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Abstract

Multimedia collaborative applications for the Internet require the availability of mul-
ticast protocols that enhance the basic connectionless IP Multicast service. A critical re-
quirement of such protocols is their ability to support a large group of simultaneous users.
For this it is crucial that there exist mechanisms to efficiently exchange control information
between the members of a group. In this paper, we present a new approach for distribut-
ing control information within a multicast group. The goal of our approach is to scale to
very large group sizes (in excess of 100,000 users). Multicast group members are organized
as a logical n-dimensional hypercube, and all control information is transmitted along the
edges of the hypercube. We analyze the scalability of the hypercube control topology and
show that the hypercube balances the load per member for processing control information
better than existing topologies. We use actual data traces of the group membership in an
MBONE conference to gain insight into the transient changes of the load at each node. We
present a set of protocol mechanisms that maintain the hypercube topology in a soft-state
fashion without requiring any entity to have global state information.
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1 Introduction

Recently emerging interactive multi-user applications have increased the need for advanced
multicast services on the Internet. These services are implemented on top of the basic connec-
tionless IP Multicast service, which does not guarantee reliable or in-sequence delivery [7].

In the basic multicast service, a user joins a multicast group simply by indicating interest
in receiving data sent to that group. Any packet that is transmitted to a multicast group is
forwarded to all members of the group. Services that include error control, rate control, or
in-sequence delivery are not part of the basic service. To implement these advanced services,
multicast group members must exchange control information with each other. However, the
management of control information in a multicast group is a non-trivial problem, especially, if
group sizes are large. Without careful management of control information, a multicast protocol
can only support small group sizes.

Consider, for example, the implementation of a reliable multicast service. A unicast proto-
col with a single sender and a single receiver requires the receiver to send positive or negative
acknowledgment packets (ACKs and NACKs) to the sender to indicate reception or loss of
data. If the same mechanisms are applied to large groups, the sender would soon be flooded
by the number of incoming ACK or NACK packets; this is referred to as ACK Implosion [6, 13].

In recent years, many techniques and protocol mechanisms have been proposed to cope
with the amount of control information that is exchanged between members of a multicast
group [2, 5, 9, 12, 13, 16, 17, 19, 20, 22, 28, 24, 25, 29], mostly in the context of providing a
reliable multicast service. Farly proposals were targeted at local area networks and exploited
the broadcast capabilities in such networks [22, 24]. In packet-switching networks, we find two
approaches to deal with the volume of control traffic. In one approach, control information is
broadcast to all members of the multicast group; the volume of control traffic is limited based
on the volume of data traffic or on the size of the multicast groups [3, 9, 23]. The drawback
of this approach is that the each multicast member has to reduce its control traffic as the
multicast group grows. In the second approach, the group members are organized in a logical
graph, henceforth called control topology. Only those group members which are neighbors in
the logical graph can exchange control information. By merging control information received
from their neighbors, the dissemination of control information can be made efficient. Control
topologies that have been considered in the literature are rings [5, 28] and trees [12, 17, 19, 29].

This paper proposes a new approach for disseminating control information between the
members of a multicast groups. We present a topology that is derived from an n-dimensional
hypercube. We claim that the hypercube topology has excellent scalability properties, mak-
ing it the preferred choice for multicast applications with very large group sizes. The key
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Figure 1: Multicast Framework.

contributions of this study are as follows:
e We show how to construct a hypercube control topology with simple boolean operations.

o We show that the hypercube balances the load for processing control information at
multicast group members. Thus, the creation of bottlenecks in the control topology is

avoided.

o We present a soft-state protocol that maintains the hypercube control topology without

requiring any network entity to have global knowledge.

The remainder of the paper is structured as follows. In Section 2 we review the existing
proposals for disseminating control information to the members of a multicast group. In
Section 3 we present the hypercube as a new solution to disseminate control information in a
multicast group. In Section 4 we analyze the scalability properties of a hypercube and compare
them with other control topologies. In Section 5 we present the basic protocol mechanisms for
a soft-state implementation of the proposed architecture. In Section 6 we present an empirical
evaluation of various control topologies using actual traces from a large multicast session on
the MBONE. In Section 7 we present our conclusions and discuss future work.



2 Control Topologies for Multicast Communications

In this section we review currently used control topologies for disseminating control information
in multicast groups, focusing on the ability of these topologies to support large multicast
groups. We also introduce some terminology that is used throughout this paper.

An underlying assumption of our work is that communication within a multicast group is
symmelric, i.e., on the average, each member of the group generates the same amount of traffic.
In contrast, an asymmetric groups is characterized by few members of the group generating
most or all of the traffic.!

It is convenient to view the members of a multicast group as a set of nodes V. Nodes are
numbered in an arbitrary sequence, that is V = {1,2,..., N}. We assume that each node can

directly communicate with any other member of the group.?

2.1 No Control Topology

Several protocols that extend the basic IP Multicast service do not provide a topology for
disseminating control information. Instead, the control information from any node is broadcast
to all other nodes in the group. Clearly, such a protocol must restrict the volume of control
information, since otherwise the scalability is severely impeded. The RTP protocol [23] limits
the total amount of control traffic to 5% of the data traffic. In [3], feedback from receivers to
the senders is adapted to the size of the multicast group.

Among reliable multicast protocols, the most popular approach to contain control traffic
without a control topology is a method known as NACK suppression |9, 22] or damping [24].
Here, a multicast group member with a control packet to send is forced to queue this packet
for a random time interval before it can be transmitted. If a member receives a control packet
which matches a queued packet, it cancels the transmission. For large group sizes, however,
the random queueing time have to be large, resulting in slow feedback times for the control

information.

Yet another set of protocols without a control topology employ a central controlling station
which coordinates ordering and reliability [4, 8, 10]. Due to the high load at the controlling
station, the scalability of such protocols is strictly limited.

! A multicast web server is an extreme example of an asymmetric group; here, the server is the only member
of the group that generates traffic.
?This can be accomplished by a multicast message which is read only by the destination, or via unicast

communication.



2.2 Ring Topology

Ring control topologies have been implemented to provide a reliable multicast service with
total ordering of messages [5, 28] . In these protocols, the multicast group is structured as a
logical ring, and a token is passed around the ring. Control messages are unicast between the
current holder of the token and other nodes. The scalability of ring topologies is only moderate
since control messages are always directed to the token holder, thus creating a bottleneck at
that node. Also, the time to pass the token around the ring increases for large group sizes,

resulting in decreased overall throughput.

2.3 Tree Topology

Tree topologies assume that control information is transmitted along the edges of a rooted
spanning lree. There is a spanning tree for each multicast member. We use T} to denote the
spanning tree with node k£ as root. Node [ transmits a control message to the root node k
by passing the message to its immediate ancestor in 7%, the tree rooted at k. Tree topologies
achieve scalability by exploiting the hierarchical structure of a tree. A drawback of tree-based
topologies is the overhead in constructing and maintaining the tree. Note that the tree must
be dynamically modified both in response to host failures and to members joining and leaving
the tree.

Several tree-based control topologies have been proposed for transmission of control infor-
mation [11, 17, 19, 22, 29], mostly for multicast groups with only a single sender. We discuss
the shared K-ary tree topology proposed in [17] which explicitly targets symmetric multicast
groups.

The shared tree topology is derived from a single balanced K-ary tree with root r. If some
other node k£ # r becomes the root, then the tree is re-hung with node k as new root [17].
Re-hanging trees with a new root is illustrated in Figure 2. In Figure 2(a) we show a binary
(2-ary) tree with node 1 as root. Figure 2(b) depicts the same tree, ‘re-hung’ for node 10 as
root node.

Re-hanging a tree does not increase the number of children of each node. However, after
re-hanging, the tree may no longer be balanced. Note that the longest path to the root in the
re-hung tree in Figure 2(b) is twice as long as in the original tree in Figure 2(a).

Among the currently considered topologies, tree-based topologies seem to be most suited
to support large multicast groups. However, tree-based topologies are not without problems
since re-hanging a shared tree destroys the balance for processing control information among
nodes. In the next section we propose a new control topology, derived from a hypercube, that
offers better load balancing, and as a result, has better scalability properties than tree-based



(a) Original Tree Rooted at Node 1. (b) Re-hung Tree Rooted at Node 10.

Figure 2: Shared Binary Tree.

solutions.

3 The Hypercube Control Topology

In this section we propose the hypercube as a new control topology for multicast communi-
cations. We propose organizing the members of a multicast group as the nodes of a logical
n-dimensional hypercube. We present a method for embedding spanning trees into the hyper-
cube and use these spanning trees for disseminating control information.

We demonstrate that the hypercube topology is well-suited to support multicast communi-
cation in very large groups. In this section we present our method for embedding control trees
in a hypercube. In Section 4 we compare the hypercube against the a control topology that is
derived from a shared K-ary tree. In Section 5 we present a soft-state protocol for maintaining

a hypercube topology in a dynamic multicast group.

3.1 Hypercube and Tree Embeddings

An n-dimensional hypercube is a graph with N = 2" nodes where each node is labeled by a
bit string &y, ...k1 (k; € {0,1}). Nodes in the hypercube are connected by an edge if their bit



strings differ in exactly one position. In Figure 3 we depict hypercubes for dimensions n = 1
ton =4.

Hypercubes have been studied extensively by the parallel computing community; they
are deemed attractive as a multiprocessor architecture because of their symmetry, the short
distances between nodes, and the number alternative routes. The literature on hypercubes is
rich, and we refer to [14, 15, 21] as excellent sources on the topic.

In the following we show that the properties of the hypercube topology can be exploited
to address the problem of disseminating control information in large multicast groups. We
propose to organize the members of a multicast group as the nodes of a hypercube. Then we
embed spanning trees into the hypercube and disseminate control information along the edges
of the spanning trees.

Past research on parallel algorithms has produced numerous algorithms for embedding trees
in hypercubes (see [15] for an overview). The goal of these these algorithms is to assign a parallel
computation, represented as a tree, into a multicomputer with an hypercube interconnection
network. These algorithms make a number of assumptions that are not applicable in the
context of a multicast group. First, most algorithms assume a static hypercube. Second, with
few exceptions [26, 27|, these algorithms assume a complete hypercube, i.e., N = 2". Both
assumptions are not realistic for multicast groups with a dynamically changing membership.

Our goal is to exploit the strong symmetry of the hypercube in the context of multicast
communications. To achieve this we must devise methods that address the problems of actual
multicast applications. First, we have to consider incomplete hypercube with N < 2™ nodes.
When embedding spanning trees in an incomplete hypercube with nodes V', we want to make
sure that all spanning trees only contain nodes in V. We refer to such trees as completely
contained in the incomplete hypercube. Second, we have to consider that the multicast group
membership changes dynamically. Since adding and removing nodes may degenerate the com-
pact structure of a hypercube, we need to have mechanisms in place that keep the dimension
of the hypercube as small as possible; we refer to this property as compactness.

3.2 Gray Ordering of Hypercube Nodes

The key to ensure complete containment of all spanning trees and maintain compactness of
the incomplete hypercube is the selection of a particular ordering of the nodes.

The standard ordering of hypercube nodes interprets the label of a node as a binary
number. Specifically, the number @ = " a; - 27! is associated with the node labeled
Bin(a) := ay...a1 (a; € {0,1}). With the ordering imposed by the numbers, compact-

ness can be achieved by ensuring that in a multicast group with N members the positions



Figure 3: n-dimensional Hypercubes.

Bin(0), Bin(1),..., Bin(N — 1) are always occupied. However, using this ordering there it is
not clear how to construct spanning trees that satisfy the complete containment condition.

As a solution we propose to use a different ordering of the nodes, which is based on an
ordering obtained by interpreting node labels using a Gray codes. A Gray code, denoted by
‘G(-)’, is defined via the following properties [21]:

o The values are unique. That is, if G(#) = G(j) = i = j.
e G(i) and G(i + 1) differ in only one bit, for 0 <7 < 2471 — 1.
e G(2%71 — 1) and G(0) differ in only one bit.

In other words, a Gray code corresponds to a Hamiltonian walk on the hypercube [15].
Let ¢ be a number and Bin(¢) its binary representation, it is easy to verify that following

generates a Gray code:

G(i) := Bin(t) @ Bin(i/2)

where ‘@’ is the XOR operator and ‘z/2’ is an integer division by 2. We use G71(+) to denote
the inverse of G(-), that is, G71(G(7)) = 1.



By interpreting the node labels in the hypercube as Gray codes, the relationship between
i and G(?) defines an ordering of the nodes. Clearly, with this ordering compactness can

be enforced by ensuring that the members of a hypercube with K nodes occupy positions

G(0),G(1),...,G(K —1).

Example: Consider the ordering of nodes in a 3-dimensional hypercube. Refer to Figure 3
for the labeling of nodes. In the following table, we show the position number ¢, the binary

interpretation Bin(i), and the Gray code G(i):

Position Number ¢ 0 1 2 3 4 5 6 7
Bln(l) 000 | 001 | 010 | O11 | 100 | 101 | 110 | 111
G(l) 000 | 001 | 011 | 010 | 110 | 111 | 101 | 100

Thus, using the standard ordering Bin(¢) a multicast group with K = 5 members would
occupy the following positions in the hypercube: 000,001,010,011,100. In contrast, using a
Gray code G(7) occupies the following positions: 000,001,011,010, 110.

3.3 Tree Embedding in Gray-ordered Hypercubes

We now present an algorithm to embed spanning trees into hypercubes that use Gray codes for
ordering the nodes. The embedding of spanning trees in the hypercube is calculated locally:
A node with label G(z) directly obtains the address of its parent node in the tree with root
G(r). The ability to calculate the embedded tree in a distributed fashion will be exploited in
Section 5 where we present protocol mechanisms to maintain a hypercube topology.

Most importantly, for a Gray-ordered hypercube which preserves compactness as shown
in the previous subsection, our algorithm always generates a completely conlained spanning
tree. The algorithm is presented in Figure 4. Given two node labels I and R, the algorithm
computes the label of the parent node of node [ in the spanning tree that is rooted at node
R. If each node performs the procedure Parent for a root node R, we obtain a spanning tree
with root R embedded into the hypercube.

In Figures 5 and 6 we show the embeddings of the spanning trees in a 3-dimensional
hypercube for root nodes 1 and 5, respectively. Intentionally, we have depicted an incomplete
hypercube with N = 7 < 23 nodes.

All trees that are constructed by procedure ‘Parent’ have the following set of properties.

The properties follow directly from the procedure ‘Parent’ and are shown without proof.

Property 1: A node and its parent always have a Hamming distance of 1.



Input: Label of the i-th node in the Gray encoding:
G@)y=1=1,... L,
and the label of the r-th node (# ¢) in the Gray encoding:
G(r):=R=R,...R2R;.
Output: Label of the parent node of node I in the embedded tree rooted at R.
1. Procedure Parent (I, R)
2. If (GY(I) < G~Y(R))

3. // Flip the least significant bit where T and R differ.
4. Parent .= InIn_l...Ik_}_l(l—fk)fk_l...fgfl

6. Else // (G7(I) > G~1(R))

7. // Flip the most significant bit where I and R differ.
8. Parent := I, Ih—1 ... Iy4+1(1 — Ip) g—1 ... 121

9. with k = max; (I; # R;).

10. Endif

Figure 4: Tree Embedding Algorithm.

Property 2: The path length between a node and a root is given by their Hamming

distance.

Property 3: In a hypercube with N nodes, all trees have a depth of [loga(N)|. If

N = 2", the embedding results in a binomial tree. *

Property 4: If Parent (/, R) is the p-th node in the Gray encoding, then the following
holds: p < max{i,r}.

Property 4 ensures that the algorithm in Figure 4 guarantees complete containment of all
embedded trees. Next we analyze the properties of the proposed hypercube control topology
and compare it against tree-based solutions.

4 Comparison of Scalability Properties

To gain insight into the scalability property of the hypercube control topology, we conduct a
performance comparison with the K-ary shared tree discussed in Subsection 2.3. Qur analysis
should be seen in the light of our assumption that communication within a multicast group is

?A binomial tree of height 0 is a single node. For all i > 0, a binomial tree of height i is a tree formed by
connecting the roots of two binomial trees of height 1 — 1 with an edge and designating one of these roots to be
the root of the new tree (cited from [21]).

10



1-00

6-101

0-000

(a) Embedding (b) ResultingTree

Figure 5: Embedding a Tree with Root r = 1.

(a) Embedding (b) ResultingTree

Figure 6: Embedding a Tree with Root r = 5.

symmelric, that is, on the average each member of the group generates the same amount of
traffic.

The scope of our investigation is limited to quantitative aspects of disseminating control
information. We do not consider the effects of protocol processing or routing issues. Further-
more, we consider generic transmission of control messages without assumptions on a particular

control function (flow control, error control, etc.) as in [20].

4.1 Performance Measures

We define a set of performance measures which capture the load for control processing incurred
at each member of a multicast group. In all configurations considered, control information is
transmitted along the edges of a rooted spanning tree. Recall that we use 1} to denote the

11



spanning tree with node [ € V as root.
For most control function, a good indicator for the load at a node in a control tree is the
number of direct children. We define:

wg(17) := Number of children of node k € V in tree 1;.

Since control functions may incur a load at a node that is proportional to the number of
nodes ‘below it’ in a tree, we define:

vg(T7) := Number of descendants of node k € V in tree 7 (including node k),
where the descendants of node k in tree 1) are the nodes that
have node k on their path to the root node [.

Finally, since the path lengths in a control tree indicate delays of passing control information
in the tree, we define a measure that expresses this delay:

pr(17) :== Length of the path from node k to root node ! in 7;.

Based on the these notions we define more concise measures by taking the average over all
trees 1) with [ € V', denoted as wy, vy, and pg. These measures are defined as follows:

wg 1= % Eﬁl wi(1y) Average number of direct children of node k£ € V in a span-
ning tree.

Vg 1= A SN, we(T1)  Average number of descendants of node k € V.

Pri= SN pr(Ty)  Average path length from node k to the root.

To further condense the amount of data, we take the averages and maxima of the above
values and obtain:

1 & 1 & 1 &
Ti= 5>, w i D Pi= 7 P
k=1 k=1 k=1
Wmazr = mkaX WE Umaz = m]?X Uk Pmaz = mlg)(pk

We use w and  as indicators of the average processing load at a node. For w, our rationale
is that the load of processing control information directly correlates to the number of children
of a node. Somewhat differently, 7 correlates the load to the total number of descendants
of a node. We interpret p as a measure for the delays that occur in disseminating control
information; the longer the path length to the root node, the higher the expected delay.

We use the values of wyqz, Umaz, and ppez to calculate measures for the degree of load
balancing of a topology. Specifically, we use the ratios a4z /W, Vmaz /T, and Ppq. /P to compare

12



the worst-case node and average node for a control topology. Our expectation is that a control
topology with good scalability properties must balance the load incurred at a node, which is
reflected in the need for low maximum-to-average ratios.

In the following we present the results of the above measures for the K-ary tree and the
hypercube. Since some derivations are quite long, they cannot be included in this paper. The

reader is referred to [18] for the complete set of derivations.

4.2 Analysis of the Shared K-ary Tree

Recall that the control trees in the shared K-ary tree are obtained from a single K-ary by
re-hanging this tree with different nodes as root [17]. In Figure 2 we showed an example of
re-hanging a binary tree.

As K is increased, the maximum path length from a node to the (re-hung) root decreases.
This, however, increases the load on the node that is the root in the original tree. In the
extreme case, we have N = K and obtain a star topology where re-hanging the tree always
results in N — 1 nodes hanging off the original root of a star topology.

Let us assume for simplicity that all leaves of the tree are occupied, i.e., there exists a d > 0
with N = B2 Then we obtain [18]:4

K-1
w=1 Wiaz = K
kE+3 SN 44 ifk=2
7=2d— —— +2 oy = 4 8 4
! o1t ! BN 42 if k> 2
— 4 3
p:Qd—m pmaz’IQd =1

4.3 Analysis of the n-dimensional Hypercube

Calculating the performance measures for the hypercube, where trees are embedded as de-
scribed in Section 3, requires considerable effort [18]. For a complete hypercube, that is,
N = 2", we obtain [18]:

w=1 Wiaz = 2
7= log, N +1 Vmaz = g(logy N)? + 2log, N 4+ 1
p:%ng*V pmaa::%l gQ‘N

4.4 Discussion

We now use the measures from the previous subsections to demonstrate how the control topolo-

gies scale when the number of nodes grows large.

*The expressions shown here have an error term of order O(1/N). We refer to [18] for the exact expressions.

13
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Figure 7: Comparison of Average Number of Descendants.

Let us first examine the number of children of a node, @ and w,,4;. Since, for all spanning
trees, the average number of children is w < 1, i.e., on the average a node in a control tree has
only one child, we only compare the ratios wy,q,/w:

K-ary Tree: Winaz/W = K

Hypercube: Wiz /T = 2

Thus, there is a node in a K-ary tree that has K times as many children as the average node
resulting in a highly unbalanced load. The hypercube, in contrast, is better load-balanced.
Here, the difference between the worst-case and the average case is only a factor of 2. (In the
K-ary tree, the maximum is attained for the root in the original K-ary tree. The hypercube
attains the maximum at the node with label 00...0.).

In Figure 7(a) we present a graph where we plot the values for 7 by varying the number
of nodes N. We present results for the shared K-ary tree (with K = 2,5,10,100) and the
hypercube. In the figure we see that, in a K-ary shared tree, T decreases for increasing values
of K. Note that, over the entire range of values, T for the hypercube is smaller than the T
values for the 10-ary tree.

The comparison of the ratios v,,../7, depicted in Figures 7(b), reveals a problem with
load balancing for the shared tree topologies. Since v, increases linearly in N, all shared
trees have a bottleneck at the node were the maximum is attained. For large values of K,
scalability problems arise even for small group sizes. Even for the binary tree, the maximum-

14
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Figure 8: Comparison of the Average Path Lengths.

to-average ratio exceeds 100 when the number of nodes has only a few thousand nodes. In a
direct comparison with the K-ary tree, the value of v,,,, /7 for the hypercube appears almost
insignificant.

In Figures 8(a) and 8(b) we present the results for the path lengths. It is interesting to note
that average path to the root is shorter in the hypercube than in a 10-ary tree. Figure 8(b)
shows that load balancing is not an issue when considering the path lengths. As the size of

the multicast group is increased, the ratio p,,../P quickly approaches 1 in all topologies.

In summary, the hypercube appears very suitable to support large multicast groups. A
comparison with shared K-ary tree showed that the hypercube has all the advantages, and
none of the disadvantages of the shared K-ary tree. Particularly, the hypercube provides an
excellent balance of the average and worst-case load at the nodes. The load-balancing indicators
Winaz/W and Uyq, /T clearly demonstrates that the shared tree topology has problems when
scaled to very large group sizes. In contrast, the hypercube topology does not have these
scalability problems.
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5 Protocol Mechanisms for Maintaining a Hypercube Control

Topology

We now present a set of protocol mechanisms for maintaining a hypercube control topology.
We only discuss the most basic operations for entering a new node (‘Join’) and eliminating an
existing node (‘Leave’) from the hypercube.

The control topologies considered in this study are built on top of the basic IP multicast
service. Recall, that a message sent to an [P multicast address is broadcast to all users listening
to this address. No guarantees are made on successful delivery or order of delivery.

The protocol mechanisms to be presented are all soft-state; that is, all state information is
refreshed periodically without requiring a consistent state at all times.

5.1 Protocol Goals

The goal of the protocol is to organize a group of nodes in a logical hypercube. Every node
is aware only of its neighbors in the hypercube. No entity in the system has a notion of the
complete state information.?

We assume that each multicast group has a single multicast channel, referred to as control
channel. Every member can send and receive on this channel. Obviously, scalability require-
ments demand that the traffic on this channel be kept minimal.®

Every node in the hypercube has a physical address, given by an IP address/port pair and
a logical address, given by the node label discussed in Section 3. The logical addresses are
totally ordered using the Gray code from Subsection 3.2. The hypercube is said to be in a

stable state if it satisfies the following three criteria:
1. Consistent: No two nodes have the same logical address.

2. Compact: In a multicast group with N nodes, the dimension of the hypercube is given
by [logaN.

3. Connected: Each node knows the physical address of each of its neighbors in the hyper-

cube.

“This is in contrast protocols, such as RMP [28], where every node has information about every member in
the group, but also different from protocols, such as SRM [9], where no node has any information about the
group.

5This requirement can be relaxed so that only a small subset of nodes is listening on the control channel at
any given point of time. But, currently, we will assume that every member of the group is listening.

16



Faults and the mere fact that the protocol is soft-state may lead to a violation of the above
conditions, in which case the hypercube becomes unstable. Qur protocol returns an unstable
hypercube to a stable state. Due to space limitations, we do not discuss recovery from network
or node failures.

5.2 Neighborhoods and Leaders

The neighbors of a node are those nodes with logical addresses that differ from the logical
address of the node in exactly one bit location. Note that in an m-dimensional hypercube,
every node has a maximum number of m neighbors. Every node maintains a table with the
physical addresses of all its neighbor; this table defines the node’s neighborhood. A node is
sald to have a complele neighborhood if it knows the physical address of each neighbor that
is part of the hypercube. In a stable state, a node can determine whether it has a complete
neighborhood, as long as it knows the largest logical address (according to the ordering of the
Gray code) in the group.

If, in an unstable hypercube, two or more nodes have the same logical address, we use
the physical address to establish a total ordering. Given any node, its successor in the Gray’s
ordering is defined to be its ancestor. In a stable hypercube, every node except the one with the
largest logical address has one ancestor. A node without any neighbor with a logical address
greater than its own is defined to be a leader. A stable hypercube has exactly one leader.

5.3 Basic Message Formats

The maintenance operations of the hypercube are based upon a set of messages, called basic
messages. The protocol has a total of 5 basic messages. A node transmits a message, either
by unicasting to one or all of its neighbors, or by multicasting on the control channel. We do
not assume transmission of basic messages to be reliable.

Much of the hypercube maintenance is based on the following two basic messages which

are repeatedly sent at a given frequency:

¢ Ping Message: Every node periodically pings its neighbors by sending them a short
unicast message. A ping message contains the logical and physical address of the sender
and the receiver of the message. If a node with an incomplete neighborhood receives a
ping from a new neighbor, it updates its neighborhood table with the physical address
of the new neighbor, and begins pinging this new node. If a neighbor of a node does not
send pings for an extended period of time, the node assumes the neighbor to have failed,

and removes the entry from its neighborhood.

17



¢ Beacon Message: A beacon is a message that is multicast on the control channel. The
beacon message contains the current neighborhood of the sender. A node can transmit
a beacon message only if it (1) considers itself to be a leader, or, (2) determines that it
does not have a complete neighborhood. Every node uses the beacon messages sent by
leader(s) to form an estimate of the largest logical address in the group. This information
is sufficient to determine whether it has a complete neighborhood.

Our protocol uses the beacon to accomplish the join procedure of new nodes. (The beacon
messages are also used for stabilizing the hypercube after network or node failures.)

The remaining three basic messages are used for specific tasks:

o Leave Message: A node sends a leave message when it wants to release its logical
address, either because it wants to leave the group or because it is moving to a new
logical address. The node sends this message to all its neighbors, which - upon reception

- remove the node from their neighborhood.

REMARK: Since a leave message is not reliable, a neighbor may not receive a leave
message. In this case, it will notice the absence of the node through missing responses

to its ping messages.

e Kill Message: A kill messages is issued to resolve conflicts when two or more nodes
happen to have the same logical address. If a node detects that another node has the
same logical address as itself, it compares its physical address with the physical address
of the other node. If the other node has a lower physical address, it sends a kill message,
on receiving which, the first node will leave and rejoin the group. If however, its own
physical address is lower, it behaves as if it had received kill message.

¢ Bid Message: The bid message is used by nodes in response to a beacon message and
contains both the logical and physical address of the sender. A bid indicates that a node

is willing to move to the neighborhood of the node which sent the beacon.

5.4 Node Behavior

The protocol imposes the following rules on each node.

e Every node listens to the control channel and keeps track of the largest logical address

in the hypercube (according to the ordering of the Gray code).
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e Every node sends a ping to its neighbors at a frequency Fi. If a node determines itself
to be a leader, it will start to send multicast beacons to the control channel at frequency
F3. A node with an incomplete neighborhood will also send beacons, albeit at a lower
frequency Fs(<< Fy). The frequencies should be set according to the rate of network
faults and node failures.

e Each leader node strives to move to a logical address which is lower than its own in the
Gray’s ordering. Whenever a node can take a new position with a smaller logical address
in the hypercube without creating a hole, it will do so. We will call this behavior the
address minimization principle. More precisely, if a node receives a ping directed at its
physical address, but to a logical address lower than its own, it will assume the lower

logical address contained in the ping.

o If a node receives a message from a node with a logical address identical to its own, it
resolves the conflict by removing itself from the hypercube, or by sending a kill message
to the node, as explained previously.

5.5 The Join Procedure

Figure 9 illustrates the steps that are performed when a new node joins the hypercube. The
join procedure is completed in six steps; Figure 9(a) shows the first three steps, and Figure 9(b)
shows the last three steps. A node that wants to join starts listening to the multicast channel
until it encounters a beacon packet from the leader node. The node responds with a bid packet
to the leader. If the leader receives the bid packet, it installs the node into its neighborhood and
starts pinging the new node with its new logical address. The logical address of the new node is
the successor of the old leader in the ordering of the Gray code; hence, the new node becomes
the new leader and begins to beacon on the control channel (see second picture in Figure 9).
As soon, as the neighbors of the new node see the beacon, they will update their neighborhood
table and start pinging the new node. The new node, will return the ping, thereby completing
its neighborhood view.

5.6 The Leave procedure

The fact that a node has left a position in the hypercube is detected by its neighbors through
receipt of a leave message, or because no ping message was received for an extended period
of time. In either situation, the ancestor of the departing node assumes responsibility for
restoring the compactness of the hypercube.
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(a) Steps (1) to (3). (b) Steps (4) to (6)..

Figure 9: Join Procedure.

To restore compactness, the ancestor waits for a beacon from a leader on the control channel.
At that point, it installs the leader in its neighborhood, and begins pinging the leader. Because
of the address minimization principle, the leader will try to take the empty position. Then,
the (old) leader will find its other neighbors in the new neighborhood in a similar fashion as a
newly joining node.

The above discussion contains only some of the protocol mechanisms necessary for main-
taining the hypercube control topology. Due to space limitations, we have simplified the
discussion and refer to [18] for a complete description of the protocol.

6 Empirical Evaluation of Dynamic Behavior

In this section, we present an empirical evaluation of the hypercube control topology. We
measure the dynamic behavior of the hypercube control topology, and compare the results
with the K-ary shared tree topology.

The basis for our empirical evaluation are data traces of an MBONE session obtained with
the Mlisten tool [1]. The authors of [1] have made available to us detailed traces of the multicast
group membership of MBONE sessions. The traces that are the basis for our evaluation are
the video transmission sessions for the NASA’s STS-80C space shuttle mission measured over
a period of 27 days (657 hours) from November 8, 1996 to December 4, 1996.
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Figure 10: Group Size of the MBONE Session.

The varying size of the group membership over the measurement period from 120 hours
to 600 hours is shown in Figure 10. Over the entire length of the experiment, the MBONE
sessions had 1,874 different hosts participating with a maximum of 169 simultaneous users (at
t = 252 hours into the experiment). Note in Figure 10 the occasional drops in the group size,
e.g., at t = 319 hours. Even though these drops are likely due to artifacts of the measurement
experiments, we assume that Figure 10 reflects the actual group size.

We use this trace to track the dynamic behavior of the performance measures from Sub-
section 4.1 which indicate the average load and the degree of load balancing. 7

As before, we perform a comparison between the hypercube topology and the shared K-
ary tree. In all topologies, we assume that, whenever the group membership has changed,
the resulting topology is as compact as possible. In tree topologies, we keep the tree depth
minimal, and in the hypercube topology, we attempt to minimize the hypercube dimension.
For a hypercube this means we assume that compactness is always maintained. For the tree,
our scheme ensures that all nodes at level 0 (root) to d are filled before filling any node at
level d + 1. This assumption ensures that we always present the most optimistic results for
the shared K-ary tree. Actual algorithms for restructuring shared K-ary trees, e.g., [17], may
yield worse results.

Next we discuss the outcome of the experiment:

¢ Number of children of a node: In Figure 11 we depict the ratio w,,q,/@ which reflects
the skewness of load balancing. ® Note that the ratio is lowest for the hypercube. For K-ary
trees, the ratio increases as the maximum number of children of a node is increased.

e Number of descendants of a node: In Figure 12 we depict the values for the ratio

"We emphasize again that, in this paper, we do not take into consideration any routing aspects.
8We mentioned before, that @ approaches 1 as the number of nodes increases, and is, therefore, not very

interesting.
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Vmaz/T. (The values of T are < 4 for the hypercube, < 10 for the binary tree, < 6 for the 5-ary
tree, and < 3 for the Star network). The hypercube clearly emerges as the topology with the
best load balancing properties.

¢ Path Length in Control Topology: Since for all topologies considered, the maximum
value py,q. is within a constant from the average P (see Section 4), we only show the values for
P. In Figure 13 we see that the average path length in the hypercube topology is less than 4
hops, less than that for the 5-ary tree.

7 Conclusions

We have presented a new approach for disseminating control information between the members
of a multicast groups. In our approach, we organize the members of a multicast group in a
logical hypercube and assign each multicast group member a number that is derived from
a Gray code. The Gray encoding enables each node to locally calculate the next hop for
transmitting control information. We analyzed the scalability properties of our approach in
symmetric multicast groups, i.e, where each group member is a sender. In a comparison with
an K-ary shared tree control topology we showed that the hypercube is superior in balancing
the load of control information among all nodes. We outlined a set of protocol mechanism
for maintaining the hypercube topology in a packet-switching networks. The protocol was
soft-state and did not require global knowledge of the hypercube topology at any network
entity.

Our future work on the hypercube control topology will be concerned with both conceptual
and practical issues. On a conceptual level, we will attempt to account for the geographical
location of a host when inserting a node into a hypercube. As an experimental project, we are
currently working on a Java implementation of the protocol mechanisms. The implementation
will enable us to measure the overhead incurred by the protocol and the rate at which the

protocol can recover from network failures.
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