +∞ if i has a higher priority and ∆i,j = −∞ if i has a lower priority for

any i, j ∈ N .

• EDF: If ∆i,j = d∗i − d∗j for any i, j ∈ N .

There are some important schedulers which are not ∆-schedulers. For instance, WRR is

not a ∆-scheduler since there is no constant that can accurately characterize the precedence of

two arrivals at any time. The backlog of all flows affects the precedence of two arrivals from

two different flows. Clearly, backlog varies by time and is not a constant.

3.3 Service Curve Formulation for ∆-Schedulers

To compute tight delay and backlog bounds in ∆-schedulers using Network Calculus, tight ser-

vice curve descriptions of the ∆-schedulers are needed. Before formulating a network service
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curve for ∆-schedulers, we express some definitions and notations.

Suppose N is the set of all arrival flows to a ∆-scheduler. For any flow i ∈ N , define Ni,

and N−i as follows

Ni = {k ∈ N | ∆i,k 6= −∞}, N−i = Ni − {i} .

Let us assume that there is a tagged arrival from flow i at time t. Denote by Ai,tj (t1, t2) all

traffic arrivals from flow j in [t1, t2) which must be served before the tagged arrival. Define

x̂ti as the last time before t when there is no traffic in the queue that must be served before the

tagged arrival. It can be expressed by the following

x̂ti = sup
{
s ≤ t | ∀j ∈ Ni : Ai,tj (s) ≤ Dj(s)

}
. (3.19)

The above definition implies Aj(x̂ti) = Dj(x̂
t
i) for any j ∈ Ni.

If the tagged arrival has not departed the system by time t+y, flow iwill use all transmission

capacity left unused by other flows in [x̂ti, t + y). Since the link is work conserving and busy

in that time interval, the total service is C(t+ y− x̂ti). Thus, the total departures from flow i in

that interval is the total capacity in that interval reduced by the total served traffic from other

flows, that is

Di(x̂
t
i, t+ y) = [C(t+ y + x̂ti)−

∑
j∈N−i

Dj(x̂
t
i, t+ y)]+

≥ [C(t+ y + x̂ti)−
∑
j∈N−i

Ai,tj (x̂ti, t+ y)]+, (3.20)

where the second line uses Aj(x̂ti) = Dj(x̂
t
i), and the fact that the system is causal meaning

that the departure process cannot exceed the arrival process at any time. By Def. 3.1, we have

Ai,tj (x̂ti, t+ y) = Ai,tj (x̂ti,min{t+ y, t+ ∆i,j})

= Ai,tj (x̂ti, t+ ∆i,j(y))

where for any real value a

∆i,j(a) = min{a,∆i,j} .

With the above preliminaries, we can proceed to the main theorem.
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Theorem 3.1 (∆-scheduler service curves [72], [73]). Suppose that a set of traffic flows N

arrives to a link with total capacity C. Flows are multiplexed by a ∆-scheduler in that link.

Assume that Gj for each j ∈ N is a statistical sample path envelope in the sense of Def. 2.3

with bounding function εj . Let σ = (σj)j∈N−i be a vector of positive constants. Then, for any

flow i ∈ N and arbitrary θ ≥ 0, the function Si given below is a service curve in the sense of

Def. 2.4

Si(t;σ) = [Ct−
∑
j∈N−j

Gj(t− θ + ∆i,j(θ);σj)]+It>θ (3.21)

with bounding function

εs(σ) =
∑
j∈N−i

εj(σj) .

• Remark 1: The above theorem extends the Cruz service curve in Eq. (3.17) from FIFO

schedulers to all ∆-schedulers. The free parameter θ in the service curve formulation helps to

improve the delay and backlog bounds by optimizing over this parameter.

• Remark 2: Theorem 3.1 implies a deterministic per-flow service curve, which can be

obtained by replacing the statistical sample path envelopes Gj with deterministic envelopes Ej

in the sense of Eq. (2.5), and setting εj = 0 for any j ∈ N−i.

Proof. Assume that we have a tagged arrival from flow i at time t. Let x̂ti be the last time

before t that there is no buffered traffic with a higher precedence level than the tagged arrival

(as defined in Eq. (3.19)). Let us first compute a lower bound for the departures from flow i by

time t+ θ for any θ ≥ 0.

Two different cases may happen depending on the value of θ. If the tagged arrival does not

depart the system by t+ θ, then the scheduler is busy in [x̂ti, t+ θ), and by Eq. (3.20), we have

Di(x̂
t
i, t+ θ) ≥ [C(t+ θ − x̂ti)−

∑
j∈N−i

Aj(x̂
t
i, t+ ∆i,j(θ))]+. (3.22)
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The above equality can be rearranged as follows

Di(t+ θ) ≥ Di(x̂
t
i) + [C(t+ θ − x̂ti)−

∑
j∈N−i

Aj(x̂
t
i, t+ ∆i,j(θ))]+

≥ Ai(x̂
t
i) + [C(t+ θ − x̂ti)−

∑
j∈N−i

Aj(x̂
t
i, t+ ∆i,j(θ))]+

= Ai(x̂
t
i) + [C(t+ θ − x̂ti)−

∑
j∈N−i

Aj(x̂
t
i, t+ ∆i,j(θ))]+I(t+θ−x̂ti>θ), (3.23)

where in the second line we use Ai(x̂ti) = Di(x̂
t
i) which is immediate by Eq. (3.19). The last

line uses the fact that the indicator function added to the above expression is always evaluated

to 1.

The other case occurs when the tagged arrival departs the system before ‘t + θ’. Since

we know that the scheduler is locally FIFO and the tagged arrival from flow i at time ‘t’ has

departed the system by time ‘t+ θ’, we have

Di(t+ θ) ≥ Ai(t) . (3.24)

Replacing t with t− θ, and then replacing x̂ji with s in Eq. (3.23), yields

Di(t) ≥ Ai(s) + [C(t− s)−
∑
j∈N−i

Aj(s, t− θ + ∆i,j(θ))]+I(t−s>θ) . (3.25)

Besides, replacing t with t− θ in Eq. (3.24) yields

Di(t) ≥ Ai(t− θ) .

Note that if we have the above inequalities, Eq. (3.25) follows by setting s = t − θ in that

equation. Hence, both Eqs. (3.23) and (3.24) imply that the following inequality always hold

∀t ≥ 0 ∃s ≤ t : Di(t) ≥ Ai(s) +
[
C(t− s)

−
∑
j∈N−i

Aj(s, t− θ + ∆i,j(θ))
]

+
I(t−s>θ). (3.26)
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Having the results obtained above, we can prove the theorem as follows

P
{
Di(t) ≥ Ai ∗ Si(t;σ)

}
= P

{
Di(t) ≥ inf

0≤s≤t

(
Ai(s) + Si(t− s;σ)

)}
= P

{
∃s ≤ t : Di(t) ≥ Ai(s)

+
[
C(t− s)−

∑
j∈N−i

Gj(t− s− θ + ∆i,j(θ);σj)
]

+
I(t−s>θ)

}
≥ P

{
∀j ∈ N−i,∀s ≤ t : Aj(t− s, t) ≤ Gj(s;σj)

}
≥ 1−

∑
j∈N−i

P
{

sup
s≤t

(Aj(t− s, t)− Gj(s;σj) > 0)
}

≥ 1−
∑
j∈N−i

εj(σj) ,

where in the second line the convolution definition is applied. The value of the service curve

from the theorem is inserted in the third line. Comparing with the deterministic inequality in

Eq. (3.26) with the fourth line, proves that the event in the fifth line is a subset of the event

in the fourth line. Boole’s inequality and the bounding function of the statistical sample path

arrival envelope yields the next two lines and the theorem is proved.

3.4 Sufficient Condition

We claim that the service curve formulation in Theorem 3.1 provides an accurate description

of the operation of a ∆-scheduling algorithm. The accuracy is in terms of the resulting delay

bounds which we will prove is a necessary and sufficient constraint. In this section, we prove

the sufficiency and the proof of necessity is discussed in the next section.

Applying the per-flow service curve from Theorem 3.1 to the delay bound formulation in

Theorem 2.6, yields that di > 0 is a probabilistic backlog bound for flow i if there exists a

vector of positive elements σs = (σj)j∈N−i and σi ≥ 0 such that

sup
x≥0
{Gi(x;σi)− Si(x+ di;σs)} ≤ 0 , (3.27)
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in the sense that

P{Wi(t) > di} ≤ εi(σi) + εs(σs)

=
∑
j∈Ni

εj(σj) . (3.28)

Substituting the service curve from Theorem 3.1 into Eq. (3.27) yields the following

∀x > 0 :
[
C(x+ di)−

∑
j∈N−i

Gj(x+ di − θ + ∆i,j(θ);σj)
]

+
I(x+di>θ) ≥ Gi(x;σi) , (3.29)

is a sufficient condition for flow i to meet delay bound di with bounding function as in Eq. (3.28).

As a special choice, if we set θ = di and noting that ∆i,i = 0, the above delay bound constraint

will be reduced to

∀x > 0 : C(x+ di)−
∑
j∈Ni

Gj(x+ ∆i,j(di);σj) ≥ 0 . (3.30)

3.5 Necessary Condition

In this section we show the accuracy of the ∆-scheduler service curve by showing that the

delay bound constraint obtained by the ∆-scheduler service curve in Eq. (3.30) is a necessary

condition meaning that if this constraint does not hold, there will be a scenario in which the

achievable delay violates the delay bounds. The necessity proof is in the context of the de-

terministic regime and by showing that the delay bounds are achievable. The deterministic

delay bound constraints can be obtained by replacing statistical sample path envelopes Gj with

deterministic arrival envelopes Ej in (3.30), which yields the following:

∀x > 0 :
[∑
j∈Ni

Ej(x+ ∆i,j(di))− Cx
]
≤ Cdi . (3.31)

Theorem 3.2 (Necessity of the delay constraints [72], [73]). Suppose that N is the set of flow

arrivals to a link with total capacity C. A ∆-scheduler is used in that link to share the capacity

between flows. Given that Ej is a concave deterministic arrival envelope for any j ∈ Ni,

Eq. (3.31) is a necessary delay bound condition for flow i. That is, if di > 0 is a delay bound

for flow i it must satisfy Eq. (3.31).
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Proof. Consider the scenario where the arrival of any flow at any time is equal to its determin-

istic envelope at that time, that is Aj(t) = Ej(t) for any t ≥ 0, and j ∈ Ni. Also assume that

we have a tagged arrival from flow i at time t2. Denote by Bt2
i (t1) the total backlog at time t1

of arrivals with higher precedence than the tagged arrival described above. That is

Bt2
i (t1) =

∑
j∈Ni

Aj(t2 + ∆i,j(t1 − t2))−Dj(t1)

≥
∑
j∈Ni

Ej(t2 + ∆i,j(t1 − t2))− Ct1︸ ︷︷ ︸
:=X(t1)

, (3.32)

where in the second line we use the assumption that arrivals match their envelopes and the fact

that the departure rate cannot exceed the link capacity. Note that X in the above equation is a

concave function of t1. Using this expression, we can prove the theorem as follows.

We use contradiction to prove the theorem. Assume that di is a deterministic delay bound

for flow i and Eq. (3.31) is violated at some time denoted by t∗. By the contradiction assump-

tion we have X(t1) is zero at t1 = 0 and positive at t1 = t∗+di. Thus, X(t1) is always positive

for any t1 ∈ [0, t∗ + di]. Since Bt∗
i (t1) is lower bounded by Eq. (3.32), Bt∗

i (t1) > 0 for any

t1 ∈ [0, t∗+ di] which means that di cannot be a delay bound for flow i and this contradicts the

assumption and the theorem is proved.

The above theorem infers that the service curve formulation for ∆-scheduler is tight in

single node analysis.

3.6 The Case of Two Leaky Bucket Flows

In this section, we specify our performance bound formulation for leaky bucket constrained

arrivals. Consider an isolated node with total capacity C which uses a ∆-scheduler. There are

only two leaky bucket arrivals (see Sec. 2.3.1) in that link: the through flow A0 ∼ (σ0, ρ0) and

the cross flow Ac ∼ (σc, ρc). The deterministic service curve for the through flow for such a
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scenario from Theorem 3.1 is

S0(t) =
[
Ct− [ρc(t− θ + ∆(θ)) + σc]It>θ−∆(θ)

]
+
It>θ , (3.33)

where we used ∆ to mean ∆0,c. Applying this service curve and leaky bucket arrival envelopes

to Theorem 2.2, the following bounds hold for the through flow:

1. Output burstiness Bound: If D0 is the through flow departure process, then for any

s ≤ t and t ≥ 0

D0(s, t) ≤ σ0 + ρ0(t− s+ θopt) , (3.34)

where

θopt =

 min{ σc
C−ρc ,

σc+ρc∆
C
} if ∆ ≥ 0,

[σc+(C−ρ0)∆]+
C

if ∆ < 0 .
(3.35)

To show this, we apply Theorem 2.2 as follows

D0(s, t) ≤ sup
w≥0
{E0(t− s+ w)− S0(w)}

= sup
w≥0
{(ρ0(t− s+ w) + σ0)

− [Cw − [ρc(w − θ + ∆(θ)) + σc]Iw>θ−∆(θ)]+Iw>θ} . (3.36)

We can optimize over θ to obtain tighter departure envelope. We carry this out separately

for ∆ ≥ 0 and ∆ < 0 both in case of stable queue, i.e., C ≥ ρ0 + ρc.

∆ ≥ 0: In this case, if w > θ, then w > θ − ∆(θ) and thus we can disregard the term

Iw>θ−∆(θ) in Eq. (3.36). By varying w, the expression in the bracket increases until the

second part becomes positive and it decreases afterwards. Denote the value of w that

makes the second term in the bracket of Eq. (3.36) to zero by w∗. That is,

w∗ =
σc − ρc(θ −∆(θ))

C − ρc
. (3.37)

If w ∈ [0,max(θ, w∗)), Eq. (3.36) is increasing in w and it is decreasing for any w >

max(θ, w∗). Thus, the supremum in Eq. (3.36) happens at w = max(θ, w∗). Since w∗ is
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a function of θ, the minimum departure envelope occurs if we choose θ = w∗(θ), or the

optimum θ is

θopt =


σc

C−ρc if σc
C−ρc ≤ ∆

σc+ρc∆
C

if σc
C−ρc > ∆ .

Inserting this value of θ in Eq. (3.36) and taking the supremum, we have

θopt = min
{ σc
C − ρc

,
σc + ρc∆

C

}
, (3.38)

Inserting this value of θ in Eq. (3.36) and taking the supremum, we have

D0(s, t) ≤ σ0 + ρ0(t− s+ θopt) .

Thus, we proved that Eqs. (3.34) and (3.35) are valid for ∆ ≥ 0.

∆ < 0: In this case ∆(θ) = ∆. Inserting this in Eq. (3.36) shows that the expression in

the supremum operation is increasing if w ∈ [0, θ). It is decreasing in w ∈ [θ, θ − ∆),

increasing in w ∈ [θ −∆,max(θ −∆, w∗)), and then decreasing afterwards. Thus, the

supremum will happen at w = θ or w = max(θ − ∆, w∗). We assume that max(θ −

∆, w∗) = θ−∆. Then, we find θopt such that Eq. (3.36) gives the same value forw = θopt

and w = θopt −∆, which leads to

θopt =
[σc + (C − ρ0)∆]+

C
. (3.39)

Replacing θopt from the above equation, to Eq. (3.37) shows that the earlier assumption

max(θ −∆, w∗) = θ −∆ is valid. Replacing θ = θopt and w = θopt in Eq. (3.36) yields

D0(s, t) ≤ σ0 + ρ0(t− s+ θopt) .

Combining Eqs. (3.38) and (3.39), yields Eq. (3.35).

2. Backlog Bound: An upper bound for the through flow backlog can be obtained similarly

to the output burstiness bound for any t ≥ 0

B0(t) ≤ σ0 + ρ0θopt , (3.40)

where θopt is as computed in Eq. (3.35).
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3. Delay Bound: A delay bound for the through flow is d0 (W (t) ≤ d0), if

d0 =

 min{σ0+σc
C−ρc ,

σ0+σc+ρc∆
C

} if ∆ ≥ 0,

σ0+[σc+(C−ρ0)∆]+
C

if ∆ < 0 .
(3.41)

We can show this as follows. For the delay bound, since θ = d0 turns Eq. (3.36) to a

necessary and sufficient condition, we have θopt = d0. Thus,

W0(t) ≤ inf{x ≥ 0 | ∀t ≥ 0 : E0(t) ≤ S0(t+ d0)} .

Inserting service curve from Eq. (3.33) with θ = d0 and leaky bucket arrival envelope,

we have the following

∀t ≥ 0 : ρ0t+ σ0 ≤ [C(t+ d0)− [ρc(t+ ∆(d0)) + σc]It>−∆(d0)]+ . (3.42)

A delay bound for the through flow is the minimum d0 that satisfies the above inequality.

We compute d0, separately, for ∆ ≥ 0 and ∆ < 0.

∆ ≥ 0 : Two cases must be considered; ∆ ≥ d0 and 0 ≤ ∆ < d0. d0 is the minimum

value that satisfy the above inequality for both cases. For ∆ ≥ d0, Eq. (3.42) is reduced

to

∀t ≥ 0 : ρ0t+ σ0 ≤ [(C − ρc)(t+ d0)− σc]+ . (3.43)

Since ρc + ρ0 ≤ C, and the right hand side of the above inequality is concave, it holds

for all t ≥ 0 if it holds for t = 0. Thus,

d0 ≥
σ0 + σc
C − ρc

. (3.44)

If 0 < ∆ < d0, Eq. (3.42) will be reduced to

∀t ≥ 0 : ρ0t+ σ0 ≤ [C(t+ d0)− ρc(t+ ∆)− σc]+ . (3.45)

The right hand side of the above inequality is concave. Thus, if ρ0 + ρc ≤ C, the above

equation is valid if it holds at t = 0, or

d0 ≥
σ0 + σc + ρc∆

C
. (3.46)
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∆ < 0 : In this case, Eq. (3.42) will be reduced to

∀t ≥ 0 : ρ0t+ σ0 ≤ [C(t+ d0)− [ρc(t+ ∆) + σc]It>−∆]+ .

There are two critical points t = 0 and t = −∆, which, respectively, leads to d0 ≥ σ0

C

and d0 ≥ (C−ρ0)∆+σ0+σc
C

. Considering both cases leads to

d0 ≥
σ0 + [σc + (C − ρ0)∆]+

C
. (3.47)

Combining this result with Eqs. (3.44), (3.46), and (3.47) yields Eq. (3.41).

• Concavification:

To facilitate the extension of the framework to an end-to-end analysis we use a smaller

service curve than what is formulated in Eq. (3.33) as follows:

S0(t) = [Ct− [ρc(t− θ + ∆(θ)) + σc]+]It>θ . (3.48)

The above service curve is concave once it is positive. For this reason we call this simplification

concavification. Here we introduce concavification for leaky bucket arrivals and compute the

error it causes. Comparing Eqs. (3.33) and (3.48) we realize that we do not lose anything for

∆ ≥ 0 by concavification. If we apply the above service curve for performance bound analysis,

for ∆ < 0, the corresponding backlog and delay bound would be

bconc0 = ρ0
[σc + ρc∆]+

C
+ σ0 , (3.49)

and

dconc0 =
σ0 + [σc + ρc∆]+

C
. (3.50)

Comparing Eqs. (3.40) and (3.41), with Eqs. (3.49) and (3.50) we have

bconc0 − b0 ≤ ρ0(1− u)[∆]− (3.51)

dconc0 − d0 ≤ (1− u)[∆]− , (3.52)

where u = ρ0+ρc
C

is the link utilization. This shows that concavification error exists only for

∆ < 0, and decreases as the link utilization increases.
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3.7 The Case of Two EBB Flows

Suppose that an EBB through flow A0 ∼ (M0, ρ0, α0) enters a ∆-scheduler with total capacity

C. There is also an EBB cross flow in that link with parameters Ac ∼ (Mc, ρc, αc). From

Eq. (2.53), a statistical sample path envelope for the through G0, and cross flow Gc is the

following for any choice of γ0, γc ≥ 0, and any σ0, σc ≥ 0

G0(t;σ0) = (ρ0 + γ0)t+ σ0; ε0(σ0) = e
(

1 +
ρ0

γ0

)
e−α0σ0 (3.53)

Gc(t;σc) = (ρc + γc)t+ σc; εc(σc) = e
(

1 +
ρc
γc

)
e−αcσc . (3.54)

Inserting the above envelope for cross flow in Theorem 3.1, a service curve for the through

flow is attained as follows

S(t;σc) =
[
Ct− [(ρc + γc)(t− θ + ∆(θ)) + σc]+It>θ−∆(θ)

]
+
It>θ (3.55)

for any σc ≥ 0 with bounding function

εs(σc) = e
(

1 +
ρc
γc

)
e−αcσc . (3.56)

Applying the sample path arrival envelope for the through flow from Eq. (3.53), and the cor-

responding statistical service curve from Eqs. (3.55) and (3.56) in Theorem 2.6. We proceed

with the computations for probabilistic delay bound. The argument for the output and backlog

bounds follow similar steps. d0 is a probabilistic delay bound for the through flow in the sense

that P (W0(t) > d0) ≤ εs(σc) + ε0(σ0), the following holds:

∀t > 0 : S(t+ d0;σc) ≥ (ρ0 + γ0)t+ σ0 .

Replacing the service curve from Eq. (3.55) and setting θ = d0, the above equation yields

∀t > 0 :
[
C(t+ d0)− [(ρc + γc)(t+ ∆(d0)) + σc]I(t>−∆(d0))

]
+
≥ (ρ0 + γ0)t+ σ0 .

Comparing the above equation with Eq. (3.42) verifies that statistical delay bounds for EBB

arrivals can be extracted from the deterministic delay bounds for leaky bucket arrivals by re-

placing ρ0 and ρc, respectively, by ρ0 + γ0 and ρc + γc. Using these replacements and from

Sec. 3.6 for any σ0 and σc ≥ 0 the following bounds exist.
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1. Output burstiness bound:

P{D(s, t) > (σ0 + (ρ0 + γ)(t− s+ θopt)}

≤ e
(

1 +
ρ0

γ0

)
e−α0σ0 + e

(
1 +

ρc
γc

)
e−αcσc .

where

θopt =

 min{ σc
C−ρc−γ ,

σc+(ρc+γc)∆
C

} if ∆ ≥ 0,

[σc+(C−ρ0−γc)∆]+
C

if ∆ < 0 .
(3.57)

2. Backlog bound: The through flow backlog is probabilistically bounded as follows

P{B(t) > σ0 + (ρ0 + γ0)θopt} ≤ e
(

1 +
ρ0

γ0

)
e−α0σ0 + e

(
1 +

ρc
γc

)
e−αcσc ,

where θopt is as computed in Eq. (3.35).

3. Delay bound: For the delay bound, we have

P{W0(t) > d} ≤ e
(

1 +
ρ0

γ0

)
e−α0σ0 + e

(
1 +

ρc
γc

)
e−αcσc ,

where

d =

 min{ σ0+σc
C−ρc−γc ,

σ0+σc+(ρc+γc)∆
C

} if ∆ ≥ 0,

σ0+[σc+(C−ρ0−γ0)∆]+
C

if ∆ < 0 .
(3.58)

The above bounds assume EBB arrivals in a ∆-scheduler.

3.8 Schedulable Region

Suppose N is a set of arrivals to a work conserving link with some scheduler. There is an a

priori delay constraint for each flow. The schedulable region is referred to the set of all feasible

number of connections from each flow without delay constraint violation. In the following,

we compute the schedulable region for a simple scenario of two flow arrivals using the EBB

formulation in this chapter. We compare the resulting schedulable region with those in the
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Table 3.1: Discrete MMP traffic parameters

P (Mbps) p00 p11

Type 1 1.5 0.9 0.1

Type 2 1.5 0.989 0.9
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Figure 3.2: Schedulable region for regulated traffic for Type 1 and Type 2 flows from Table 2.1 with

C = 100 Mbps, ε∗ = 10−6, d∗1 = 100 ms, and d∗2 = 10 ms.

literature which use different sample path envelopes; global effective envelope [9], time-scale

limit [67], and special violation probability [67]. If there are free parameters for a sample path

envelope and there is a family of sample path envelopes, we say the set of flows are schedulable

if there exists a member of the family which satisfies the delay bound constraints for all time.

We also compare the impact of choosing different schedulers. We choose two types of traffic

sources for our numerical results: regulated traffic, and discrete time MMP traffic.

For each traffic source, we pick two different parameters which we name as Type 1 and

Type 2, with parameters values taken from Table 2.1 and Table 3.1 for the regulated traffic and

discrete time MMP traffic, respectively. These parameters are the same as in [9], [20], [67].

There are N1 connections from Type 1 and N2 connections from Type 2 multiplexed at a link
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Figure 3.3: Schedulable region for discrete time MMP traffic for Type 1 and Type 2 flows from Ta-

ble 3.1 with C = 100 Mbps, ε∗ = 10−6, d∗1 = 100 ms, and d∗2 = 10 ms.

with total capacity C = 100 Mbps. Assume that d∗1 = 100 ms and d∗2 = 10 ms, are respectively

the a priori delay bounds for Type 1 and Type 2 connections. We vary N2 and compute the

maximum N1 for which delay bound violation is not more than ε∗ = 10−6.

Fig. 3.2a illustrates the schedulable region for regulated traffic for different statistical sam-

ple path envelopes reviewed in Sec. 2.4.3 when EDF scheduler is used. There are three other

curves in that figure, which are used as benchmarks. The curves entitled as ‘Average rate’ and

‘Peak rate’ are, respectively, the curves which show the schedulable region of CBR traffic with

average and peak rate, which serve as upper and lower bounds on the schedulable region. Fi-

nally, the deterministic curve considers that the schedulable region with violation probability

zero by considering deterministic arrival envelopes instead of statistical sample path envelopes.

The schedulable region for different sample path envelopes are not very different and they all

gain considerably compared to the deterministic curve. In Fig. 3.2b, we repeat the experiment

for SP. Comparing Figs. 3.2a and 3.2b and, as also acknowledged in the literature such as [9],

[67], the choice of scheduler is not as important as the statistical multiplexing gain in terms of

schedulable region.

We repeat the same experiments for discrete time MMP traffic sources (with parameters
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from Table 3.1) in Fig. 3.3a and 3.3b to study the effect of different statistical sample path

envelopes, and schedulers on the resulting schedulable region for a different traffic source.

Eq. (2.72) is used to Compute the sample path statistical arrival envelopes as described in

Sec. 2.4.3. This traffic source also corroborates the results from the regulated traffic. The

choice of scheduler, or sample path envelopes does not affect the schedulable region consider-

ably.



Chapter 4

End-to-End Analysis

In this chapter, we develop an end-to-end delay and backlog analysis in the presence of sched-

ulers. Our multi-node analysis consists of two parts. First, we characterize the departure

long-term average rate in a tandem of FIFO schedulers and compare it with that of a blind mul-

tiplexing tandem. The second part is devoted to the extension of our single node scheduling

analysis to end-to-end multi-node scenarios. We evaluate our bounds with numerical exam-

ples. The results of this chapter were developed in joint works with Liebeherr and Burchard

(See [45], [73]).

4.1 Literature on End-to-End Scheduler Analysis

As mentioned in Chapter 1, end-to-end performance bound computations are simpler in the

presence of traffic shapers before each scheduler or use of coordinated schedulers. However,

we consider a tandem network scenario as in Fig. 1.1 which excludes any of the above assump-

tions.

82
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4.1.1 Product-form queuing networks

The joint state probability of a network of queues can be represented in a product form in a

Jackson network, which can be described as follows. The aggregate of all arrivals from outside

the network to node i is a Poisson process with mean rate γi. Denote pji the probability that a

departure from node j is routed to node i. If λi represents the mean arrival rate to node i, then

λi = γi +
H∑
j=1

pjiλj ,

where H is the total number of nodes in the network. In a Jackson network, the service time at

each node i is independent and exponentially distributed with parameter µi. If ui = λi
µi

and Ni,

respectively, represents node i utilization and the number of packets buffered at node i in the

steady state, then, the joint state distribution is characterized by

P{N1 = n1, N2 = n2, . . . , NH = nH} =
H∏
i=1

(1− ui)unii .

The concise product form of the state probability in Jackson networks is valid for independent

external Poisson arrivals, independent exponential service times, and independent routing of

packets.

Baskett et al. [4] (BCMP network) and Kelly [53] (Kelly network) extend the work by

Jackson to multiple classes of arrival flows and to a larger set of schedulers including SP and

processor sharing. The joint state distribution of the queues in BCMP and Kelly networks are

still in product form. The penalty for this generalization is a more complex formulation. The

results of [4], [53] relax the assumption on the service distribution, and routing in Jackson net-

works, but they still keep the assumptions of Poisson external arrival traffic and independence

of the service times.

4.1.2 Network performance analyses using departure characterization

Given a tandem ofH nodes as in Fig. 1.1. For each node h = 1, . . . , H , there exists a statistical

service curve Sh with bounding function εh. Suppose that a through flow A0 with a statistical
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sample path arrival envelope G0 and bounding function ε0 passes through all these H nodes.

Applying G0 and S1 with their corresponding bounding functions in Theorem 2.6, yields a

local effective envelope for the through flow departure from the first node D0,1. Applying

this local effective envelope to one of the methods described in Sec. 2.4.3, a statistical sample

path envelope is obtained for D0,1. The through flow departure from the first node is the

through flow arrival to the second node, i.e., D0,1 = A0,2. Hence, we have a statistical sample

path envelope for the through flow at node h = 2. Iterating these steps yields a statistical

sample path envelope for the through flow arrival at each node. Applying the through flow

statistical sample path envelope and the corresponding statistical service curve Sh at any node

to Theorem 2.6, a per-node probabilistic delay bound can be obtained. Adding up all delay

bounds along the path, yields a probabilistic end-to-end delay bound.

In the deterministic regime, pay bursts only once phenomenon expresses that adding per-

node delay bounds is outperformed by using a network service curve as described in Sec. 2.3.5.

Similar phenomenon exists in the stochastic regime. This is shown in [20] that employing

network service curve in Theorem 2.7 leads to a delay bound which scales by d = O(H logH),

compared to the adding per-node delay bounds which scales by d = O(H3).

4.1.3 Network performance analyses using network service curves

The Network Calculus approach for end-to-end performance bound computations is by formu-

lating a network service curve. A network service curve in the Deterministic Network Calculus

is the min-plus convolution of the service curves of all nodes along the path. In a stochastic

regime, a service curve formulation is more complicated. Several approaches are proposed in

the literature to obtain a statistical network service curve.

1- Using busy period bounds [15], [67]: This method assumes that there is a busy period

bound at any node along the end-to-end path. Suppose Sh is a statistical service curve with



CHAPTER 4. END-TO-END ANALYSIS 85

bounding function εh at node h. If Th is a busy period bound at that node, then

P
{
Dh(t) < inf

0≤s≤t
{Ah(s) + Sh(t− s)}

}
= P

{
Dh(t) < inf

0≤s≤Th
{Ah(s) + Sh(t− s)}

}
.

This helps to construct a sample path service curve and formulate a network service curve. In

fact, using a union bound, a sample path service curve can be achieved at node hwith bounding

function Thεh. This leads to the following network service curve formulation [15], [67]

Snet(t;σnet) = S1 ∗ S2 ∗ . . . ∗ SH(t;σnet) ,

with bounding function

εnet(σnet) = εH(σH) +
H−1∑
h=1

(
εh(σh) +

H∑
k=h+1

Tkεk(σk)
)
.

2- Using adaptive service curves [15]: By using a modified definition of service curves,

referred to as adaptive service curves, a network service curve is formulated in [15]. Suppose

A and D are, respectively, the arrival and departure processes to a node. Then, S is an adaptive

service curve at that node if for any ` > 0 and t ≥ 0

D(t, t+ `) ≥ A ∗t S(`) , (4.1)

where

A ∗t S(`) = min
{
S(`), B(t) + inf

x≤`
{A(t, t+ `− x) + S(x)}

}
,

and B(t) is the total backlog at time t. For t = 0, Eq.(4.1) reduces to a statistical service curve

in Eq. (2.73).

In a probabilistic setting, Eq. (4.1) is replaced by

P{D(t, t+ `) < A ∗t S(`)} ≤ ε` , (4.2)

where ε` is the bounding function. Assuming that in a tandem network, Sh is a probabilistic

adaptive service curve at node h with bounding function ε`h an adaptive network service curve
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for any a > 0 is

S`net = S1 ∗ S2 ∗ . . . ∗ SH ∗ δ(H−1)a ,

with bounding function

ε`net = ε`H +

∑H−1
h=1 ε

`
h

a
.

This method is limited to the class of nodes which satisfies adaptive service curve definitions.

Some examples include shapers, schedulers with delay guarantees, and rate-controlled sched-

ulers such as GPS.

3- Using rate relaxation [20]: This convolution theorem was reviewed in Theorem 2.7. This

network service curve formulation assumes that the bounding function of the per-node service

curves are integrable.

Among the above convolution theorems, we choose the third one which is the easiest

method to be used for numerical evaluation and is the only one which does not depend on

a priori limits on delay, backlog, or busy periods and is not restrictive in per-node service curve

definitions. While the analysis in [20] assumes BMux, we aim to use the statistical network

service curve to extend our single node results from the previous chapter to end-to-end results.

4.2 Rate Characterization in FIFO Schedulers

The departure characterization of CBR traffic in FIFO schedulers is used in the literature for

the purpose of bandwidth estimation, e.g., [71]. If A0 and Ac are two CBR traffic arrivals with

respective rates r0 and rc to a FIFO scheduler with capacity C, then it was shown in [44] that

the departure process D0 corresponding to A0 is a CBR traffic and can be characterized by

D0(t) =

 r0t if C ≥ r0 + rc

r0C
r0+rc

t if C < r0 + rc .
(4.3)
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Extending the concept to a more general type of traffic sources, recently, the departure long-

term rate of EBB or heavy-tailed self-similar arrivals is shown to converge to Eq. (4.3), almost

surely [29].

Assuming EBB or heavy-tailed self-similar (HTSS) traffic arrivals, Ciucu et al. [29] employ

Cruz’s FIFO service curve formulation in (Eq. (3.17)) to prove the following bound for through

flow departure

P
{
D0(t) <

( r0

r0 + rc
− k
)
Ct− σ

}
≤ ε(σ) , (4.4)

where k > 0 is a correction factor, and ε is a decreasing function of σ and k. ε must satisfy

limσ→∞ ε(σ) = 0. Note that for k → 0, ε(σ) may become a trivial bound (greater than one).

Indeed, k is a constant which depends on both lower and upper bounds on the traffic rates.

In particular, for the case of EBB arrivals, ru0 is called an MGF upper envelope rate for through

flow, if for any fixed θ > 0, and all s ≤ t

E[eθA(s,t)] ≤ eθr
u
0 (t−s) , (4.5)

and rl0 is called an MGF lower envelope rate for through flow, if for any fixed θ > 0, and all

s ≤ t

E[e−θA(s,t)] ≤ e−θr
l
0(t−s) . (4.6)

Then, combining log
(
E[eX ]

)
≥ E[X] for any random variable X from Jensen’s inequality,

and Eqs. (4.5) and (4.6) yields

rl0 ≤ r0 ≤ ru0 .

The overload condition is defined in [29] to be

rl0 + rlc > C , (4.7)

which happens at larger utilization than where the real overload occurs in Eq. (4.3). In this

section, we first prove that the conjecture in Eq. (4.3) is valid analytically not only for CBR
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traffic but also for the long-term average rate of a general traffic source. Then, we will show

that on long paths, the departure long-term average rate from a network of FIFO schedulers

merges to that of blind multiplexing. While the results of [29] are interesting in the sense

that they determine how large the time interval must be to expect the average behavior as in

Eq. (4.3), our single node results adds to [29] from the following aspects:

• The overload condition in [29] (See Eq. (4.7)) is a subset of overload condition in

Eq. (4.3). However, we assume the same definition of overload condition as in Eq. (4.3).

• The traffic sources are assumed to be EBB, and HTSS in [29], whereas our results applies

to general traffic arrival.

Since the analysis in this section is in the context of asymptotic long-term average rate, we

recap the definition of the limit, below.

Definition 4.1 (Limit in the infinity). Suppose that x is an independent variable, and F is a

function of x. F is said to converge to f as x goes to infinity, if and only if for any ε > 0

there exists a constant Kε > 0 such that, for any x > Kε, |F(x) − f | < ε. This can also be

expressed as the following

lim
x→∞
F(x) = f ⇔ ∀ε > 0 ∃Kε > 0 : sup

x>Kε

|F(x)− f | < ε .

We assume that there is a long-term average rate for through flow and cross flow in the

sense that for any s, t ≥ 0

lim
t→∞

A0(s, s+ t)

t
= r0, lim

t→∞

Ac(s, s+ t)

t
= rc, (4.8)

where A0 and Ac are the arrivals from through and cross flow, respectively. The following

theorem captures the asymptotic rates of the departures in FIFO schedulers.

Theorem 4.1 (Departure rate characterization in FIFO schedulers). Suppose that A0 and Ac

are two arrival processes with respective long-term average rates of r0 and rc. These two

arrivals enter a FIFO scheduler with total capacity C. Represented by D0 and Dc are the
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corresponding departure processes from through and cross flow. Then, the long-term average

rate of the through flow departure can be characterized as follows

lim
t→∞

D0(t)

t
=

 r0 if C ≥ r0 + rc

r0C
r0+rc

if C < r0 + rc .
(4.9)

• Remark: Although there is no time functionality in Theorem 4.1, it is indeed a more general

statement of Eq. (4.3). In a fluid flow model, if all arrivals to a fixed capacity link are CBR and

the buffer size is unlimited, then the output traffic is also CBR. Thus, a long-term average rate

of the departures in that case is equivalent to the departure CBR rate.

For the proof of the theorem we need the following lemma.

Lemma 4.1. If u is a function of t satisfying limt→∞
u
t

= 0 and A is an arrival process with

long-term average rate r, i.e., for any s, t ≥ 0

lim
t→∞

A(s, s+ t)

t
= r , (4.10)

then

lim
t→∞

A(t− u, t)
t

= 0 .

Proof. Note that limt→∞
u
t

= 0 implies limt→∞
t−u
t

= 1. The total arrivals in [t − u, t) are

given by

A(t− u, t) = A(0, t)− A(0, t− u) .

Dividing both sides by t, and taking the limit yields

lim
t→∞

A(t− u, t)
t

= lim
t→∞

A(0, t)

t
− lim

t→∞

A(0, t− u)

t

= r − lim
t→∞

A(0, t− u)

t− u
lim
t→∞

t− u
t

= r − r

= 0 ,

where in the second line, we use Eq. (4.10) and the chain rule. In the third line, we use

limt→∞
t−u
t

= 1.
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Proof. We will prove this theorem separately, for the two cases as follows:

Case 1 (r0 + rc ≤ C):

Fix t > 0, and define t− x̂t ≤ t as the start time of the busy period containing time t. In other

words, t − x̂t is the last time before or at time t that the buffer was empty. If we denote the

total arrivals, and departure processes to the scheduler respectively by Atot and Dtot, then

t− x̂t = sup{υ ≤ t | Atot(υ) = Dtot(υ)}. (4.11)

We will first prove that in Case 1, x̂t is bounded by a constant as t grows. To do so, note that

Eq. (4.11) implies that the total arrivals in [t − x̂t, t) are larger than the total capacity in that

interval, or

Atot(t− x̂t, t) > Cx̂t .

Define ε1 = Atot(t−x̂t,t)−Cx̂t
2x̂t

> 0. Combining this with the above equation, we have

Atot(t− x̂t, t)
x̂t

> C + ε1 . (4.12)

On the other hand, from Eq (4.8), and Def. 4.1, there exists a constant Kε1 such that

∀x > Kε1 :
Atot(t− x, t)

x
< r0 + rc + ε1 . (4.13)

Comparing Eqs. (4.12) and (4.13) and the fact that r0 + rc ≤ C shows that x̂t ≤ Kε1 , or x̂t

t

decays to zero as t grows. Since the total departure at time t is lower bounded by the total

arrival up to time t− x̂t, we have the following:

lim
t→∞

Dtot(t)

t
≥ lim

t→∞

Atot(t)− Atot(t− x̂t, t)
t

≥ r0 + rc − lim
t→∞

Atot(t− x̂t, t)
t

= r0 + rc , (4.14)

where we use Lemma 4.1 and the fact that limt→∞
x̂t

t
= 0 to obtain the second line.

In addition, Dtot(t) ≤ Atot(t) and thus, limt→∞
Dtot(t)

t
≤ limt→∞

Atot(t)
t

= r0 + rc. Com-

bining this result with Eq. (4.14) completes the proof for the first case.
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Case 2 (r0 + rc > C):

We first need to show that the last idle time before t, i.e., t − x̂t is bounded by a constant as t

grows. By the definition of t− x̂t in Eq. (4.11), we have

Atot(t− x̂t) ≤ C(t− x̂t) . (4.15)

On the other hand, Def. 4.1 together with Eq. (4.8) convey that for any arbitrary ε2 > 0 there

exists a constant Kε2 such that

∀x > Kε2 :
Atot(x)

x
> r0 + rc − ε2 . (4.16)

Since r0 + rc > C, if we set ε2 = r0+rc−C
2

> 0 in the above equation, then there exists a

constant Kε2 such that

∀x > Kε2 :
Atot(x)

x
>
r0 + rc + C

2
> C . (4.17)

Comparing Eqs. (4.15) and (4.17), we have t − x̂t ≤ Kε2 which means that t − x̂t is always

bounded by a constant regardless of t. This also implies that limt→∞
x̂t

t
= 1. Using this result,

we have

lim
t→∞

Dtot(t− x̂t, t)
t

= lim
t→∞

Dtot(t)−Dtot(t− x̂t)
t

= lim
t→∞

Dtot(t)− Atot(t− x̂t)
t

(4.18)

= lim
t→∞

Dtot(t)

t
, (4.19)

where in the second line we use the definition of t− x̂t from Eq. (4.11). In the last line, we use

Lemma 4.1 and the fact that limt→∞
t−x̂t
t

= 0 if r0 + rc > C. Hence,

lim
t→∞

Dtot(t)

t
= lim

t→∞

Dtot(t− x̂t, t)
t

= lim
t→∞

Cx̂t

t

= C , (4.20)

where in the second line, we use the definition of t− x̂t and the last line uses limt→∞
x̂t

t
= 1.
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Denote ût the latest arrival time of any departed traffic up to time t. That is

Dtot(t) = Atot(ût). (4.21)

Since the scheduler is busy in [t − x̂, t) and it cannot serve more than Dtot(t) in that time

interval, we have

Cx̂t ≤ Atot(ût) .

Dividing both sides by x̂t, and taking the limit, we have

C ≤ lim
t→∞

Atot(ût)

x̂t

= lim
t→∞

Atot(ût)

t
lim
t→∞

t

x̂t

= lim
t→∞

Atot(ût)

t
, (4.22)

where chain rule is used in the second line, and limt→∞
x̂t

t
= 1 is employed to obtain the last

line. With this result, we have limt→∞ ût = ∞, otherwise Eq. (4.22) along with Lemma 4.1

infer that C ≤ 0. Hence, we have

lim
t→∞

Dtot(t)

t
= lim

t→∞

Atot(ût)

ût
lim
t→∞

ût
t

= (r0 + rc) lim
t→∞

ût
t
, (4.23)

where in the first line we use Eq. (4.21) and that limt→∞ ût = ∞ to obtain the second line.

Combining Eqs. (4.20) and (4.23), yields

lim
t→∞

ût
t

=
C

r0 + rc
. (4.24)

We can exploit the above equation to prove the theorem as follows

lim
t→∞

D0(t)

t
= lim

t→∞

A0(ût)

ût

ût
t

= lim
t→∞

A0(ût)

ût
lim
t→∞

ût
t

=
r0C

r0 + rc
,

where in the first line we use the definition of ût and the chain rule. In the last line, we inserted

the values from Eqs. (4.8) and (4.24).
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Figure 4.1: The multi-node scenario used in Theorem 4.2.

With iterating the above theorem, we can characterize the long-term average rate of the

departure of a large tandem network. This is considered in the following theorem.

Theorem 4.2 ([44]). Consider the scenario depicted in Fig. 4.1. Suppose that the long-term

average rate of the cross flow at all nodes are identical and equal to rc. Represented by r0,h

is the long-term through flow departure rate from node h. The long-term through flow arrival

rate to the network is denoted by r0,0 and equals to r0,0 = r0. If the number of nodes in the path

tends to infinity, then the long-term average rate departure of the network can be characterized

by the following

r0,∞(t) =

 r0 if C ≥ r0 + rc

[C − rc]+ if C < r0 + rc.
(4.25)

Proof. If r0 + rc ≤ C, then by Theorem 4.1, the long-term rate of the through flow arrival and

departures from the first node are equal to r0. Repeating the same argument for the next node,

we realize that in the case of r0 + rc ≤ C, we have r0,∞ = r0.

If r0 + rc > C, we will show by induction that the long-term average rate of the through

flow departure from any node h along the path can be obtained by the following recursion

formula

r0,h =
r0,h−1C

r0,h−1 + rc
, (4.26)

with initial condition r0,0 = r0. Moreover, the rate obtained from the above equation satisfies
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the inequalities

[C − rc]+ < r0,h < r0,h−1. (4.27)

For h = 1, Eqs. (4.26) and (4.27) are immediately obtained by using Theorem 4.1.

Now assume that the through flow long-term average departure rate from the k’th node is

r0,k =
r0,k−1C

r0,k−1+rc
, for some r0,k−1 and that [C − rc]+ < r0,k < r0,k−1. Since C − rc < r0,k

by the induction assumption, we will have r0,k+1 =
r0,kC

r0,k+rc
from Theorem 4.1. Combining

r0,k+1 =
r0,kC

r0,k+rc
, and [C − rc]+ < r0,k leads to [C − rc]+ < r0,k+1 < rk. Thus, Eqs. (4.26),

(4.27) are proved by induction.

Eq. (4.27) shows that the long-term average rate of the through flow departure strictly de-

creases as through flow traverses each node along the path. On the other hand the same equation

shows that the departure long-term average rate is always lower bounded by [C − rc]+. Thus,

if the number of nodes in the path tends to infinity, we will have r0,∞ = [C − rc]+.

To capture the effect of FIFO schedulers on long paths, for CBR arrivals, we consider the

case where all FIFO schedulers are replaced by SP with through flow having the lowest priority,

and compute the departure process for that scenario in the following theorem.

Theorem 4.3 (Departure rate characterization in BMux). Replacing all FIFO schedulers in

the scenario described in Theorem 4.2 by SP with through flow having the lowest priority, the

long-term average rate from the network matches the formulation in Eq. (4.25) for a path of

arbitrary length.

Proof. Denote by A0,h, D0,h, and Ac, respectively, the through flow arrival and departure at

node h, and the cross flow arrival at any node. We prove the theorem initially for the special

case of an isolated node. The departure at time t from the through flow is lower bounded by

the following

D0,1(t) ≥ A0,1(x̂t) + [C(t− x̂t)− Ac(x̂t, t)]+ , (4.28)
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Figure 4.2: Tandem network scenario

where x̂t is as defined in Eq. (4.11). Dividing both sides by t and using the fact that t − x̂t is

bounded by a constant if C ≥ r0 + rc, and x̂t is bounded by a constant if C < r0 + rc proves

that the claim for single node scenario. Iterating the above argument proves the theorem for

any network sizes. In fact, we have shown that the departure rate in case of BMux is lower

bounded by that of FIFO. Given that BMux is the worst-case scheduling and cannot be worse

than FIFO completes the proof.

The above theorem implies that on long paths, FIFO converges to the worst-case scheduling

(BMux) in terms of long-term average rate for any type of traffic sources.

4.3 Statistical End-to-End Performance Bounds

In this section, we return to the performance analysis of ∆-schedulers. We consider the tandem

network scenario depicted in Fig. 4.2. Each node is a ∆-scheduler with parameter ∆h
0,c for the

through flow with respect to the cross flow and total capacity Ch. To simplify notation, we use

∆h to mean ∆h
0,c. Computing statistical performance bounds using Network Calculus requires

a statistical network service curve formulation. As reviewed in Theorem 2.7, a statistical con-

volution theorem is provided in [20] and can be used to compute a statistical network service

curve if per-node service curves have integrable bounding functions. To formulate a network

service curve, it is assumed that through flow traverses a tandem network in which all nodes
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are SP with the lowest priority assigned to the through flow at each node. In the following,

we use the convolution theorem from [20] for end-to-end delay bound analysis in a tandem of

∆-schedulers.

Suppose that the tandem network in Fig. 4.2 is a homogeneous network. Each node h =

1, . . . , H in that scenario is a ∆-scheduler with parameter ∆h
0,c = ∆, and capacity C. The

through flow and cross flow are leaky bucket sources with respective parameters A0 ∼ (σ0, ρ0)

and Ah ∼ (σc, ρc). The statistical service curve formulation we use for this type of traffic is a

lower bound version of the service curve from Eq. (3.48). That is, for fixed θc ≥ 0, and any

σc > 0

Sh(t) =
[
Ct− [ρc(t− θc + ∆(θc)) + σc]+

]
+
It>θc (4.29)

=
[
C(t+ θc)− [ρc(t+ ∆(θc)) + σc]+

]
+
It>0 ∗ δθc(t) , (4.30)

where in the second line, we use a shift function δθc .

In order to examine the accuracy of the convolution theorem in [20] for scheduling analysis,

we can compare the resulting network service curve from Theorem 2.7 in the deterministic

special case with that of deterministic convolution theorem in Theorem 2.3. Theorem 2.7

enforces per-node service curves to be of the form of Sh(t) − σc. For this reason, σc must be

taken out from the bracket in Eq. (4.30), which leads to a lower bound on the service curve

which we represent it by S̃h, that is

S̃h(t;σc) =
[
C(t+ θc)− [ρc(t+ ∆(θc))]+

]
+
It>0 ∗ δθc(t)− σc . (4.31)

Applying the per-node service curve in Eq. (4.31) to Theorem 2.7 and setting γh, τh = 0 for
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any h = 1, . . . , H − 1 to be in the special case of deterministic regime, we have

Snet(t) = S̃1 ∗ . . . ∗ S̃H(t)−Hσc

=
H⊗
h=1

([
C(t+ θc)− [ρc(t+ ∆(θc))]+

]
+
It>0

)
∗ δHθc −Hσc

=
[
C(t+ θc)− [ρc(t+ ∆(θc))]+

]
+
It>0 ∗ δHθc −Hσc

=
[
C(t− (H − 1)θc)− [ρc(t−Hθc + ∆(θc))]+

]
+
I(t>Hθc) −Hσc , (4.32)

where in the second line, we use the associativity and commutativity of the min-plus convolu-

tion operator. In the third line, we use the fact that Eq. (4.31) is concave for any t > 0. Let us

compare the resulting network service curve from the above methods for two cases of BMux

and FIFO.

• BMux (∆ =∞): From Eq. (4.29),

Sh(t) = [(C − ρc)t− σc]+I(t>Hθc) .

Sh from the above equation is always decreasing in θc. Thus, the optimum value of θc is

zero. By setting θc = 0 and using shift functions, the above per-node service curve can be

reformulated as

Sh(t) = [(C − ρc)t− σc]+I(t>0)

= (C − ρc)tI(t>0) ∗ δ σc
C−ρc

.

Applying this per-node service curve in Theorem 2.3, yields

Snet(t) = S1 ∗ . . . ∗ SH(t)

= (C − ρc)tI(t>0) ∗ δ Hσc
C−ρc

= [(C − ρc)t−Hσc]+ , (4.33)

where in the second line, we use the fact that (C − ρc)t is a concave function. Replacing

∆ =∞ and θc = 0 in Eq. (4.32) and noting that Snet(t) ≥ 0 lead to the same network service
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curve as in Eq. (4.33). Consequently, the existing statistical convolution theorem is as good as

the deterministic convolution in Theorem 2.3 in a tandem of blind multiplexors.

• FIFO (∆ = 0): Applying the per-node service curve from Eq. (4.30) to Theorem 2.3, yields

Snet(t) = S1 ∗ . . . ∗ SH(t)

=
H⊗
h=1

(
[(C − ρc)t+ Cθc − σc]+It>0

)
∗ δHθc , (4.34)

where we use the associativity and commutativity of the convolution theorem in the second line.

In this case, for any θc > σc
C

, the term in the bracket in Eq. (4.29) is concave and increasing for

any t > 0. Hence, the resulting network service curve from Eq. (4.29) would be

Snet(t) = [C(t− (H − 1)θc)− ρc(t−Hθc)− σc]+It>Hθc . (4.35)

On the other hand, applying ∆ = 0 in Eq. (4.32), yields

Snet(t) = [C(t− (H − 1)θc)− ρc(t−Hθc)]+It>Hθc −Hσc . (4.36)

Comparing Eqs. (4.35) and (4.36) shows that cross flow burstiness is overestimated in the ex-

isting convolution theorem for FIFO schedulers. Hence, Theorem 2.7 is more pessimistic than

Theorem 2.3 for FIFO schedulers. This was the motivation for our work in [45] to strengthen

the convolution theorem for scheduling analysis.

4.3.1 New convolution theorem

As shown in the previous section, although the existing convolution theorem formulation works

properly for BMux, applying that convolution theorem to per-node service curve for schedulers

leads to loose network service curve descriptions. More precisely, excluding the service bursts

σh’s from the convolution leads to a pessimistic network service curve for ∆-schedulers. To

resolve this problem, we propose a new convolution which incorporates service bursts in the

convolution and provides a tighter network service curve formulation.
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Theorem 4.4 (New statistical network service curve [45]). Suppose that a through flow tra-

verses a cascade of H nodes. There is a statistical service curve in the sense of Def. 2.4 Sh

at each node for the through flow at that node, with bounding function εh. Assume that εh for

each h is integrable, i.e., ∫ ∞
0

εh(y)dy <∞ , (4.37)

and Sh satisfies the following for any σh, x, t ≥ 0

Sh(t;σh + x) ≥ [Sh(t;σh)− x]+ . (4.38)

For any h = 1, . . . , H − 1, define γh, τh ≥ 0, and any vector of non-negative elements σnet =

(σ1, . . . , σH). The following is a statistical end-to-end network service curve for the through

flow

Snet(t;σnet) = [S1 ∗ . . . ∗ SH ∗ δP
h<H τh(t;σnet)−

∑
h<H

γht]+ , (4.39)

with bounding function

εnet(σnet) = εH(σH) +
∑
h<H

1

γhτh

∫ ∞
σh

εh(y)dy . (4.40)

Proof. We first prove that the following is a statistical network service curve with the same

bounding function as stated in Eq. (4.40),

Snet(t;σnet) = inf
x1,...,xH

{
SH(xH ;σH) +

∑
h<H

Sh(xh;σh + γh

H∑
k=h+1

(τk−1 + xk))
}
, (4.41)

where xk must belong to the following set

{
x1, . . . , xH |

H∑
k=1

xk +
H−1∑
k=1

τk ≤ t
}
. (4.42)

Then, using the assumptions in Eqs. (4.38) and (4.42), we infer that Eq. (4.41) implies the

theorem statement in Eq. (4.39) and the proof would be completed.

We prove Eq. (4.41) by induction. For H = 1 the problem reduces to a single node case.

Hence, we start the proof by considering a network of two nodes, i.e., H = 2. Denote the
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network service curve in this case by S1,2, and the corresponding bounding function by ε1,2.

Represent through flow arrival and departure at node h respectively by Ah, and Dh. With these

notations we need to show that S1,2 from the following

S1,2(t; (σ1, σ2)) = inf
x1+x2≤t−τ1

{S2(x2;σ2) + S1(x1;σ1 + γ1(τ1 + x2))}

must satisfy

P{D2(t) < A1 ∗ S1,2(t; (σ1, σ2))} ≤ ε2(σ2) +
1

γ1τ1

∫ ∞
σ1

ε1(y)dy =: ε1,2(σ1, σ2) . (4.43)

Since S2 is a statistical service curve at the second node, the following inequality

∀t ≥ 0 ∃x2 ≤ t : D2(t) ≥ A2(t− x2) + S2(x2) , (4.44)

will not be violated with violation probability more than ε2(σ2). Now, suppose the following

inequality also holds

∀x ≤ t ∃x1 ≤ t− x− τ1 : D1(t− x1) ≥ A1(t− x− τ1 − x1) + S1(x1;σ1 + γ1(x+ τ1)) .

(4.45)

Then, inserting the right hand side of the above inequality as a lower bound forA2 in Eq. (4.44)

shows that

D2(t) ≥ A1 ∗ S1,2(t; (σ1, σ2)) . (4.46)

Now we need to show that the bounding function of the above statistical service curve matches

Eq. (4.43). By the union bound, the bounding function of Eq. (4.46) is upper bounded by the

sum of the violation probabilities of Eqs. (4.44) and (4.45). The bounding function of Eq. (4.44)

is ε2(σ2) from the theorem statement. To compute the bounding function of Eq. (4.45) we

discretize time with time unit τ1. There exists an integer k ≥ 1 such that (k− 1)τ1 ≤ x < kτ1.

Since A1, S1, and D1 are non-decreasing functions, a necessary condition that Eq. (4.45) fails

is that

D1(t− kτ1) < A1(t− x1 − kτ1) + S1(x1;σ1 + kγ1τ1) . (4.47)
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Thus,
∞∑
k=1

P
{
D1(t− kτ1) < inf

x1≤t−kτ1
{A1(t− kτ1 − x1) + S1(x1;σ1 + kγ1τ1)}

}
≤

∞∑
k=1

ε1(σ1 + kγ1τ1)

≤ 1

γ1τ1

∫ ∞
σ1

ε1(y)dy ,

where in the second line we use that S1 is a statistical service curve with bounding function

ε1, and the last line follows with the Riemann integral. Adding the violation probabilities of

Eqs. (4.44) and (4.45) completes the proof for H = 2.

Now suppose that the theory is correct for anyH−1 tandem of nodes and we want to prove

the correctness for H nodes, with H > 2. Consider a cascade of H > 2 nodes. For the last

H − 1 nodes we have

S2,...,H(t; (σ2, . . . , σH)) = inf
x2,...,xH

{SH(xH ;σH) +
∑

1<h<H

Sh(xh;σh + γh

H∑
k=h+1

(τk−1 + xk))} ,

where
H∑
h=1

xh +
H−1∑
h=1

τh ≤ t ,

and the bounding function is

ε2,...,H(σ2, . . . , σH) = εH(σH) +
H−1∑
h=2

1

γhτh

∫ ∞
σh

εh(y)dy .

Then, replacing S2 with S2,...,H and ε2 with ε2,...,H in the argument for H = 2 proves the

theorem for H > 2 case, and we proved the theorem by induction.

For the rest of this chapter we take a simpler form of the network service curve by choosing

γh = γ for any h = 1, . . . , H − 1. Thus, Eqs. (4.39) and (4.40) are simplified, respectively, to

Snet(t;σnet) = [S1 ∗ . . . ∗ SH ∗ δτnet(t;σnet)− (H − 1)γt]+ , (4.48)

and

εnet(σnet) = εH(σH) +
∑
h<H

1

γτh

∫ ∞
σh

εh(y)dy , (4.49)
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A0 ∼ (M0, ρ0, α0)
CHC1 C2

(MH , ρH , αH)
AH

(M2, ρ2, α2)
A2

(M1, ρ1, α1)
A1

Figure 4.3: The multi-node EBB arrivals scenario

where we also simplified the notation in Eq. (4.48) by using τnet =
∑

h<H τh.

Theorem 3.1 formulates a per-node service curve for ∆-schedulers. Applying Theorem 4.4

to that service curve gives us an end-to-end statistical service curve in a tandem of ∆-schedulers.

If we insert this network service curve and a statistical through flow sample path envelope to

Theorem 2.6, then end-to-end probabilistic performance bounds can be computed. In the fol-

lowing, we compute the corresponding bounds for EBB traffic arrivals.

4.3.2 Statistical performance bounds for EBB traffic

Suppose we have a tandem network scenario as depicted in Fig. 4.3. The through flow and cross

flow (at node h) are EBB sources, respectively, with EBB parameters A0 ∼ (M0, ρ0, α0) and

Ah ∼ (Mh, ρh, αh). Each node h = 1, . . . , H in that scenario is a ∆-scheduler with parameter

∆h
0,c = ∆h. A network service curve for the through flow in this scenario for any γc ≥ 0 with

bounding function

εnet(σnet) = εH(σH) +
∑
h<H

1

γcτh

∫ ∞
σh

εh(y)dy , (4.50)
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can be obtained from Eq. (4.48),

Snet(t;σnet) = [S1 ∗ . . . ∗ SH ∗ δτnet(t;σnet)− (H − 1)γct]+

≥ [S1 ∗ . . . ∗ SH(t)− (H − 1)γct]+ ∗ δτnet(t;σnet)− (H − 1)γcτnet

= [S1(t)− (H − 1)γct]+ ∗ . . . ∗ [SH(t)− (H − 1)γct]+

∗ δτnet(t;σnet)− (H − 1)γcτnet, (4.51)

where the second line holds since [a+b]+ ≥ [a]+− [b]+ for any b ≥ 0 and any a. The third line

follows from the second line since for any functions f and g, and constant k, f ∗ g(t) − kt =

(f(t) − kt) ∗ (g(t) − kt). To compute a network service curve from Eq. (4.51), we need to

characterize the elements in the bracket in that equation. Replacing the corresponding cross

flow arrival envelopes in Theorem 3.1, a service curve and the corresponding bounding function

for the through flow at node h for any σh, γc ≥ 0, and fixed θh ≥ 0 is

Sh(t;σh) =
[
Cht− [(ρh + γc)(t− θh + ∆h(θh)) + σh]+I(t>θh−∆(θh))

]
+
It>θh (4.52)

εh(σh) = Mhe
(

1 +
ρh
γh

)
e−αhσh . (4.53)

To simplify the convolution computations, we apply concavification as introduced in Sec. 3.6.

We showed in Eqs. (3.51) and (3.52) that the loss of accuracy is not significant by concavifi-

cation in high utilizations. Thus, we replace the service curve formulation in Eq. (4.52) by the

following lower bound

Sh(t;σh) =
[
Cht− [(ρh + γc)(t− θh + ∆h(θh)) + σh]+

]
+
It>θh

=
[
Ch(t+ θh)− [(ρh + γc)(t+ ∆h(θh)) + σh]+

]
+
It>θh ∗ δθh . (4.54)

Define

Uh := (Ch − (H − 1)γc)θh − [(ρh + γc)∆
h(θh) + σh]+ . (4.55)

Suppose that γc is chosen such that Ch − ρh −Hγc > 0, then, Uh from the above equation is

increasing in θh. We choose θh large enough such that Uh ≥ 0. That is, θh ≥ θ∗h, where

θ∗h = min
{ σh
Ch − ρh −Hγc

,
[σh + (ρh + γc)∆

h]+
Ch − (H − 1)γc

}
. (4.56)
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Then, from Eq. (4.54), we have

[Sh(t;σh)− (H − 1)γct]+ = S̃h ∗ δθh(t) , (4.57)

where

S̃h(t) = min{(Ch − (H − 1)γc)(t+ θh), (Ch − ρh −Hγc)t+ Uh}It>0 . (4.58)

If Uh ≥ 0, then S̃h(t) is a concave non-decreasing function for any t > 0. Combining all

above, the network service curve in Eq. (4.51) can be rewritten as

Snet(t;σnet) = (S̃1 ∗ δθ1) ∗ . . . ∗ (S̃H ∗ δθH ) ∗ δτnet(t;σnet)− (H − 1)γcτnet

= min
h

(S̃h) ∗ δPH
k=1 θk+τnet

(t;σnet)− (H − 1)γcτnet

= min
h

{
min{(Ch − (H − 1)γc)(t+ θh),

(Ch − ρh −Hγc)t+ Uh}It>0

}
∗ δPH

k=1 θk+τnet
− (H − 1)γcτnet,

(4.59)

where in the second line we use commutativity and associativity of the min-plus convolution

operator, and the concavity of S̃h. In the last line, we insert the value of S̃h from Eq. (4.58).

The bounding function of this service curve from Eq. (4.50) is

εnet(σnet) = MHe
(

1 +
ρH
γc

)
e−αHσH +

H−1∑
h=1

MhC
min

γc
e
(

1 +
ρh
γc

)
e−αhσh , (4.60)

where Cmin = mink Ck and we choose τh in Eq. (4.50) as follows

τh =
1

αhCmin
(4.61)

and correspondingly

τnet =
H−1∑
h=1

1

αhCmin
. (4.62)

From Theorem 2.2, and since the through flow is EBB with parameter (M0, ρ0, α0), dnet

from the following is an end-to-end delay bound for the through flow arrivals

dnet(σnet, σ0) = inf{d ≥ 0 | ∀t ≥ 0 : Snet(t+ d;σnet) ≥ (ρ0 + γ0)t+ σ0} , (4.63)
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in the sense that

P{Wnet(t) > dnet(σnet, σ0)} ≤M0e
(

1 +
ρ0

γ0

)
e−α0σ0 +MHe

(
1 +

ρH
γc

)
e−αHσH

+
H−1∑
h=1

MhC
min

γc
e
(

1 +
ρh
γc

)
e−αhσh . (4.64)

Inserting Snet from Eq. (4.59) to the delay bound condition in Eq. (4.63), yields

∀t > 0 : min
h

{
min{(Ch − (H − 1)γc)(t+ d+ θh −

H∑
k=1

θk − τnet),

(Ch − ρh −Hγc)(t+ d−
H∑
k=1

θk − τnet) + Uh}
}
I(t+d>

PH
k=1 θk+τnet)

≥ (ρ0 + γ0)t+ σ0 + (H − 1)γcτnet. (4.65)

Since the minimum of concave functions is a concave function, the left-hand side of the above

inequality is concave. Thus, to enforce Eq. (4.65) for any t > 0, we need to show that it

holds for t = 0+, and the long-term average rate of the concave function in the left hand side

at t → ∞ is not smaller than ρ0 + γ0. That is, for t → ∞ we need to satisfy minh{Ch −

ρh − Hγc} ≥ ρ0 + γ0. We need to choose d ≥ 0 to be the minimum value that satisfies

Eq. (4.65) at t = 0+ with all the constraints mentioned above. From the indicator function

in Eq. (4.65), a delay bound d must satisfy d >
∑H

k=1 θk + τnet. With a change of variable

X := d −
∑H

h=1 θh − τnet, the constraint d >
∑H

h=1 θh + τnet, will be translated into X ≥ 0,

and Eq. (4.65) results in the following optimization problem:

min
X,θ1,θ2,...,θH

d = X +
H∑
h=1

θh + τnet (4.66)

s.t. ∀h : Uh ≥ 0 (4.67)

∀h : (Ch − (H − 1)γc)(X + θh) ≥ σ0 + (H − 1)γcτnet (4.68)

∀h : (Ch − ρh −Hγc)X + Uh ≥ σ0 + (H − 1)γcτnet (4.69)

X, θ1, θ2, . . . , θH ≥ 0 . (4.70)

Note that a feasible θh from the above constraints satisfies θh ≥ θ∗h (where θ∗h is formulated in

Eq. (4.56)) since it must satisfy Uh ≥ 0. The above optimization problem is convex if ∆h < 0
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for all 1 ≤ h ≤ H . However, the convexity does not hold if there exists one h with ∆h ≥ 0,

because of the inequality in Eq. (4.69). Although the problem is non-convex, we can still find

the optimal solution. This is explained in Sec. 4.3.4.

To avoid going into the complexities of optimization problem formulated above, we make

a proper choice to obtain a closed-form end-to-end result. We choose θh = θ∗h and compute

closed-form performance bounds correspondingly in the following theorem.

Theorem 4.5 (Closed-form performance bounds [45]). Consider the scenario depicted in

Fig. 4.3, where a through flow passes through a tandem of H nodes. Each node h is a

∆-scheduler with ∆h and capacity Ch. Through flow and cross flow (at node h) are EBB

traffic, respectively, with parameters (M0, ρ0, α0) and (Mh, ρh, αh) satisfying Eq. (1.4). De-

fine a vector of non-negative elements σnet = (σ0, σ1, . . . , σH). For any γ0 and γc satisfying

0 ≤ γ0 +Hγc ≤ minh{Ch − ρh}, define the following:

bnet(σnet, σ0) = (ρ0 + γ0 + (H − 1)γc)τnet + σ0 + (ρ0 + γ0)
H∑
h=1

θ∗h , (4.71)

dnet(σnet, σ0) =
H∑
h=1

θ∗h + τnet + max
h=1,...,H

{
max

{σ0 + (H − 1)γcτnet
Ch − (H − 1)γc

,

σ0 + (H − 1)γcτnet − [σh + (ρh + γh)∆
h]−

Ch − ρh −Hγc

}}
,

(4.72)

ε(σnet, σ0) = M0e
(

1 +
ρ0

γ0

)
e−α0σ0 +MHe

(
1 +

ρH
γc

)
e−αHσH +

H−1∑
h=1

MhC
min

γc
e
(

1 +
ρh
γc

)
e−αhσh ,

(4.73)

where Cmin = minhCh and τnet =
∑H−1

h=1
1

αhCmin
. Using the above notation, the end-to-end

through flow output and backlog can be bounded as follows:

1- Output burstiness bound: The network through flow departure Dnet can be bounded sta-

tistically by the following for any s ≤ t

P{Dnet(s, t) > (ρ0 + γ0)(t− s) + bnet(σnet, σ0)} ≤ ε(σnet, σ0) . (4.74)
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2- Backlog bound: The end-to-end through flow backlog Bnet is statistically bounded by

P{Bnet(t) > bnet(σnet, σ0)} ≤ ε(σnet, σ0) . (4.75)

3- Delay bound: The end-to-end through flow delay Wnet is statistically bounded by

P{Wnet(t) > dnet(σnet, σ0)} ≤ ε(σnet, σ0) . (4.76)

Proof. Here we prove the correctness of backlog and delay bounds. The proof of the output

burstiness bound follows similar steps as that of the backlog bound. With the EBB parameters

for the through flow and from Eq. (2.53), G0(t;σ0) = (ρ0 +γ0)t+σ0 is a statistical sample path

envelope for any γ0 ≥ 0, with bounding function ε0(σ0) = M0

(
1 + ρ0

γ0

)
e−α0σ0 . In addition,

a statistical network service curve Snet(t;σnet) for such a scenario is as reported in Eq. (4.59)

with bounding function εnet(σnet) as in Eq. (4.50). From Theorem 2.6, output burstiness,

backlog, and delay bounds can be obtained with bounding function ε0(σ0) + εnet(σnet) which

is equal to ε(σnet, σ0) in Eq. (4.73).

The backlog bound in Theorem 2.6 is as follows:

bnet(σnet, σ0) = sup
t≥0
{G0(t;σ0)− Snet(t;σnet)} . (4.77)

Insert Snet formulation in Eq. (4.59) with θh = θ∗h (Eq. (4.56)). Since Snet(t;σnet) is a concave

function for any t >
∑H

k=1 θ
∗
k + τnet, and zero for t >

∑H
k=1 θ

∗
k + τnet. Moreover, G0(t;σ0) is

a concave function for any t > 0, the supremum in Eq. (4.77) happens at t =
∑H

k=1 θ
∗
k + τnet

replacing the corresponding values in Eq. (4.77) proves the backlog bound in Eq. (4.75).

For the delay bound, we prove that dnet from Eq. (4.72) is a feasible solution to the opti-

mization problem formulated in Eq. (4.66 ). Note that any delay bound must satisfy the con-

straints in Eqs. (4.67)-(4.70). Inserting this value of θh = θ∗h in Eq. (4.55), the corresponding

value of Uh is

U∗h = [σh + (ρh + γc)∆
h]− . (4.78)
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The choice of θ∗h confirms the validity of Eq. (4.67) and Eq. (4.70) except for X ≥ 0. Thus, X

must be chosen as the minimum value that satisfies all the remaining constraints in Eqs. (4.68-

4.70). That is

X∗ = max
h

{
max

{σ0 + (H − 1)γcτnet
Ch − (H − 1)γc

− θ∗h,
[σ0 + (H − 1)γcτnet − U∗h ]+

Ch − ρh −Hγc

}}
= max

h

{
max

{σ0 + (H − 1)γcτnet
Ch − (H − 1)γc

− θ∗h,
[σ0 + (H − 1)γcτnet − [σh + (ρh + γc)∆

h]−]+
Ch − ρh −Hγc

}}
= max

h

{
max

{σ0 + (H − 1)γcτnet
Ch − (H − 1)γc

,
[σ0 + (H − 1)γcτnet − [σh + (ρh + γc)∆

h]−]+
Ch − ρh −Hγc

}}
,

(4.79)

where in the last line, various cases might happen for θ∗h and [σ0 + (H − 1)γcτnet − U∗h ]+

depending on weather ∆ ≥ 0 or ∆ ≥ 0. Considering all cases, the third line can be obtained.

The corresponding closed-form delay bound from Eq. (4.79) is

dnet(σnet, σ0) =
H∑
h=1

θ∗h + τnet +X∗ .

Replacing the value of θ∗h andX∗, respectively, from Eqs. (4.56) and (4.79) proves the theorem.

Discrete time analysis: Note that the discrete time version of the above bounds obtained by

setting τnet = 0 for all h, and

ε(σnet, σ0) =
M0

1− e−α0γ0
e−α0σ0 +

MH

1− e−αHγc
e−αHσH +

H−1∑
h=1

Mh

(1− e−αhγc)2
e−αhσh . (4.80)

4.3.3 Leaky bucket arrivals in ∆-schedulers

The statistical performance bounds in previous section can be used as deterministic worst-

case bounds by setting γc, γ0, τnet = 0. We investigate the deterministic special case of our

stochastic results from the previous sections by replacing EBB traffic sources with leaky bucket

arrivals. Suppose that a traffic flow satisfying a deterministic arrival envelope E0(t) = σ0 +ρ0t

in the sense of Eq. (2.5) traverses a path of H links with capacities C1, . . . , CH as depicted

in Fig. 4.4. Each link is shared by a cross flow shaped by a deterministic arrival envelope
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A0 ∼ (ρ0, α0)
CHC1 C2

(σH , ρH)
AH

(σ2, ρ2)
A2

(σ1, ρ1)
A1

Figure 4.4: The multi-node leaky bucket arrivals scenario

Eh(t) = σh + ρht. A ∆-scheduler with parameter ∆h multiplexes the arrivals from the two

flows.

4.3.4 Optimal solution

If the stability condition holds, that is if ρ0 ≤ minh{Ch − ρh}, then from Eq. (4.66), an end-

to-end deterministic delay bound for through flow can be computed by solving the following

optimization problem:

min
X,θ1,θ2,...,θH

d = X +
H∑
h=1

θh (4.81)

s.t. ∀h : Uh ≥ 0 (4.82)

∀h : Ch(X + θh) ≥ σ0 (4.83)

∀h : (Ch − ρh)X + Uh ≥ σ0 (4.84)

X, θ1, θ2, . . . , θH ≥ 0, (4.85)

where

Uh = Chθh − [ρh∆
h(θh) + σh]+ . (4.86)

The variables in the optimization problem in Eq. (4.81) are X and the θh’s. Fix X ≥ 0,

and set the θoph (X) to be the minimum value of θh which satisfies all constraints in Eqs. (4.82)-

(4.85). Inserting the value of θoph (X) into Eq. (4.81), the objective function is represented as a
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(a) 0 ≤ ∆h < σh

Ch−ρh
(b) σh

Ch−ρh
≤ ∆h < σ0+σh

Ch−ρh
(c) σ0+σh

Ch−ρh
≤ ∆h

Figure 4.5: θoph (X) for ∆h ≥ 0

function of only one variable X . Then, we optimize the objective function over X . We obtain

the value of θoph (X) separately for ∆h ≥ 0 and ∆h < 0.

• ∆h ≥ 0 : Since ∆h ≥ 0, Eq. (4.84) always implies Eq. (4.83), and consequently we can

eliminate Eq. (4.83). Thus, θoph (X) for any 1 ≤ h ≤ H is the minimum value which satisfies

inequalities (4.82), (4.84), and (4.85) simultaneously. θoph (X) computed above is as plotted in

Fig. 4.5. As illustrated in the plots, θoph (X) varies with X and ∆h. However, combining all

cases, θoph (X) can be also represented as follows

θoph (X) =


σ0+σh+ρh∆h

Ch
− Ch−ρh

Ch
X, if X < σ0

Ch−ρh
+ min{0, σh

Ch−ρh
−∆h}

σ0+σh
Ch−ρh

−X, if σ0

Ch−ρh
+ min{0, σh

Ch−ρh
−∆h} ≤ X < σ0

Ch−ρh

min{ σh
Ch−ρh

, σh+ρh∆h

Ch
}, if σ0

Ch−ρh
≤ X.

(4.87)

Eq. (4.87) is equivalent to the values of θoph from Fig. 4.5. This is verified b comparing θoph for

fixed ∆h and X from Fig. 4.5, and compare it with that from Eq. (4.87). The above equation

shows that θ∗h(X) for any 1 ≤ h ≤ H is a piece-wise linear function of X with at most two

break points.

• ∆h < 0 : If ∆h is negative, then ∆h(θh) = ∆h and the optimization problem will be

convex. Similar to the case of ∆h ≥ 0, we must choose the minimum value of θoph (X) such
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(a) 0 ≤ −∆h < σh

ρh
(b) σh

ρh
≤ −∆h < σ0

Ch
+ σh

ρh
(c) σ0

Ch
+ σh

ρh
≤ −∆h

Figure 4.6: θoph (X) for ∆h < 0

that all inequalities (4.82)-(4.85) are satisfied which is

θoph (X) = max
{σh + ρh∆

h

Ch
,
σ0

Ch
−X, σ0 + σh + ρh∆

h

Ch
− (Ch − ρh)

Ch
X, 0

}
. (4.88)

θoph (X) from the above equation will be a piece-wise linear function of X depending on the

value of ∆h as depicted in Fig. 4.6.

Figs. 4.5 and 4.6 show that θoph (X) is a piece-wise linear function of X and can have at

most two break points. Thus, the objective function, X +
∑H

h=1 θ
op
h (X), is a piece-wise linear

function of X varies in [0,∞) with at most 2H break points. Consequently, it will take its

minimum at X = 0 and∞, or one of the break points. We construct a set L∗ which is the set

that includes the values of X’s for whichX+
∑H

h=1 θ
op
h (X) might be a local minimum. One of

the elements of L∗ is ‘0’. Note that since θh in all plots of Fig. 4.5 is a constant when X →∞,

the objective function (X +
∑H

h=1 θ
op
h (X)) cannot take its minimum exclusively at X = ∞.

The local minimums of the objective function occur at the break points where the slope of at

least one θh increases. As a result, we can eliminate the first break point in Fig. 4.5b for any h

from L∗. Considering all other break points in Figs. 4.5 and 4.6, for any h, there are at most

two candidates to be an element in L∗. We denote the corresponding set of candidates by Xh,
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which is

Xh =


σ0

Ch−ρh
, if − σh

ρh
< ∆h

−∆h − σh
Ch
, σ0+σh+ρh∆h

Ch−ρh
if − σh

ρh
− σ0

Ch
< ∆h ≤ −σh

ρh

σ0

Ch
if ∆h ≤ −σh

ρh
− σ0

Ch
.

(4.89)

Thus,

L∗ =
H⋃
h=1

{Xh} ∪ {0}, (4.90)

where each Xh from Eq. (4.89) can represent two elements. We can still eliminate some ele-

ments from L∗. θoph (X) can be either decreasing or constant with respect to X . Clearly, a fixed

X cannot be a local optimal point if there exists a θoph (X) which is proportional to X . Because

in that case, by increasing X , the objective function X +
∑H

h=1 θ
op
h (X) does not increase. For

this reason, if for any element in
{

0, X1, . . . , , XH

}
, there exists a h such that θoph (X) is pro-

portional to −X , that element will be eliminated from L∗. As a results, by Figs. 4.5 and 4.6,

non-zero values of θoph (X) belong to one of the following sets

O(X) =
{

1 ≤ h ≤ H |
[
−∆h − σh

ρh

]
+
≤ X

<
σ0 − [σh + ρh∆

h]− − [σh − (Ch − ρh)∆h]−
Ch − ρh

}
, (4.91)

P(X) =
{

1 ≤ h ≤ H | X ≥ σ0

Ch − ρh

}
, (4.92)

where [a]− = max{0,−a} for any real value of a. Correspondingly, the solution to the opti-

mization problem in Eq. (4.81)-(4.85) is

d∗ = min
X∈L∗

{
X +

∑
h∈O(X)

(σ0 + σh + ρh∆
h

Ch
− Ch − ρh

Ch
X
)

+
∑

h∈P(X)

min
{ σh
Ch − ρh

,
[σh + ρh∆

h]+
Ch

}}
. (4.93)

4.3.5 Closed-form solution

As shown in the previous section, a delay bound can be obtained by solving the optimization

problem in Eqs. (4.81)-(4.85). That delay bound is obtained by taking the minimum value of
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at most 2H + 1 local optimum points. As the path length H increases, the set of local optimal

points grows and makes the computation of the optimal solution more difficult. The following

theorem is a special case of Theorem 4.5 and provides closed-form deterministic performance

bounds by setting γc, γ0, τnet = 0.

Theorem 4.6 ([45]). Keep all the assumptions and notation for the leaky bucket arrivals and

tandem network mentioned above. If the stability condition ρ0 ≤ minh{Ch − ρh} holds, then

the following bounds exist for the through flow

1- Output burstiness bound: The through flow departure process satisfies the following for

any s ≤ t

Dnet(s, t) ≤
(
σ0 + ρ0

H∑
h=1

θcfh

)
+ ρ0(t− s), (4.94)

2- Backlog bound: The through flow end-to-end backlog satisfies the following for any t ≥ 0

Bnet(t) ≤ σ0 + ρ0

H∑
h=1

θcfh , (4.95)

3- Delay bound: End-to-end through flow delay satisfies the following for any t ≥ 0

Wnet(t) ≤ dcf , (4.96)

where

dcf = max
h=1,...,H

{
max

{ σ0

Ch
,
σ0 − [σh + ρh∆

h]−
Ch − ρh

}}
+

H∑
h=1

θcfh , (4.97)

and

θcfh := min
{ σh
Ch − ρh

,
[σh + ρh∆

h]+
Ch

}
. (4.98)

In the following we point out some remarks from [13] on the above theorem.

• Remark 1: dcf is increasing in ∆h.

• Remark 2: The end-to-end delay bound in Theorem 4.6 can be simplified for homoge-

neous networks where all scheduling algorithms are identical (i.e. ∆h = ∆). Consider the
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three following special cases.

dcf =


σ0

minh{Ch−ρh}
+
∑H

h=1
σh

Ch−ρh
, ∆ = +∞, (lowest priority)

σ0

minh{Ch−ρh}
+
∑H

h=1
σh
Ch
, ∆ = 0, (FIFO)

σ0

minh{Ch}
, ∆ = −∞, (highest priority).

(4.99)

• Remark 3: For any ∆h < 0 and ρh sufficiently large, the delay bound reduces to dcf =

dcffifo +
∑H

h=1
ρh
Ch

∆h, where dcffifo is the second line in Eq. (4.99).

• Remark 4: If ∆h ≥ 0 for any h, then the through flow burstiness σ0 is served by the

bottleneck link, i.e., minh{Ch − ρh}. If ∆h ≤ −( σ0

Ch
+ σh

ρh
) for any h, then the through flow

burstiness will be served by the minimum capacity, i.e., minhCh.

In the following section we investigate the tightness of the closed-form bounds by comput-

ing some lower bounds achievable delays.

4.3.6 Tightness of bounds

We have computed two deterministic end-to-end delay bounds (d∗ in Eq. (4.93) and dcf in

Eq. (4.97)) for a leaky bucket through flow arrival in a tandem of ∆-schedulers with leaky

bucket cross flows. d∗ and dcf hold as upper bounds for any arrival pattern that satisfies the

leaky bucket constraints. The maximum achievable end-to-end delay among all scenarios is

represented by dmax and the corresponding arrival pattern is known as the worst-case scenario.

By the above notation and since d∗ is minimized over parameter θh while dcf is obtained by a

specific choice of θh, we have

dmax ≤ d∗ ≤ dcf . (4.100)

The delay bound d∗ or dcf are said to be tight if dmax = d∗ or dmax = dcf .

To evaluate the tightness of the bounds we consider an arrival pattern (not necessarily the

worst-case scenario) and compute the corresponding maximum delay in that scenario to use

it as a lower bound on dmax. In the following, we describe our chosen traffic pattern which
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conform to leaky-bucket arrivals, with parameters (σ0, ρ0) for the through flow and (σh, ρh) for

the cross flow at node h.

Arrival Patterns: Assume that the through flow starts at t = −∞ with rate ρ0, added by a

burst of size σ0 at time t = 0. The cross flow at node h starts at t = −∞ with rate ρh added by

a burst of size σh at time t = ωh, where

ωh =

 T arh − ν if ∆h ≥ 0

T arh + ∆h − ν if ∆h < 0 ,
(4.101)

T arh is the arrival time of the first bit of through flow burst at node h, T ar1 = 0, and ν > 0 is

smaller than any positive number, i.e., ν → 0+.

Theorem 4.7 (Lower performance bounds). Keep all the assumptions and notation above.

For the arrival pattern described above, the maximum end-to-end delay and backlog that the

through flow will experience is lower bounded by the following

1- Backlog lower bound:

bmax ≥ σ0 + ρ0

H∑
h=1

Lh, (4.102)

2- Delay lower bound:

dmax ≥ min
{ σ0

minhCh
,min

h
Oh

}
+

[
σ0 −maxhOh.minhCh

]
+

RH+1

+
H∑
h=1

Lh, (4.103)

where

Lh = min
{ σh
Ch − ρh

,
[σh + ρh[∆

h]+ − (Ch − ρ0)[∆h]−]+
Ch

}
, (4.104)

Oh = min
{

[∆h]−,
[(Ch − ρ0)[∆h]− − σh]+

ρh

}
, (4.105)

Rh+1 =
RhCh
Rh + ρh

, (4.106)

and R2 = C1.

Remark 1: The lower bound for the maximum end-to-end delay in Eq. (4.103) consists of

three terms. The first two terms are lower bounds on the time needed to serve the through flow
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burst, respectively, by the bottleneck capacity and capacity sharing according to CBR arrivals

in FIFO schedulers. The last term in Eq. (4.103) is a lower bound on the delay induced by

cross flow exclusively occupying the whole capacity after T arh .

Proof. We compute the end-to-end delay and backlog that the last bit of through flow burst will

experience. We start by proving Eq. (4.102). After the first bit of through flow burst arrives

to node h, it must wait for a period of Lh until it is transmitted. In fact, both terms in Lh

(Eq. (4.104)) correspond to the cases that the capacity is fully devoted to the cross flow. This

is shown in the following by considering the case of ∆h ≥ 0 and ∆h < 0, separately.

If ∆h ≥ 0, then from Eq. (4.104), Lh = min{ σh
Ch−ρh

, σh+ρh∆h

Ch
}. The first term in the

minimum is the maximum time interval to deplete cross flow backlog, and the second term is

the time needed to serve all cross flow arrivals with higher precedence than the through flow

burst. If ∆h < 0, then from Eq. (4.104), Lh = [σh+(Ch−ρ0)∆h]+
Ch

. In this case, the cross flow

burst at node h occurs at T arh + ∆− ν, which is [∆]− time unit before the arrival of the first bit

of through flow burst. Any through flow arrival in [T arh + ∆, T arh ) has higher precedence than

the cross flow arrivals in the same interval. Since through flow in that interval is CBR with

rate ρ0, it takes σh
Ch−ρ0

to serve the cross flow burst at node h. The remaining cross flow burst

[σh + (Ch − ρ0)∆h]+ creates a delay of size Lh to the first bit of through flow burst at node h.

Hence, the first bit of through flow burst is delayed by
∑H

h=1 Lh which creates a through flow

backlog of size ρ0

∑H
h=1 Lh. Adding this built-up backlog to the through flow burst σ0, yields

a backlog of size σ0 + ρ0

∑H
h=1 Lh which verifies Eq. (4.102).

The lower delay bound in Eq. (4.103) consists of three terms. The last term is the delay

due to the exclusive allocation of the whole capacity at each node to the cross flow upon the

arrival of the first bit of through flow burst which is
∑H

h=1 Lh and discussed above. The first

two terms correspond to the time needed to serve the through flow burst in the network. We

compute a lower bound on the first two terms, separately, for ∆h ≥ 0 and ∆h < 0.

• ∆h ≥ 0 : If ∆h ≥ 0 for any h, the end-to-end delay in a tandem of ∆-scheduler is lower

bounded by that of a tandem of FIFO schedulers. In a FIFO system, the through flow burst
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departs the first node with rate C1 after the cross flow burst is served. At the second node,

through flow burst waits for L2 seconds. Then, through flow must compete with a CBR cross

flow with rate ρ2 to be served with a constant rate C2. Thus, the through flow arrival rate to the

third node is R3 = R2C2

R2+ρ2
, where R2 = C1. Continuing this argument, we have Rh+1 = RhCh

Rh+ρh
.

Since from Eq. (4.105), Oh = 0 for ∆h ≥ 0, we have proved the theorem for ∆h ≥ 0.

• ∆h < 0 : Cross flow arrivals before T arh have lower precedence than the first bit of through

flow burst at node h. Some of that traffic is served before the through flow burst arrival with

rate (Ch − ρ0). This is happening only if the whole cross flow burst is served before the

arrival of the first bit of through flow, i.e., if σh
Ch−ρ0

< [∆h]−. The total CBR cross flow in

that interval is ρh[∆h]−. Thus, the amount of lower precedence cross flow arrivals which has

been served before the arrival of the first bit of through flow burst is min{ρh[∆h]−, [(Ch −

ρ0)[∆h]− − σh]+}. Consequently, the whole capacity is allocated to the through flow at most

for a duration of Oh = min
{

[∆h]−,
[(Ch−ρ0)[∆h]−−σh]+

ρh

}
after the arrival of the first through

flow bit. In an end-to-end view, the time needed to serve σ0 by the bottle-neck capacity is

σ0

minh Ch
. If this time exceeds the time needed to serve through flow burst with the bottleneck

capacity, (i.e., if σ0

minh Ch
> minhOh), the remaining through flow burst which is lower bounded

by [σ0 − maxhOh.minhCh]+ is served similar to CBR arrivals in a FIFO scheduler, i.e., by

sharing the capacity according to the rates. Collecting all of the above results proves the validity

of the end-to-end lower delay bound in Eq. (4.103).

Using the above theorem as a lower delay bound benchmark for the delay, and comparing

it with the closed-form delay bound from Eq. (4.97), we are able to evaluate the tightness of

our upper-bounds. The following remarks discuss that.

Remark 1 : In general,

dcf − dmax ≤ σ0

( 1

minh(Ch − ρh)
− 1

minhCh

)
+

H∑
h=1

Ch[∆
h]−(1− uh), (4.107)

where uh = ρ0+ρh
Ch

is the total utilization at node h.
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Figure 4.7: Comparing upper and lower delay bounds for leaky bucket arrivals with ρh = 0.15 Mbps

and σh = 13.5 Kbits for any h = 0, . . . ,H , C = 100 Mbps, and U = 90%.

Remark 2: Eq. (4.107) shows that dcf is tighter in higher utilization.

Remark 3: In case of homogeneous networks and ∆ ≥ 0, the closed-form bounds are tight if

H →∞. This can be noticed from Eq. (4.103), and noting that limH→∞RH = C − ρc.

Remark 4: If ∆h ≥ 0 or ∆h ≤ σh
Ch−ρh

for any h, the difference between the closed-form bound

and tight bound is upper bounded by a constant and does not scale with H .

Remark 5: In case of homogeneous networks, where ρh = ρc and Ch = C,

dcf − d∗ ≤ σ0

C − ρc

[
1− H(C − ρc)

C

]
+
. (4.108)

One of the immediate consequences is that dcf = d∗ for any value of ∆ if H > C
C−ρc .

Finally, with a numerical example we evaluate the tightness of the closed-form and the

solution to the optimization problem. Consider the network scenario in Fig 4.4. There are

N0 = 300 through flows, and Nc = 300 cross flows. Each through and cross flow is a leaky

bucket arrival with σ0 = σc = 13.5 Kbits and ρ0 = ρc = 0.15 Mbps. The capacity of any node

h is Ch = 100 Mbps. We have plotted the lower bound computed for dmax from Eq. (4.103), d∗
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from Eq. (4.93), and dcf from Eq. (4.97) for different values of ∆ as a function of path length

H in Fig. 4.7.

As illustrated in the plot, the lower bounds converge to the upper bounds for any ∆ ≥ 0

as the path length increases. This implies that even the closed-form bounds might be tight for

larger network sizes.

4.3.7 Numerical results

We consider the multi-node scenario depicted in Fig. 4.3. We choose ON-OFF Markov-

Modulated Poisson Processes (MMPP) sources for both through and cross flows. An MMPP

flow can be modeled by a simple two-state Markov chain: ON, OFF. Traffic is generated with

rate P in ON state and no traffic is generated in OFF state. The sojourn time between ON to

OFF and OFF to ON are exponentially distributed with respective rates λ and µ. The average

cycle time to return to the same state is T ∗ = λ+µ
λµ

. The effective bandwidth for this arrival is

formulated in [55]. For any α ≥ 0

Eb(α) =
1

2α
(Pα + λ+ µ+

√
(Pα + λ− µ)2 + 4µλ) .

The discrete time MMP traffic introduced in Fig. 2.9 can be considered as a discrete time

approximation of MMPP traffic, where p11 = (1−λtu), p00 = (1−µtu) and tu is the time unit

in the discrete time model. In our numerical examples, λ = 1ms−1 and µ = 0.11ms−1 which

corresponds to the average rate of ρav = 0.15 Mbps and T ∗ = 10 ms. These parameters are also

used for the numerical results in [20]. Unless otherwise stated, we consider a homogeneous

network where all parameters at all nodes are identical. Since cross flows are also identical

at all nodes h = 1, . . . , H , we drop the subscript h and use subscript c to refer to the cross

flow parameters. The capacities of all nodes are assumed to be C = 100 Mbps. There are

N0 = 10 through flows and Nc = 590 cross flows. The above parameters yield a utilization of

U = (N0 + Nc)
0.15
100

= 90% at all nodes. The violation probability in all examples is assumed

to be ε∗ = 10−9. The numerical results use the closed-form bounds from Theorem 4.5 with the
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Figure 4.8: Statistical end-to-end delay bounds as a function of path length for MMPP traffic arrivals

with P = 1.5 Mbps, T ∗ = 10 ms, ε∗ = 10−9, Nc = 590, N0 = 10, and U = 90%.

following choices of parameters. We choose α0 and αh such that the stability constraint is not

violated, i.e.,

ρ0(α0) < min
h=1,...,H

{Ch − ρh(αh)} , (4.109)

Set γc, γ0 = γ, where

0 < (H + 1)γ < min
h=1,...,H

{Ch − ρh − ρ0} . (4.110)

Moreover, we compute σh for any h from the following equations

αnet =
( H∑
h=0

α−1
h

)−1

, σh =
αnet
αh

σ, h = 0, . . . , H ,

where σ can be obtained by fixing the violation probability from Eq. (4.73).

• The improvement by the new convolution:

In this experiment, we compute the end-to-end delay bounds for the through flow using

Theorem 2.7 and compare it with the bounds computed by Theorem 4.4. We include the delay

bounds obtained both from the solution to the optimization problem and the closed-form bound
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Figure 4.9: Statistical end-to-end delay bounds as a function of total utilization U for MMPP traffic

arrivals with P = 1.5 Mbps, T ∗ = 10 ms, ε∗ = 10−9, Nc = 590, N0 = 10, H = 2, 5, 10, U0 = 15%,

and ∆ = −10, 0,∞.

on a path of H = 1, . . . , 20 identical ∆-schedulers. We compute the example for different

values of ∆.

Fig. 4.8 shows that for ∆ = ∞ (BMux), the new convolution has no gain, or, in other

words, the existing convolution theorem is suitable for BMux analysis. However, considerable

improvement is gained for ∆ < ∞. For example, for FIFO networks (∆ = 0), the curve for

the new convolution theorem is much smaller than that of the existing one. For small values of

H , the end-to-end delay bound corresponding to the existing convolution theorem is slightly

smaller than that of the new convolution theorem. This can be justified by the concavification of

the service curve that we applied to simplify the end-to-end analysis with the new convolution

theorem.

The difference between the closed-form bounds and the solution to the optimization prob-

lem is not significant. Fig. 4.8 also illustrates that the importance of the schedulers does not

deteriorate as the path length increases. This figure indicates that the impact of the scheduling
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Figure 4.10: Statistical end-to-end delay bounds as a function of traffic mix
(
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)
for MMPP traffic

arrivals with P = 1.5 Mbps, T ∗ = 10 ms, ε∗ = 10−9, Nc = 590, N0 = 10, U = 90%, H = 2, 5, 10,

and ∆ = −10, 0,∞.

scales with the network size in the stable regime.

• The effect of scheduling as a function of utilization:

The role of scheduling is more pronounced if through flow competes with more cross flows,

or in other words, if through flow is a smaller fraction of the total flows in a link. We examine

this with our delay bounds in Fig. 4.9 by fixing the through flow utilization at 15% and in-

creasing the total utilization from 20% to 95%. We repeat the experiment for three schedulers:

BMux, FIFO, and ∆ = −10 ms, and for three different path lengths: H = 2, 5, 10. The case

of ∆ = −10 is equivalent to an EDF scheduler which assigns a priori delay bounds d∗0 and d∗c ,

respectively, to the through flow and cross flow such that d∗0 − d∗0 = 10 ms. The most apparent

result of this plot is that the difference between schedulers increases for higher utilization and

path lengths. There are some additional interesting observations which can be extracted from

this figure.

This experiment shows that the end-to-end delay bound in a cascade of ∆-schedulers with
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Figure 4.11: Tail bound of backlog distribution (Kbits) for MMPP traffic arrivals with P = 1.5 Mbps,

T ∗ = 10 ms, ε∗ = 10−9, Nc = 590, N0 = 10, U = 90%, and H = 10.

∆ = −10 is almost insensitive to the path length unless the utilization is very large. This occurs

since with ∆ = −10, the scheduler behaves similar to a priority scheduler which assigns

the highest priority to the through flow. Thus, the through flow can occupy the whole link

capacity when needed and does not compete with cross flows. As a result, the original statistical

properties of the through flow does not change as it passes through the scheduler.

The delay bound increases fast in utilization for BMux, because, as cross flow utilization

increases, the likelihood that a through flow arrival encounters backlog with higher precedence

increases. In addition, while a backlogged through flow is waiting to be served, any cross flow

arrival will also be scheduled ahead of through flow to be served. Through flow end-to-end

delay bound in a tandem of FIFO schedulers also increases with total utilization, but not as fast

as that of BMux. This is happening because, by increasing the cross flow utilization, a tagged

through flow arrival will experience a larger cross flow backlog as it arrives to the scheduler.

However, while the tagged arrival is waiting to be served in the buffer, cross flow new arrivals

will not receive higher precedence than the tagged arrival.
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Figure 4.12: Burst size of the output traffic for MMPP traffic arrivals with P = 1.5 Mbps, T ∗ = 10

ms, ε∗ = 10−9, Nc = 590, N0 = 10, and U = 90%.

• The effect of scheduling as a function of traffic mix:

In this experiment, we fix the total utilization to 90% and increase cross flow utilization.

The closed-form end-to-end delay bound for through flow is plotted by varying Uc
U

from 20%

to 95%. This experiment is repeated for three schedulers: BMux, FIFO, and ∆ = −10, and

for three different path lengths: H = 2, 5, 10. One of the interesting observations in Fig. 4.10

is that through flow delay bound increases for BMux, it is almost insensible for FIFO, while

decreases for ∆ = −10 as Uc
U

increases. This is happening because increasing cross flow

and decreasing through flow increases the likelihood that through flow encounters larger back-

logged traffic with higher precedence if ∆ > 0. For FIFO, the through flow and cross flows

have the same precedence level if they arrive at the same time. Any arrival has a lower prece-

dence than any backlogged traffic regardless of which flow they belong to. For ∆ < 0, through

flow has higher precedence than cross flow if they arrive at the same time. As a result, decreas-

ing through flow and increasing cross flow increases the chance that an arriving through flow

encounters smaller backlogged traffic with higher precedence.
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Figure 4.13: Statistical end-to-end delay bounds in a cascade of different schedulers as a function of

path length for MMPP traffic arrivals with P = 1.5 Mbps, T ∗ = 10 ms, ε∗ = 10−9, Nc = 590,

N0 = 10, and U = 90%.

• Backlog tail bound:

For a path length of H = 10 nodes, we compute the violation probability that the backlog

exceeds a threshold σ. We use Eq. (4.75) to compute the bounds. The tail bound of the end-

to-end through flow backlog from Eq. (4.75) is depicted in Fig. 4.11. The plot shows that

for any ∆ < 0 and small ∆ ≥ 0 (∆ ≤ 1), the tail bound behaves very closely to that of

SP with the highest priority assigned to the through flow (∆ = −∞). Thus, a large class of

∆-scheduler have small end-to-end backlog and they behave similarly. However, for larger

values of ∆, increasing ∆ affects the end-to-end backlog bound considerably, e.g., compare

the corresponding curves for ∆ = 10 and ∆ = 100 in Fig. 4.11.

• Burstiness increase:

In this part, we exemplify the burstiness increment as the through flow proceeds along the

path. Fixing the violation probability to ε∗ = 10−9, we compare the burstiness bound of the

input traffic with that of the output. For various path lengths H = 5, 10, 15, 20, and various ∆
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parameters the experiment is repeated. Fig. 4.12 shows that the burstiness does not increase

noticeably for negative or small values of ∆ even on long paths. This implies that the original

statistics of the input traffic are preserved as traffic traverses some schedulers including FIFO.

This observation (if valid) is the key which enables per-node analysis in a network. This is

considered in details in the next chapter.

For larger values of ∆, the output burstiness is much larger than that of the input. Thus, for

these schedulers, the original traffic properties is distorted and the traffic burstiness increases.

Per-node delay and backlog analysis for this class of schedulers cannot be conducted regardless

of the effect of network.

• Heterogeneous network:

In the previous examples, all schedulers along the paths were assumed to be identical.

In this experiment, we want to see the effect of having one bottleneck scheduler on a long

path. We have accommodated five curves in Fig. 4.13. Three of these curves correspond

to homogeneous networks which serve as benchmarks: a path of all BMux ‘∆h = ∞ (h =

1, . . . , H)’, all FIFO schedulers ‘∆h = 0 (h = 1, . . . , H)’, and ‘∆h = 10 (h = 1, . . . , H)’.

We consider two additional curves which consider a heterogeneous network. For one of them,

the first link in the path is a BMux, and the rest of the links are FIFO schedulers. The other

one considers a BMux as the first link and the next links are ∆-schedulers with ∆h = 10.

Comparing the curve labeled as ‘∆1 = ∞,∆h = 0 (h = 2, . . . , H)’ with all FIFO curve, and

‘∆1 = ∞,∆h = 10 (h = 2, . . . , H)’ with ‘∆h = 10 (h = 1, . . . , H)’ we realize the effect of

one bottleneck scheduler still exists even on long paths, but the difference remains unchanged

as the path length increases (comparable to the difference in a single node scenario).



Chapter 5

Network Decomposition

In this chapter, we consider network decomposition in a tandem of ∆-schedulers. This is

achieved by enforcing constraints on the choice of traffic sources, and assuming that the num-

ber of traffic flows and the link capacity at each node are large. We start this chapter by

exploring related work. Then, we introduce our system model and notation. The analyses of

this chapter are based on our closed-form probabilistic output and backlog bounds from Theo-

rem 4.6. Using that theorem, and the concept of probabilistic busy period bounds from [67], we

can prove that sometimes we can eliminate a ∆-scheduler from the queuing analyses of other

nodes in the network being affected. We show that if ∆ ≤ 0, the constraint of large number of

traffic flows might be unnecessary. The analytical results are examined in numerical examples.

5.1 Literature on Network Decomposition

Multiplexing traffic flows in a link alters their original statistical properties and this makes an

end-to-end queuing analysis complicated. However, there are cases found in the literature in

which the original traffic statistics are preserved inside the network. This facilitates the end-to-

end delay, and backlog analyses since each node can be analyzed in isolation.

Product-form networks (See Sec. 4.1) are examples of these cases. Another example is

Better Than Poisson (BTP) traffic which refers to the traffic sources creating a smaller workload

127
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than Poisson arrivals in a FIFO scheduler. It is shown via analysis and simulation in [7] that

this property of BTP traffic is preserved as the traffic passes through FIFO schedulers. A third

example, which is the focus of this section, is that traffic distortion in a node can be ignored

under large buffer size or many sources asymptotic regimes. Large deviation methods are

used to approximate the queue tail probabilities in these asymptotic regimes in the literature as

follows.

Suppose that process A is an aggregate of N independent, identically distributed, traffic

flows. These N flows are fed to a link with per-flow capacity c and per-flow buffer size b.

Using a Chernoff bound, the total backlog in the steady stateB(∞) satisfies the following (See

[54])

1

Nb
log(P{B > Nb}) ≤ −H(c) ,

where H is a positive-valued function of c and the traffic source. In large buffer asymptotic

regime, where b → ∞, the above inequality will turn to an equality. This asymptotic regime

has been studied in many papers such as [56].

In a many sources asymptotic regime, the number of independent input flows to a link N

goes to infinity, while per-flow buffer size b and per-flow capacity c remain fixed. For such a

scenario, using a Chernoff bound, De Veciana et al. [32] show that

lim
N→∞

1

N
log(P{B(∞) > Nb}) ≤ −I(c, b) , (5.1)

where

I(c, b) = inf
t>0

sup
α≥0

(
α(Nct+ b)− log(E[eαA(t)])

)
. (5.2)

Likhanov and Mazumdar [76] obtain a similar asymptotic formulation using the Gaussian

approximation in the Bahadur-Rao Theorem [3]. Courcoubetis and Weber [23] show that

limb→∞
I(c,b)
b

= H(c) suggesting that both asymptotic regimes are equivalent if b and N are

large. I(c, b) is a function of traffic sources, and has been estimated for Gaussian [23] and
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Markovian sources [23], [49] and was improved and extended to ON/OFF sources with heavy-

tailed distributed ON periods in [76], and regulated traffic in [102].

Both asymptotic regimes provide cases which allow decomposing a network into single

nodes, and analyzing each node independently. This is achieved by the multiplexing gain from

flow independence assumption. In any paper we review in the following, all flows at a node are

assumed to be independent unless otherwise stated.

Assuming a large buffer asymptotic, De Veciana et al. [32] provide a constraint which guar-

antees that the effective bandwidth of the input and output traffic to a FIFO link match. The is

achieved by introducing the concept of decoupling bandwidth. Decoupling bandwidth DbA(α)

is a function of traffic process A, and for any fixed α > 0 satisfies EbA(α) < DbA(α) ≤

2EbA(α) − EbA(0), where EbA is the effective bandwidth of A in the sense of Eq. (1.1). If

N is the set of all flows at a link with capacity C, then the effective bandwidths of the input

(Ebi) and output (Eb∗i ) of flow i ∈ N are identical for some α ≥ 0 (Ebi(α) = Eb∗i (α)) if the

following holds:

Dbi(α) +
∑

j∈N\{i}

Ebj(0) < C .

To use this constraint, the decoupling bandwidth, and the effective bandwidth of the traffic

sources in the link must be known. This is formulated for Markov Modulated On-Off sources,

and Gaussian processes in [32].

Ying et al., [101] obtain two probabilistic backlog bound approximations for a aggregate of

independent peak-rate constraint leaky buckets flows in asymptotic regimes. The first approx-

imation is obtained in a many sources asymptotic regime by identifying per-flow worst-case

scenario, and multiplexing them using the Bahadur-Rao Theorem. The total backlog in a FIFO

scheduler in a many sources asymptotic regime converges to zero, suggesting that this sched-

uler can be removed from the analyses of other nodes. The second approximation considers

a fixed load many sources asymptotic regime, where the total capacity and the utilization are

fixed, but the number of flows tends to infinity. Given this assumption, it is proved in [101] that



CHAPTER 5. NETWORK DECOMPOSITION 130

regulated traffic is a BTP traffic. Thus, the workload of a multiplex of N independent leaky

bucket with parameter (P, ρ, σ) can be approximated by the workload of a marked Poisson pro-

cess with rate λ = Nρ
σ

arriving to an M/G/1 queue. In a non-asymptotic regime, the workload

of the described M/G/1 serves as an upper bound for the aggregate of regulated flows. Using

this approximation, a backlog bound is obtained by taking the inverse Laplace transform of the

explicit formulation of an M/G/1 queue from [57].

Wischik [96] uses the backlog bound formulation in Eq. (5.1) to compare the statistical

properties of the input and output traffic under a many sources asymptotic. He defines the

limiting moment generating function of a process A as follows

ΛA
t (α) , lim

L→∞
log(E(eαA

L(t))) ,

for any fixed α > 0, whereAL(t) represents the average ofL independent sample paths in [0, t).

Then, it is shown that both input and output traffic have identical limiting moment generating

functions in a many sources asymptotic regime. The simulation results suggest that this might

still be the case even if the number of flows is handful.

Ying et al. [102] study the burstiness increase of leaky bucket arrivals in a cascade of FIFO

schedulers. Suppose that a leaky bucket through flow with parameters (σ0, ρ0) passes through

a tandem of H FIFO schedulers with capacities Ch for any h = 1, . . . , H . At any node h there

is a leaky bucket cross flow with parameters (σh, ρh). The stochastic burstiness of the through

flow in time interval [s, t), ω0(s, t) is defined as the amount of traffic arrivals that exceed than

a CBR traffic with rate ρ0 in that interval. That is

ω0(s, t) , [A0(s, t)− ρ0(t− s)]+ ,

where A0 is the through flow arrival process. By applying the Markov inequality, it is proved

that output stochastic burstiness of the through flow ω∗0 satisfies the following for any x ≥ 0

and s ≤ t:

P{|ω∗0(s, t)− σ0| > x} ≤ 2ρ0

x

H∑
h=1

E[Bh]

Ch
,
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Figure 5.1: Network decomposition: disregarding upstream node for the queue analysis of the down-

stream node.

where E[Bh] is the average total backlog at node h in the steady state, which is bounded if

ρ0 + ρh < Ch. Thus, the above equation implies that ω∗0(s, t) converges to σ0 in probability as

ρ0
Ch
→ 0 for h = 1, . . . , H . This last constraint is equivalent to a many sources asymptotic with

adding a constraint on the traffic mix that through flows are not scaled by the total number of

flows.

Ciucu and Liebeherr [21] assume a set of independent flows, each with a bounded peak-rate

that satisfies

sup
s≥0

E
[
eαA(s,t+s)

]
≤ eαρ(α)t , (5.3)

where ρ(α) must be independent of t, and is bounded between the long-term average rate

and peak rate for any value of α. This property holds for many Markov-modulated processes

including Markov-modulated ON-OFF sources. More precisely, for a Markov-modulated ON-

OFF flow with parameters λ, µ, and P

ρ(α) =
1

2α
(Pα + λ+ µ+

√
(Pα + λ− µ)2 + 4µλ) .

If A is the aggregate of n independent flows all satisfying Eq. (5.3), then applying a Cher-

noff bound, yields the following for any s ≤ t

P{A(s, t) > nρ(α)(t− s) + σ} ≤ e−ασ , (5.4)
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which means that an aggregate of n independent flows of such a function is EBB in terms of

Eq. (1.4) with (1, nρ(α), α). 1 For a fixed number of flows n, different EBB characterizations

will be obtained by varying α. In fact, a larger α implies a larger decay rate and a larger

EBB rate ρ(α). In other words, there are different probabilistic upper bounds for a stochastic

arrival process. The looser the bounds are (larger ρ), the faster the decay rates of the violation

probabilities are (larger α).

Consider the scenario depicted in Fig. 5.1, which is a two-node tandem network consisting

of an upstream and a downstream node, respectively, represented by subindexes us and ds.

Assume that there exist ρ0 and ρc, respectively, for through and cross flows, satisfying Eq. (5.3).

There are n0 through flows and N − n0 cross flows being multiplexed at a FIFO link with

capacityNc. Then, through flow output, and backlog bounds are formulated [21] by employing

Doobe’s inequality as follow

P{D0,us(s, t) > n0ρ0(α)(t− s) + σ} ≤ Kd(α)e−ασ ,

and

P{Bus(t) > σ} ≤ Kbe
−Nασ

for any σ ≥ 0, where Kd(α) and Kb both converge to 1 as N → ∞. This implies that

the through flow backlog decays exponentially fast to zero in N , and the EBB parameters of

the output converge to those of the input envelope exponentially fast in N . Suppose that BI
ds

denote the backlog at the downstream node in Fig. 5.1. In the same scenario, BI
ds represents the

backlog at the downstream node when the through flow enters the downstream node directly

and without passing through the upstream node. By comparing [21] that BI
ds via a numerical

example, the authors conjecture that network decomposition might be valid for moderate values

of N .

Eun and Shroff [38] compare BI
ds and BII

ds analytically. The upstream node can be ignored

1For the sake of simplicity of notation, we drop the dependency on ρ to α throughout this chapter, i.e., we will
use ρ instead of ρ(α).
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in a queue analysis of the downstream node ifBI
ds = BII

ds. Obviously, this condition for network

decomposition is more stringent than comparing the statistical properties of input and output in

the upstream network. In particular, the point-wise convergence of statistical properties of the

input and output induces the convergence of BI
ds and BII

ds only if the traffic flows are regulated.

Eqs. (5.1) and (5.2) are used in [38] to show that the total backlog in the upstream node in

Fig. 5.1 in a many sources asymptotic decays to zero exponentially fast in the number of flows.

Using this result, and the fact that busy periods are deterministically bounded for regulated

traffic arrivals, it is shown thatBI
ds converges toBII

ds almost surely in a many sources asymptotic

regime, i.e.,

lim
N→∞

P{|BI
ds −BII

ds| > 0} = 0 .

If traffic regulation is reduced to only having a peak rate constraint, then it is shown that BI
ds

converges to BII
ds in probability, i.e., for any x ≥ 0

lim
N→∞

∣∣P{BI
ds > x} − P{BII

ds > x}
∣∣ = 0 .

Two improvements in network decomposition have been accomplished in [38]. First, the

independence of through and cross flows is relaxed from the conditions of decomposition.

Second, the convergence of the input and output traffic in the upstream network is mainly used

in the literature to claim that the decomposition is valid. Whereas, decomposition is defined

as the convergence of BI
ds to BII

ds in the downstream network in [38]. The fluid flow network

decomposition arguments in [38] are based on the asymptotic convergence of the total backlog

at the upstream node. However, the simulation results in that work suggest that the negligible

upstream total backlog might be unnecessary for the validity of the network decomposition.

In all of the above, the scheduling used in the upstream network is assumed to be either

FIFO or BMux. It is shown in [38], [102] that in a many sources asymptotic regime, scheduling

at the upstream network does not change the backlog statistics in the downstream network. In

this chapter, for the first time, we study the effect of scheduling in the upstream network in
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(a) Scenario I (The original scenario).

(b) Scenario II (The simplified scenario).

Figure 5.2: Multi-node network decomposition.

network decomposition in a non-asymptotic regime as well as the asymptotic behavior. To

allow a network decomposition, we consider the convergence of BI
ds to BII

ds as in [38].

5.2 System Model

Consider the two network scenarios depicted in Figs. 5.2. There are n0 through flows traversing

a cascade of H nodes in Fig. 5.2a to arrive to the downstream node. At each node h, in the

upstream network, through flows are multiplexed with nh = Nh − n0 cross flows. Each node

h in the upstream network is a ∆-scheduler with ∆h
0,c = ∆h, with link capacity Nhch. Define

the scaling parameter to be N = minh{Nh}. If N → ∞, and Nh = Θ(N) for any h, and

limN→∞
Nhch

nhρ
av
h +n0ρav0

< 1, where ρavi is the long-term average rate of flow i, then we are in a

many sources asymptotic regime. In Fig. 5.2b, the upstream node is removed and the through

flow enters the downstream node directly. The capacity of the downstream node is Cds and
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there are nds cross flows in that link in addition to through flows.

Any traffic flow in the network satisfies Eq. (5.3), and consequently the aggregate of flows

is EBB. In particular, the EBB parameters of the n0 through flows are (1, n0ρ0(α0), α0), for any

α0 > 0. Similarly, the aggregate of nc cross flows is EBB with parameters (1, ncρc(αc), αc),

for any αc > 0.

We compare the total backlog at the downstream node in Scenario I (BI
ds), and Scenario II

(BII
ds) to see the effect of removing the upstream network on the downstream backlog statistics.

5.3 Network Decomposition in a Tandem of ∆-schedulers

Since the traffic sources we consider in this chapter are EBB arrivals, and the upstream network

is a tandem of ∆-schedulers, we can employ Theorem 4.6 to obtain closed-form probabilistic

end-to-end backlog and output bound in the upstream network. Before we use the theorem, we

need to adapt the theorem to the notations of this chapter.

Define a vector of non-negative elements σ = (σ0, σ1, . . . , σH). For any γ0, γc, satisfying

0 ≤ γ0 + Hγc ≤ minh{Nhch − nhρh − n0ρ0}, we have the following bounds for the through

flow from Theorem 4.6.

1- Output burstiness bound: The through flow upstream network departure process D0,H can

be bounded stochastically for any s ≤ t by

P{D0,H(s, t) > (n0ρ0 + γ0)(t− s) + bnet(σ)} ≤ εnet(σ) . (5.5)

2- Backlog bound: The end-to-end through flow backlog Bnet at any time t is statistically

bounded by

P{Bnet(t) > bnet(σ)} ≤ εnet(σ) , (5.6)
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where

bnet(σ) = (n0ρ0 + γ0 + (H − 1)γc)τnet + σ0 + (n0ρ0 + γ0)
H∑
h=1

θ∗h , (5.7)

θ∗h = min
{ σh
Nhch − nhρh −Hγc

,
[σh + (nhρh + γc)∆

h]+
Nhch − (H − 1)γc

}
, (5.8)

εnet(σ) = M0e
(

1 +
n0ρ0

γ0

)
e−α0σ0 +MHe

(
1 +

nHρH
γc

)
e−αHσH

+
H−1∑
h=1

MhC
min

γc
e
(

1 +
nhρh
γc

)
e−αhσh , (5.9)

where Cmin = minhCh and τnet =
∑H−1

h=1
1

αhCmin
.

With these upper bounds, we can study the asymptotic impact of the upstream network on

the queue statistics of the downstream node.

5.3.1 Asymptotic behavior of upstream backlog

In the sequel, we study the behavior of the through flow backlog at the upstream network Bnet

as a function of N . Define ∆max = maxh ∆h. We consider Bnet, separately, for ∆max ≥ 0 and

∆max < 0.

• Exponentially fast decay of backlog in N for ∆max ≥ 0:

Choose αh small enough so that ch > ρh(αh). Define αnet to be

αnet = min
h

{(
1− 1

N

)αh(Nhch − nhρh(αh)−Hγc)
HN(n0P0 + γ0)

}
, (5.10)

where P0 is the peak rate of through flow. Note that αnet = O(1). Then, for any arbitrary

σ ≥ 0 set the parameters as follows

α0 = N2αnet; σ0 =
σ

N
; σh =

Nαnetσ

αh
;

Cmin = min
h
Nhch; τnet =

∑H−1
h=1 1/αh
Cmin

(5.11)

Mnet = M0e
(

1 +
n0ρ0

γ0

)
+MHe

(
1 +

nHρH
γc

)
+
Cmin

γc

H−1∑
h=1

Mhe
(

1 +
nhρh
γc

)
.
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These choices of parameters guarantee that the second term in Eq. (5.7) is σ
N

, and the last terms

is upper bounded by σ − σ
N

. Replacing σ by σ − [n0ρ0 + γ0 + (H − 1)γc]τnet, and combining

all above with Eq. (5.6), yields the following

P{Bnet(t) > σ} ≤ Ke−Nαnetσ , (5.12)

where

K = Mnete
Nαnet[n0ρ0+γ0+(H−1)γc]τnet . (5.13)

Note that from Eq. (5.11), τnet = O( 1
N

), and consequently K = O(N). Combining all of the

above, the upstream backlog decays to zero exponentially fast for any ∆max ≥ 0.

• Super exponentially fast decay of backlog in N for ∆max < 0:

Choose αh small enough so that ch > ρh(αh), for any h = 1, . . . , H , and αnet = minh{αh}.

Then, for any arbitrary σ ≥ 0, set the parameters as follows

α0 = N2αnet, σ0 =
σ

N2
, σh =

αnetσ

αh
, (5.14)

and the rest of the parameters as in Eq. (5.11). Then,

P{Bnet(t) > X(σ)} ≤ Ke−αnetσ ,

where K is as in Eq. (5.13). Since ∆h < 0, we also have

X(σ) =
σ

N2
+ (n0ρ0 + γ0)

H∑
h=1

[αnet
αh
σ + (nhρh + γc)∆

h]+

Nhch − (H − 1)γc
.

If N is large enough, the second term in X(σ) evaluates to zero because ∆h < 0 and nh →∞.

Thus, there exists a constant N0, such that X(σ) = σ
N2 for any N > N0. Replacing σ

N2 with σ

we have the following for any N > N0

P{Bnet(t) > σ} ≤ Ke−N
2αnetσ , (5.15)

and this proves that Bnet decays super exponentially fast in N for ∆max < 0.
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As shown in [38], the point-wise decay of Bnet to zero is not sufficient to prove that BI
ds

converges to BII
ds as N increases. Instead, a sample path backlog bound must decay to zero to

guarantee that convergence. The following lemma shows how the violation probability scales

when we construct a sample path from point-wise backlog bound. Combining this lemma with

the concept of the probabilistic busy period bound, we are able to construct a sample path

backlog bound.

Lemma 5.1. Consider Scenario I depicted in Fig. 5.2a. The maximum peak-rate of the through

flow aggregate is bounded by n0P0. Suppose that the following holds for end-to-end upstream

through flow backlog Bnet for any σ ≥ 0 and some non-increasing function εb:

P{Bnet(t) > σ} ≤ εb(σ). (5.16)

Then, for any arbitrary τs and T ≥ 0,

P
{

sup
0≤t≤T

Bnet(t) > σ
}
≤
(⌈T
τs

⌉
+2
)
εb(σ − n0P0τs) . (5.17)

Proof. We first need to discretize time. Set τs to be the time unit. Then, the maximum dif-

ference between Bnet(t) at any time instant t with the closest last discrete time cannot be

larger than the total through flow arrivals in an interval of size τs. Thus, defining TZ ={
0, τs, 2τs, . . . ,

⌈
T
τs

⌉
τs
}

, we have

sup
0≤t≤T

Bnet(t) ≤ max
t∈TZ

(
Bnet(t) + max

t∈TZ
A0(t, t+ τs)

)
≤ max

t∈TZ
Bnet(t) + n0P0τs , (5.18)

where the peak rate arrival constraint of the through flow is used in the second line. With this
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result, we have

P
{

sup
0≤t≤T

Bnet(t) > σ
}

≤ P
{

max
t∈TZ

Bnet(t) > σ − n0P0τs

}
≤
∑
t∈TZ

P
{
Bnet(t) > σ − n0P0τs}

=
(⌈T
τs

⌉
+2
)
εb(σ − n0P0τs) ,

where the third line uses Boole’s inequality. The last line uses |TZ | ≤
⌈
T
τs

⌉
+2. The assumption

in Eq. (5.16).

The above bound can be minimized over τs. Note that
⌈
T
τs

⌉
is decreasing in τs, while

εb(σ − n0P0τs) increases in τs.

5.3.2 Formulating a probabilistic busy period bound

A busy period is referred to as the time duration in which the backlog of a work conserving

link is non-zero. If each busy period is bounded, sample path bounds can be obtained from

point-wise bounds as discussed in Sec. 2.4.3. We compute probabilistic upper bounds on the

busy periods at the downstream node for both scenarios in Fig. 5.2 in the sense of Eqs. (2.65)

and (2.66).

Let us assume that through and cross flows at the downstream node are EBB with parame-

ters (1, n0ρ
II
0 , α

II
0 ) and (1, ncρ

II
c , α

II
c ), where we simplified notation by setting ρII

0 = ρ0(αII
0 ) and

ρII
c = ρc(α

II
c ). Inserting the EBB sample path envelopes from Eq. (2.53) in Eq. (2.65), a proba-

bilistic busy period bound can be obtained. If αII
c , αII

0 , and γII are arbitrary constants which are

chosen such that Cds > n0ρ
II
0 + ncρ

II
c and γII ≤ Cds−ncρII

c−n0ρII
0

2
, then, for any σ0, σc ≥ 0

TII =
σc + σ0

Cds − ncρII
c − n0ρII

0 − 2γII (5.19)

εTII(σ0, σc) = e
(

1 +
n0ρ

II
0

γII

)
e−α

II
0σ0 + e

(
1 +

ncρ
II
c

γII

)
e−α

II
cσc (5.20)
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Choosing σ = σ0 + σc and αII
ds = ( 1

αII
c

+ 1
αII

0
)−1 reduces the above equations to

TII =
σ

Cds − ncρII
c − n0ρII

0 − 2γII (5.21)

εTII(σ) = e
(

2 +
n0ρ

II
0

γII +
ncρ

II
c

γII

)
e−α

II
dsσ , (5.22)

which is a probabilistic busy period bound in the sense of Eqs. (2.65) and (2.66).

To compute an upper bound on the corresponding busy period bound in Scenario I, we need

to have an upper bound on the through flow departures from the upstream network D0,H . From

Eqs. (5.5)–(5.9) it is clear that for a fixed violation probability, the output envelope increases

as ∆ increases. Thus, an output envelope in a BMux link serves as an output envelope for any

scheduler. Choose αI
h small enough so that ch > ρh(α

I
h), then for any arbitrary σ ≥ 0 choose

other parameters as follows

αI
0 = min

h

{αh(Nhch − nhρI
h −HγI)

NH(n0P0 + γI)

}
(5.23)

σ0 = σ
(

1− 1

N

)
; ∀0 ≤ h ≤ H : σh =

αI
0

αh
σ, (5.24)

where γI is a free parameter satisfying γI < minh
Nhch−nhρI

h−n0ρI
0

H+1
(from stability condition

at the upstream network). This guarantees that the through flow departure process is EBB

with parameters (K I
0, n0ρ

I
0 + γI, αI

0), where K I
0 is as formulated in Eq. (5.13). Thus, a statis-

tical sample path envelope for the through flow departure from the upstream network is (see

Eq. (2.53))

GI
0(t) = (n0ρ

I
0 + 2γI)t+ σ; ε(σ) = eK I

0

(
1 +

n0ρ
I
0 + γI

γI

)
e−α

I
0σ . (5.25)

Multiplexing this EBB departure process with EBB cross flow at the downstream node with

parameters (1, ncρ
I
c, α

I
c), a busy period bound for Scenario I at the upstream network can be

obtained similar to that of TII. Define αI
ds = ( 1

αI
c

+ 1
αI

0
)−1 then, for any γI ≤ Cds−n0ρI

0−ncρI
c

3
(Re-

cap that γI must also satisfy γI < minh
Nhch−nhρI

h−n0ρI
0

H+1
in the upstream network) the following
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is a busy period bound in the sense of Eqs. (2.65) and (2.66).

TI =
σ

Cds − n0ρI
0 − ncρI

c − 3γI (5.26)

εTI(σ) = e
(

1 +K I
0 +K I

0

n0ρ
I
0 + γI

γI +
ncρ

I
c

γI

)
e−α

I
dsσ . (5.27)

The above busy period bounds are used in the next section to compareBI
ds andBII

ds, analytically.

5.3.3 Almost sure network decomposition

Although we have shown that the through flow backlog at the upstream network decays expo-

nentially fast for ∆max ≥ 0, and super exponentially fast for ∆max < 0, the convergence of

the queue size at the downstream node in the simplified and original scenarios has not been

investigated yet. This is considered in the following theorem.

Theorem 5.1 (Almost sure convergence of BI
ds to BII

ds). Consider the Scenarios in Fig. 5.2.

Any through and cross flow source satisfies Eq. (5.3). There exists a constant α > 0 and

non-negative functions L and Q, such that for any σ ≥ 0

P{|BI
ds(t)−BII

ds(t)| > σ} ≤

 L(σ)e−Nασ if ∆max ≥ 0

Q(σ)e−N
2ασ if ∆max < 0 ,

(5.28)

where L(σ) = O(N2) and Q(σ) = O(N3).

Proof. Denote the traffic processes to the downstream node in Scenarios I and II, respectively,

by AI
ds and AII

ds. Moreover, Acds is the cross flow arrival at that node. Suppose that TI and TII

are probabilistic busy period bounds as computed in Eqs. (5.26) and (5.21). In addition, define
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Tmax = max{TI, TII}. Then, for any σ, σI and σII ≥ 0:

P{|BI
ds(t)−BII

ds(t)| > σ}

≤ P
{∣∣ sup

0≤u≤Tmax
[AI

ds(t− u, t) + Acds(t− u, t)− Cdsu]

− sup
0≤u≤Tmax

[AII
ds(t− u, t) + Acds(t− u, t)− Cdsu]

∣∣ > σ}

+ P{t− x̂I
t > Tmax}+ P{t− x̂II

t > Tmax} (5.29)

≤ P
{

sup
0≤u≤Tmax

[AI
ds(t− u, t)− AII

ds(t− u, t)] > σ
}

+ P{t− x̂I
t > Tmax}+ P{t− x̂II

t > Tmax} (5.30)

= P
{

sup
0≤u≤Tmax

[Bnet(t− u)−Bnet(t)] > σ
}

+ P{t− x̂I
t > TI}+ P{t− x̂II

t > TII}

(5.31)

≤ P
{

sup
0≤u≤Tmax

{Bnet(t− u)} > σ
}

+ P{t− x̂I
t > TI}+ P{x̂II

t > TII} (5.32)

≤
⌈Tmax

τs

⌉
εb(σ − n0P0τs) + εTI(σI) + εTII(σII) , (5.33)

where x̂I
t and x̂II

t are, respectively, the start of the busy period bound containing t at the down-

stream node in Scenarios I and II. In Eq. (5.29) we use the fact that P (X) ≤ P (X|Y )+P (Y ′)

for any events X and Y , and P (Y ′) = 1 − P (Y ). Eq. (5.31) follows since AI
ds = D0,H , and

AII
ds = A0,1. The last line is an application of Lemma 5.1 and the busy period conditions. εb is

formulated in Eq. (5.12) for ∆max ≥ 0, and in Eq. (5.15) for ∆max < 0. Moreover, εTI and εTII

are computed, respectively, in Eqs. (5.27) and (5.22).

Proper choices of free parameters in Eq. (5.33) prove the theorem as follows. Choose

αI
ds, α

II
ds = α. If ∆max ≥ 0, then from Eq. (5.12), εb(σ) = O(e−Nασ). Set τs = Tmax

N2 ,

σI, and σII = Nσ. Then, from Eqs. (5.21) and (5.26), Tmax = O(N), τs = O( 1
N

), and

εTII(σII), εTI(σI) = O(e−Nασ) from Eqs. (5.27) and (5.22). If ∆max < 0 then from Eq. (5.15),

εb(σ) = O(e−N
2ασ). Choose τs = Tmax

N3 and σI, σII = N2σ. This implies that Tmax =

O(N2) and τs = O( 1
N

), respectively, from Eq. (5.21) and Eq. (5.26), and εTI(σI), εTII(σII) =

O(e−N
2ασ) from Eqs. (5.27) and (5.22). Inserting these choices in Eq. (5.33) completes the
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proof.

This theorem shows that BI
ds converges to BII

ds almost surely. The speed of convergence is

exponentially fast for ∆max ≥ 0, and super exponentially fast for ∆max < 0. In the specific

case of FIFO (∆max = 0), the above theorem strengthen the results of [38] from in probability

convergence to almost sure convergence for traffic sources with bounded peak-rate satisfying

Eq. (5.3).

The above results imply that along with the independence of flows, scheduling is another

important factor in viability of network decomposition. Although network can be decomposed

in a many sources asymptotic regime for any schedulers as also addressed in [38] and [102], it

might or might not be valid in a non-asymptotic regime depending on the scheduling algorithm

used in the upstream network.

5.4 Numerical Examples

In this section, we examine our analytical results on network decomposition. We assume that

the upstream network in Fig. 5.2a is homogeneous and consists of H identical ∆-schedulers

with link capacity C. The total number of through and cross flows at each node is N (i.e.,

Nh = N for any h), where N also serves as the scaling parameter. We choose ON-OFF

Markov-Modulated Poisson Processes (MMPP) sources with λ = 1ms−1, µ = 0.11ms−1

(same as the parameters for previous chapter numerical examples), for both through and cross

flows. The capacity of any node in the upstream network is C = Nc, where c = 0.1669 Mbps.

The above choices of traffic parameters and link capacities keeps the utilization at each node

fixed to Nρav
Nc

= 90% independent of N . Unless otherwise stated, we choose α0 = N2αnet and

αh = αnet, where the bounds are optimized numerically over αnet and αnet ∼ [10−10, 10]. In

addition, we choose σ0 = αnet
α0
σ and σh = αnet

αh
σ for any h = 1, . . . , H . We use Eqs. (5.5) -

(5.9) for the numerical results and optimize the bounds over free parameters numerically.
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Figure 5.3: Comparing network decomposition criteria from the analyses of this chapter, and that

of [38] with n0 = 1, C = 0.1169N Mbps, U = 90%, P = 1.5 Mbps, T ∗ = 10 ms with ε =

10−3, 10−6, 10−9.

5.4.1 Asymptotic total backlog vs. non-asymptotic per-flow backlog

Showing the convergence ofBI
ds toBII

ds in [38], is based on proving that the total backlog at the

upstream node at the steady state in a many sources asymptotic is negligible. In this chapter, we

replaced this requirement by a less stringent condition, and requiring negligible through flow

backlog at the upstream network. The gain obtained by this replacement helps to investigate

the viability of the decomposition in a non-asymptotic regime. To see the gain obtained by this

replacement, we compare the asymptotic total backlog bound from Eq. (5.1) with the through

flow backlog bound from Eq. (5.5) in a FIFO scheduler in Fig. 5.3.

To use Eq. (5.2), a moment generating function for MMPP traffic is needed. This has been

computed and presented in [55] as follows

E[eαA(t)] =

(
λ

λ+ µ
,

µ

λ+ µ

)
exp

[(
−µ+ Pα µ

λ −λ

)
t

]
(1 , 1) .

We fix n0 = 1 and vary N in [102, 105] and compute the backlog bounds for eachN . We repeat
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Figure 5.4: Probabilistic upstream backlog decay in N for different upstream path lengths, and traffic

mixes with ε = 10−6, n0 = 1, 10, C = 0.1169N Mbps, U = 90%, P = 1.5 Mbps, T ∗ = 10 ms.

this example for three different violation probabilities: ε = 10−3, 10−6, and 10−9.

The convergence speed of the through flow backlog to zero is faster than that of the asymp-

totic total backlog. The difference grows for smaller violation probabilities. This figure also

corroborates the conjecture in [38] that negligibility of the total upstream backlog is not a

necessary condition for the convergence of BI
ds to BII

ds.

5.4.2 The size of upstream network

In this section, we want to see if a through flow passes through a network consisting of H

identical ∆-schedulers all satisfying many sources asymptotic criterion, then how distorted the

final departure traffic would be. This is examined by computing the end-to-end through flow

backlog bound in that network. The number of through flows is set to be n0 = 1, 10 and for

each, we compute the through flow upstream backlog bound (from this chapter) as a function

of the scaling parameter N for three different path lengths (H = 1, 2, 10). All schedulers

are assumed to be FIFO (∆ = 0). Fig. 5.4 shows that the total backlog for any path length
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Figure 5.5: Probabilistic upstream backlog decay in N for ∆ = −10, 0, 10, 100,∞ with ε = 10−6,

n0 = 1, C = 0.1169N Mbps, U = 90%, P = 1.5 Mbps, T ∗ = 10 ms.

and traffic mixes will eventually decay to zero as the scaling parameter grows. However, the

speed of convergence is highly dependent first on the traffic mix, and then on the upstream path

length.

5.4.3 The effect of scheduling

In this example, we want to study the effect of the type of schedulers on the upstream through

flow backlog. The number of through flows is n0 = 1 and 10. We plot the through flow backlog

as a function of the scaling parameter for different values of ∆, i.e., −10, 0, 10, 100, and∞.

Fig. 5.5 shows that the speed of convergence of through flow backlog to zero is significantly

affected by the scheduling in the upstream network. The through flow backlog is almost zero

if N is few hundreds for some negative ∆ ≤ 10 while it is non-negligible for ∆ = 100 even

for N = 1000.

There is a break point in the corresponding curve for ∆ = 100, and the backlog bound after

this break point matches that of BMux. The break point occurs when the minimum operation
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Figure 5.6: Probabilistic upper bound on the backlog status at downstream node in the original, and

simplified scenario with ε = 10−6, n0 = nc (at downstream node), C = 0.1169N Mbps, Cds =

0.1669(n0 + nc), U = 90%, P = 1.5 Mbps, and T ∗ = 10 ms.

in θ∗ formulation in Eq. (5.8) switches from the second term to the first term. Note that θ∗

always evaluates to the first term for BMux. The interpretation is that while N is increasing,

the number of cross flows increases while the number of through flows is fixed. Thus, if

cross flows have higher precedence than through flows (∆ > 0), the scheduler will eventually

converge to BMux since the number of cross flows becomes large compared to that of through

flows.

This figure shows that the scheduling algorithms in the upstream network can impact the

network decomposition in a non-asymptotic regime. The effect of scheduling can be as impor-

tant as the effect of multiplexing gain in network decomposition and changes the convergence

speed of BI
ds to BII

ds as shown in the analytical results.

5.4.4 A case for decomposition

In this example, we compare the total backlog of the downstream node in Scenario I, BI
ds, with

the total backlog in Scenario II, BII
ds, by computing a probabilistic upper bound for |BII

ds−BI
ds|

from Eq. (5.33). The upstream network is a single ∆-scheduler with different choices of ∆ =



CHAPTER 5. NETWORK DECOMPOSITION 148

−10, 0, 10, 100,∞. The details of the computations for the plots in Fig. 5.6a are presented as a

pseudocode in Algorithm 3.

Fig. 5.6a considers one through flow (n0 = 1), and one MMPP cross flow (nc = 1) at the

downstream node. The link capacity of the downstream node is Cds = (n0 + nc)0.1669 Mbps

which keeps the utilization at the downstream node to 90%. The figure shows that the queue

size of Scenario I converges to that of Scenario II very fast especially for ∆ ≤ 10. In fact, both

scenarios seem to have the same probabilistic backlog bound even when N is few hundreds for

∆ ≤ 10. For ∆ ≥ 100, the difference is ignorable if N is as large as few 104.

Fig. 5.6b repeats the same experiment as Fig. 5.6a, except that n0 = nc = 10. As assumed

along this chapter, the number of through flows must be small compared to N to have a valid

case of decomposition. This figure shows that violating this assumption can drastically impact

the decomposition viability for large values of ∆, e.g., ∆ = 100,∞. But the convergence of

the backlog bounds in two scenarios happens for moderate values of N < 104 if ∆ ≤ 0.
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Algorithm 3 The algorithm used in Fig. 5.6
ε← 10−6

for N = 102 to 105 do

for α = 10−10 to 10 do

for all γII such that 0 ≤ γII ≤ Cds−n0ρ0(α)−ncρc(α)
2

do

Compute σII by setting εTII(σII) from Eq. (5.22) equal to ε
N2+2

Compute TII(α, γ
II) from Eq. (5.21)

end for

end for[This loop computes TII]

TII ← minα,γII TII(α, γ
II)

for α = 10−10 to 10 do

α0, αc ← α, α1 ← α
N

for all γI such that 0 ≤ γI ≤ Cds−n0ρ0(α0)−ncρc(αc)
3

do

γus ← C − n1ρ1(α1)− n0ρ0(α0)− γI

K I
0 ← e

(
1 + n0ρ0(α0)

γI + n1ρ1(α1)
γus

)
Compute σI by setting εTI(σI) from Eq. (5.27) equal to ε

N2+2

end for

end for[This loop computes TI]

TI ← minα,γI TI(α, γ
I)

Tmax = max{TI, TII}

τs ← Tmax
N2

for α = 10−10 to 10 do

α0 ← N2α, α1 ← α

for all γ such that 0 ≤ γ ≤ C−n1ρ1(α1)−n0ρ0(α0)
H+1

do

Compute σnet by setting
⌈
Tmax

τs

⌉
εb(σnet − n0P0τs) from Eq. (5.33) equal to N2ε

N2+2

X(α, γ)← bnet(σnet) from Eq. (5.7).

end for

end for

return Y (N) = minα,γ X(α, γ).

end for



Chapter 6

Conclusions and Future work

6.1 Conclusions

In this thesis, we have provided end-to-end delay and backlog analysis for a tandem of a class

of schedulers which we call ∆-schedulers (and includes FIFO, SP, and EDF as special cases).

We have advanced the Stochastic Network Calculus in performance analyses of a network of

schedulers. The results of this thesis have gained new insights into the impact of scheduling

algorithms on the end-to-end delay and backlog. Our main contributions are listed below.

1- In a single node scenario, Network Calculus can provide necessary and sufficient delay

bound condition for ∆-schedulers.

We have formulated a tight service curve for ∆-schedulers (Theorem 3.1). The tightness

of the service curve means that it can provide the necessary and sufficient single node delay

bound constraint.

2- In an end-to-end scenario, Network Calculus can provide a scheduling analysis which is

tight in some regimes.

Applying per-node ∆-scheduler service curves to the existing convolution theorem from

[20], a statistical network service curve for a tandem of ∆-schedulers can be obtained. We

have shown that the resulting end-to-end delay bounds in a tandem of ∆-schedulers with the

150
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existing convolution theorem are loose except for the case of BMux (∆ = −∞).

Our main contribution in multi-node scenarios is formulating a new statistical convolution

theorem (Theorem 4.4). We have shown that in the special case of the deterministic setting

of our formulations, the end-to-end upper delay bounds are close to the worst-case achievable

delays (sometime matches) implying that our end-to-end bounds are tight good and tight in

some regimes. Numerical comparisons of the new and existing convolution theorem shows the

considerable gain achieved by Theorem 4.4. The numerical results also shows that the effect

of scheduling does not diminish as the path length increases.

3- The existing conjecture on the departure characterization of CBR traffic in FIFO schedulers

in Eq. (4.3) can be proved and extended it to multi-node scenarios and to more general traffic

types.

We have shown that the existing conjecture on the CBR departure traffic rate in a FIFO

scheduler in Eq. (4.3) is valid not only for CBR traffic, but also for general traffic sources

in terms of long-term average rate. In another extension, the single node results are used for

output characterization of general traffic on a long path. We have shown that the long-term

average rate of a through flow in a tandem of FIFO schedulers converges to that in a tandem of

SP with the lowest priority given to the through flow.

4- Network can be decomposed for a moderate number of traffic flows for some schedulers.

The possibility of queuing analysis of the nodes inside a network and regardless of the net-

work has been investigated profoundly in the literature. The existing analyses assume BMux

or FIFO links and are mostly under a many sources asymptotic. In Chapter 5, we have ex-

tended this concept to a non-asymptotic regime and to all ∆-schedulers. We have shown that

although a network can be decomposed for all schedulers, eventually, as the number of traffic

flows increases, in a non-asymptotic regime, we might still be able to decompose the network

depending on the scheduling algorithms used in the network. Indeed, we have shown (by an

example) that a network might be decomposed for some schedulers (including FIFO) even

when the number of flows is only few hundreds. More precisely, the backlog analyses of the
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nodes without considering the network effect converges to that which accounts for the network

effect as the number of flows increases. The convergence speed is a function of scheduling and

varies from exponential (for ∆ ≥ 0) to super exponential (for ∆ < 0).

6.2 Future Work

The results of this thesis can be used to continue research in two directions. The first one is

extending this results to more general cases. Some interesting generalization opportunities are

outlined in the following:

1- Other network scenarios:

In this thesis, we have analyzed a tandem network. An interesting, currently open problem

is how tight we can analyze other network scenarios and how scheduling impacts the end-

to-end delay and backlog in those scenarios. For instance, the authors of [6], [66] provide

end-to-end deterministic FIFO analyses for a large set of network topologies. It is shown that

the tightness of the resulting end-to-end delay bounds from Network Calculus depends on the

network scenarios. For instance, it is proved that the bounds are tight in a sink-tree network

while they are not tight in some nested network scenarios.

2- Other scheduling algorithms:

Our scheduling analysis includes some schedulers, while it excludes others. It would be

interesting to expand our results to a more general group of schedulers and study their end-to-

end behaviors as well. In particular, GPS is an interesting candidate to examine the end-to-end

delay in a tandem of rate schedulers.

3- Other traffic types:

Although our convolution theorem (Theorem 4.4) and per-node service curve formulation

(Theorem 3.1) can be applied to any SBB traffic, we only consider EBB as an example in the

thesis. An interesting future work is to compute end-to-end delay and backlog bounds for FBM

traffic (which is SBB, but not EBB) and check to see if the scheduling has similar impacts for
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this type of traffic.

The second direction for the continuing research in this field is to use the results of this

thesis to gain new insights into the scheduling behavior. One of the interesting future studies

of this sort is departure characterization in overloaded regime for ∆-schedulers. The departure

characterization in FIFO schedulers in the overloaded regime in [29] is based on the FIFO

service curve derived by Cruz in Eq. (3.17). We can apply our service curve formulation in

Theorem 3.1 to see if a similar departure characterization exists for ∆-schedulers.
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