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Resource Provisioning for Link Schedulers





 





Input traffic: Through flows A0 and cross flows Ac

Output traffic: Through flows D0 and cross flows Dc

Link capacity C, buffer size K
Backlog b0(t) and delay d0(t) of the through flows at time t

Size C and K such that:
P{b0(t) > K} ≤ ε∗ and/or P{d0(t) > d̄} ≤ ε∗, where d̄ is the delay bound
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Towards Small Buffers

There are arguments in favour of small buffers:

Small buffers enable fast memory technologies (e.g., SRAM).
(Enachescu et al.’ 05)

Small buffers might even mitigate traffic burstiness.
(Likhanov and Mazumdar’ 98), (Mao and Panwar’ 01)

In case of many sources, adding small buffers satisfies loss probability.
(Mao and Panwar’ 01)
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Asymptotic Observations



 



 





Define
c: per-flow capacity
ā: per-flow average rate := limt→∞

1
N

A0(t)+Ac(t)
t

Given: a loss probability constraint (using large deviation techniques)
For any work-conserving scheduling limN→∞ c → ā. (Eun and Shroff’ 05)

The results hold for small buffers (i.e., O(1))⇒ network decomposition
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Network Decomposition in an Asymptotic Regime

Convergence of D0 to A0:
(Wischik’ 99), (Ying et al.’ 94)

Convergence of BI to BII:
(Eun and Shroff’ 05), (Ciucu
and Hohlfled’ 09), (Ciucu and
Liebeherr’ 09)








  



 







5 / 23



Does Link Scheduling Matter if N is Finite?

Some existing non-asymptotic results for schedulers:

D0 → A0 for FIFO scheduling even when N is few hundreds under some
statistical independence assumptions. (Ciucu and Liebeherr’ 09)

A non-asymptotic capacity size is computed for a given per-flow delay
bound constraint in a FIFO scheduler. It scales by c = O( 1

N ).
(Ciucu and Hohlfled’ 09)

Open question:
How does link scheduling impact capacity requirement and decomposition for
finite N?
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Contributions

We show that for finite N, the choice of link scheduling has a big impact on

Buffer overflow probability

Capacity provisioning

Viability of network decomposition

In particular

c − ā ranges from O
��

log N
N

�
to O( 1

N ) depending on the scheduling

algorithm.
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Traffic Source (MMOO)

Markov-modulated On-Off (MMOO) source:

OFF ON

µ

λ

P Kbps in ON state, idle in OFF state
Average time to return to the same state: T∗ = λ+µ

λµ

The larger the T∗, the more bursty the traffic
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Exponentially Bounded Burstiness

Exponentially Bounded Burstiness (EBB) sources (Yaron, Sidi’93)
An arrival process A is EBB with parameters (M, ρ,α) if for any s ≤ t

P(A(s, t) > ρ(t − s) + σ) ≤ Me−ασ := ε(σ) .

We write it by A ∼ (M, ρ,α).

Suppose: A is the aggregate of n iid MMOO flows with parameters λ, µ, and
P.

Then, A ∼ (1, nr(α),α) for any α ≥ 0, with

r(α) =
1

2α
(Pα− λ− µ+

�
(Pα− µ+ λ)2 + 4µλ) .

We use this flexibility (a family of EBB characterizations) to get new insights.
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∆-Schedulers

A scheduler whose operation is entirely determined by a matrix of constants
(∆j,k)j,k∈N .

Aj

Ak

t

t +∆j,k

C
∆-scheduler

The followings are ∆-schedulers:
� FIFO: ∆j,k = 0

� SP, BMux: ∆j,k =

�
−∞ if flow j has higher priority
+∞ if flow k has higher priority

� EDF: ∆j,k = d∗
j − d∗

k

GPS is not a ∆-scheduler.
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A Backlog Bound for EBB flows in ∆-Schedulers

A backlog bound for ∆-schedulers [Ghiassi, Liebeherr, Burchard’ 11]
A0 ∼ (M0, ρ0,α0) and Ac ∼ (Mc, ρc,αc).
∆0,c = ∆ and capacity C.

For any σ0,σc ≥ 0 and 0 ≤ γ ≤ C−ρc−ρ0
2

θ∗ = min
�

σc

C − ρc − γ
,
[σc + (ρc + γ)∆]+

C

�

b(σ0,σc) = σ0 + (ρ0 + γ)θ∗

ε(σ0,σc) = M0e
�

1 +
ρ0

γ

�
e−α0σ0 + Mce

�
1 +

ρc

γ

�
e−αcσc .

Then,

Pr{B0(t) > b(σ0,σc)} ≤ ε(σ0,σc) .
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Capacity Sizing of a ∆-scheduler

Corollary (Per-flow capacity scaling properties)
The per-flow capacity of a ∆-scheduler with a fixed (arbitrary small) buffer
size, a target loss probability, and MMOO input flows satisfies

c − ā =





O
��

log N
N

�
∆ ≥ 0

O
� 1

N

�
∆ < 0

limN→∞ c → ā for all work-conserving schedulers.
The speed of convergence is highly affected by the scheduling algorithm.
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Network Decomposition (D0 → A0)











Output EBB characterization
Given: A0 ∼ (1, ρ0,α0) and Ac are MMOO input flows to a ∆-scheduler.
Then, D0 ∼ (Mout

0 , ρ0,αout
0 ), with

αout
0 = α0 − O(

1
N
); Mout

0 =

�
L(N)N

1
N ∆ ≥ 0

L(N)
�
Ne−Nβ

� 1
N ∆ < 0

.

where limN→∞ L(N) = 1.

D0 → A0 as N → ∞ for any work-conserving schedulers.
The speed of convergence is substantially affected by the schedulers.
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Network Decomposition (BI → BII)








  



 





Theorem (a.s. convergence of BI to BII)
For MMOO traffic sources and ∆-schedulers, there exists a constant α > 0
and a non-negative function L such that for any σ ≥ 0

Pr{|BI(t)− BII(t)| > σ} =

�
O(N2)e−Nασ ∆ ≥ 0
O(N2e−Nβ)e−Nασ ∆ < 0

limN→∞ BI → BII for all work-conserving schedulers.
The speed of convergence is highly affected by the scheduling algorithm.
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Example 1: Network Decomposition (D0 → A0)
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Example 2: Network Decomposition (BII → BI)
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Example 3: Capacity Provisioning
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Conclusions

c − ā ranges from O
��

log N
N

�
to O( 1

N ) depending on the scheduling

algorithm.

Capacity provisioning is highly affected by the scheduling algorithm.

Network decomposition is valid for some schedulers even for moderate
values of N (e.g., few hundreds).
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Thank You

Questions?
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Example 4: Capacity Provisioning
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