Capacity Provisioning for Schedulers with Tiny Buffers

Yashar Ghiassi yashar@comm.utoronto.ca

> Department of ECE University of Toronto

Joint work with:

J. Liebeherr

April 18, 2013

1/23

• • • • • • • •

Resource Provisioning for Link Schedulers

- Input traffic: Through flows A_0 and cross flows A_c
- Output traffic: Through flows D_0 and cross flows D_c
- Link capacity C, buffer size K
- Backlog $b_0(t)$ and delay $d_0(t)$ of the through flows at time t

Size *C* and *K* such that:

 $P\{b_0(t) > K\} \le \varepsilon^*$ and/or $P\{d_0(t) > \overline{d}\} \le \varepsilon^*$, where \overline{d} is the delay bound

There are arguments in favour of small buffers:

- Small buffers enable fast memory technologies (e.g., SRAM). (*Enachescu et al.' 05*)
- Small buffers might even mitigate traffic burstiness. (*Likhanov and Mazumdar' 98*), (*Mao and Panwar' 01*)
- In case of many sources, adding small buffers satisfies loss probability. (*Mao and Panwar' 01*)

Asymptotic Observations

Define

- c: per-flow capacity
- \bar{a} : per-flow average rate := $\lim_{t\to\infty} \frac{1}{N} \frac{A_0(t) + A_c(t)}{t}$

Given: a loss probability constraint (using large deviation techniques) For *any* work-conserving scheduling $\lim_{N\to\infty} c \to \bar{a}$. (*Eun and Shroff' 05*)

The results hold for small buffers (i.e., $O(1)) \Rightarrow$ network decomposition

Network Decomposition in an Asymptotic Regime

• Convergence of D_0 to A_0 : (Wischik' 99), (Ying et al.' 94)

• Convergence of *B*_I to *B*_{II}: (*Eun and Shroff*' 05), (*Ciucu and Hohlfled*' 09), (*Ciucu and Liebeherr*' 09)

Does Link Scheduling Matter if N is Finite?

Some existing non-asymptotic results for schedulers:

- $D_0 \rightarrow A_0$ for FIFO scheduling even when *N* is few hundreds under some statistical independence assumptions. (*Ciucu and Liebeherr' 09*)
- A non-asymptotic capacity size is computed for a given per-flow delay bound constraint in a FIFO scheduler. It scales by $c = O(\frac{1}{N})$. (*Ciucu and Hohlfled' 09*)

Open question:

How does link scheduling impact capacity requirement and decomposition for finite *N*?

Contributions

We show that for finite N, the choice of link scheduling has a big impact on

- Buffer overflow probability
- Capacity provisioning
- Viability of network decomposition

In particular

$$c - \bar{a}$$
 ranges from $O\left(\sqrt{\frac{\log N}{N}}\right)$ to $O(\frac{1}{N})$ depending on the scheduling algorithm.

Traffic Source (MMOO)

Markov-modulated On-Off (MMOO) source:

・ロト ・ 同ト ・ ヨト

- P Kbps in ON state, idle in OFF state
- Average time to return to the same state: $T^* = \frac{\lambda + \mu}{\lambda \mu}$
- The larger the T^* , the more bursty the traffic

Exponentially Bounded Burstiness

Exponentially Bounded Burstiness (EBB) sources (Yaron, Sidi'93) An arrival process *A* is EBB with parameters (M, ρ, α) if for any $s \le t$

 $P(A(s,t) > \rho(t-s) + \sigma) \le Me^{-\alpha\sigma} := \varepsilon(\sigma)$.

We write it by $A \sim (M, \rho, \alpha)$.

Suppose: *A* is the aggregate of *n* iid MMOO flows with parameters λ , μ , and *P*.

Then, $A \sim (1, nr(\alpha), \alpha)$ for any $\alpha \ge 0$, with

$$r(\alpha) = \frac{1}{2\alpha}(P\alpha - \lambda - \mu + \sqrt{(P\alpha - \mu + \lambda)^2 + 4\mu\lambda}).$$

We use this flexibility (a family of EBB characterizations) to get new insights.

A scheduler whose operation is entirely determined by a matrix of constants $(\Delta_{j,k})_{j,k\in\mathcal{N}}.$

• The followings are Δ -schedulers:

• GPS is not a Δ -scheduler.

► FIFO: $\Delta_{j,k} = 0$ ► SP, BMux: $\Delta_{j,k} = \begin{cases} -\infty \\ +\infty \\ +\infty \end{cases}$ if flow j has higher priority if flow k has higher priority
 ► EDF: $\Delta_{j,k} = d_j^* - d_k^*$

A scheduler whose operation is entirely determined by a matrix of constants $(\Delta_{j,k})_{j,k\in\mathcal{N}}.$

• The followings are Δ -schedulers:

• GPS is not a Δ -scheduler.

► FIFO: $\Delta_{j,k} = 0$ ► SP, BMux: $\Delta_{j,k} = \begin{cases} -\infty \\ +\infty \\ +\infty \end{cases}$ if flow j has higher priority if flow k has higher priority
 ► EDF: $\Delta_{j,k} = d_j^* - d_k^*$

A scheduler whose operation is entirely determined by a matrix of constants $(\Delta_{j,k})_{j,k\in\mathcal{N}}.$

• The followings are Δ -schedulers:

- FIFO: $\Delta_{j,k} = 0$

• GPS is not a Δ -scheduler.

► SP, BMux: $\Delta_{j,k} = \begin{cases} -\infty \\ +\infty \end{cases}$ if flow j has higher priority ► EDF: $\Delta_{j,k} = d_j^* - d_k^*$

A scheduler whose operation is entirely determined by a matrix of constants $(\Delta_{j,k})_{j,k\in\mathcal{N}}.$

- The followings are Δ -schedulers:
 - $\Delta_{j,k}=0$ ► FIFO:

• GPS is not a Δ -scheduler.

if flow j has higher priority if flow k has higher priority

A Backlog Bound for EBB flows in Δ -Schedulers

A backlog bound for Δ -schedulers [Ghiassi, Liebeherr, Burchard' 11]

•
$$A_0 \sim (M_0, \rho_0, \alpha_0)$$
 and $A_c \sim (M_c, \rho_c, \alpha_c)$.

• $\Delta_{0,c} = \Delta$ and capacity *C*.

For any $\sigma_0, \sigma_c \ge 0$ and $0 \le \gamma \le \frac{C - \rho_c - \rho_0}{2}$

$$\theta^* = \min\left(\frac{\sigma_c}{C - \rho_c - \gamma}, \frac{[\sigma_c + (\rho_c + \gamma)\Delta]_+}{C}\right)$$

$$b(\sigma_0, \sigma_c) = \sigma_0 + (\rho_0 + \gamma)\theta^*$$

$$\varepsilon(\sigma_0, \sigma_c) = M_0 e\left(1 + \frac{\rho_0}{\gamma}\right)e^{-\alpha_0\sigma_0} + M_c e\left(1 + \frac{\rho_c}{\gamma}\right)e^{-\alpha_c\sigma_c}$$

Then,

$$\Pr\{B_0(t) > b(\sigma_0, \sigma_c)\} \le \varepsilon(\sigma_0, \sigma_c) .$$

Corollary (Per-flow capacity scaling properties)

The per-flow capacity of a Δ -scheduler with a fixed (arbitrary small) buffer size, a target loss probability, and MMOO input flows satisfies

$$c - \bar{a} = \begin{cases} O\left(\sqrt{\frac{\log N}{N}}\right) & \Delta \ge 0\\ O\left(\frac{1}{N}\right) & \Delta < 0 \end{cases}$$

 $\lim_{N\to\infty} c \to \bar{a}$ for all work-conserving schedulers.

The speed of convergence is highly affected by the scheduling algorithm.

Network Decomposition $(D_0 \rightarrow A_0)$

Output EBB characterization

w

Given: $A_0 \sim (1, \rho_0, \alpha_0)$ and A_c are MMOO input flows to a Δ -scheduler. Then, $D_0 \sim (M_0^{out}, \rho_0, \alpha_0^{out})$, with

$$\alpha_0^{out} = \alpha_0 - O(\frac{1}{N}); \qquad M_0^{out} = \begin{cases} L(N)N^{\frac{1}{N}} & \Delta \ge 0\\ L(N) \left(Ne^{-N\beta}\right)^{\frac{1}{N}} & \Delta < 0 \end{cases}$$

here $\lim_{N \to \infty} L(N) = 1.$

- $D_0 \rightarrow A_0$ as $N \rightarrow \infty$ for any work-conserving schedulers.
- The speed of convergence is substantially affected by the schedulers.

16/23

Network Decomposition $(B_I \rightarrow B_{II})$

Theorem (a.s. convergence of $B_{\rm I}$ to $B_{\rm II}$)

For MMOO traffic sources and Δ -schedulers, there exists a constant $\alpha > 0$ and a non-negative function L such that for any $\sigma \ge 0$

 $\Pr\{|B_{I}(t) - B_{II}(t)| > \sigma\} = \begin{cases} O(N^{2})e^{-N\alpha\sigma} & \Delta \ge 0\\ O(N^{2}e^{-N\beta})e^{-N\alpha\sigma} & \Delta < 0 \end{cases}$

 $\lim_{N\to\infty} B_I \to B_{II}$ for all work-conserving schedulers. The speed of convergence is highly affected by the scheduling algorithm.

Example 1: Network Decomposition $(D_0 \rightarrow A_0)$

• $n_0 = 1, 10, C = 100$ Mbps, U = 90%, and $\varepsilon^* = 10^{-6}$

• MMOO iid flows each with P = 1.5 Kbits and $T^* = 10$ ms

Example 2: Network Decomposition $(B_{II} \rightarrow B_I)$

• $n_0 = 1, 10, C = 100$ Mbps, U = 90%, and $\varepsilon^* = 10^{-6}$

• MMOO iid flows each with P = 1.5 Kbits and $T^* = 10$ ms

19/23

Example 3: Capacity Provisioning

n₀ = 1, 10, b₀ = 1.5 Kbits, U = 90%, and ε* = 10⁻⁶
MMOO iid flows each with P = 1.5 Kbits and T* = 10 ms

20/23

Conclusions

•
$$c - \bar{a}$$
 ranges from $O\left(\sqrt{\frac{\log N}{N}}\right)$ to $O(\frac{1}{N})$ depending on the scheduling algorithm.

• Capacity provisioning is highly affected by the scheduling algorithm.

• Network decomposition is valid for some schedulers even for moderate values of *N* (e.g., few hundreds).

Thank You

Questions?

◆□ → ◆□ → ◆ ■ → ◆ ■ → ● ● ◆ ○ へ ○
22/23

Example 4: Capacity Provisioning

n₀ = 1, U = 90%, and ε^{*} = 10⁻⁶
MMOO iid flows each with P = 1.5 Kbits and T^{*} = 10 ms

23/23