
Cross-Substrate Advertisement: Building Overlay
Networks for Heterogeneous Environments

by

Majid Valipour

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2010 by Majid Valipour

Abstract

Cross-Substrate Advertisement: Building Overlay Networks for Heterogeneous

Environments

Majid Valipour

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2010

Self-organizing overlay networks have emerged as a powerful paradigm for building net-

works and providing network services. Unlike traditional infrastructure-based networks,

self-organizing overlay networks are formed and operated in a fully distributed manner,

and do not rely on centralized mechanisms for network formation, management, or opera-

tion. Most approaches to overlay networks assume universal access to the Internet where

the Internet forms a single global substrate network over which an overlay network can

be built. In this thesis, we consider the construction of overlay networks over multiple

heterogeneous substrate networks, where any data link, network layer, or even overlay

network can constitute a separate substrate network. Such networks can support seam-

less interconnection of mobile nodes without access to a network infrastructure to nodes

connected to an infrastructure. Application areas are wireless community networks, ve-

hicular ad hoc networks, and sensor networks. We present the design, implementation

and evaluation of Cross-Substrate Advertisement (CSA) mechanisms that enable and

facilitate the formation of overlay networks in a heterogeneous environment of multiple

substrate networks. A key difficulty of CSA is to address the problems that arise from

the more complex address bindings, where a single logical identifier is bound to multiple

substrate addresses. We present two principal mechanisms for exchanging information

on address bindings, i.e., direct address exchange and third-party address exchange, and

ii

evaluate their effectiveness in different types of substrate networks. The CSA mecha-

nisms have been implemented in the HyperCast overlay protocol architecture. We have

conducted measurement experiments of the CSA mechanisms on a local Emulab testbed.

The experiments show that our CSA methods are effective in disseminating address in-

formation in large networks and are robust in the presence of network disruptions. We

conclude that the proposed CSA mechanism can improve the connectivity and stability of

overlay networks in heterogeneous environments without incurring a significant overhead.

iii

Acknowledgements

First I would like to thank my supervisor, Jörg Liebeherr, for his continued support and

trust in me. He has been a great mentor whose expertise, understanding and insight were

an invaluable help in my graduate studies.

I deeply enjoyed the stimulating discussions I had with my fellow members in the

Network Research Lab over the years, and want to thank all past and present members

for their help and support. I would especially like to thank Yashar Ghiassi, Tony Zhao

and Jon Lei for their help and friendship.

Finally, I am forever in debt to my family for their love and support. I would like to

express my deepest gratitude to my parents, Nahid Seilanizadeh and Hamid Valipour,

who have always been supportive of my academic success.

iv

Contents

1 Introduction 1

1.1 Overlay Networking . 2

1.2 Network Heterogeneity . 3

1.3 Overlay Networks and Underlay Heterogeneity 4

1.4 An Overlay-based Network Architecture 4

1.5 Thesis Organization . 5

2 Previous Work 6

2.1 Overlay Networks . 6

2.2 Overlay Networks and Identifier/Locator Separation 7

2.3 Network Heterogeneity . 9

2.4 Inter-Connectivity of Heterogeneous Networks 10

2.5 Inter-Connectivity in the Augmented IP Network 13

2.6 Summary . 15

3 Overlay Networks in a Multi-Substrate Environment 17

3.1 Overlay Networking Concepts . 17

3.2 HyperCast . 18

3.2.1 Overlay Socket . 19

3.2.2 Overlay Node . 19

3.2.3 Adapter and Interfaces . 20

v

3.2.4 Addressing Structure . 21

3.2.5 Address Repository . 25

3.2.6 Forwarding . 26

3.3 Self-Organization in a Multi-Substrate Environment 26

4 Cross-Substrate Advertisement 29

4.1 Design . 34

4.1.1 Node Advertisement . 35

4.1.2 Substrate Address . 37

4.1.3 Address List . 39

4.2 Address Exchange Methods . 39

4.2.1 Direct Address Exchange . 40

4.2.2 Third-party Address Exchange . 41

5 Implementation 44

5.1 CSA Processor . 44

5.2 Implementation of Address Exchange Methods 47

5.2.1 Request Method . 48

5.2.2 Broadcast Method . 54

5.2.3 Push Method . 57

5.2.4 Pull Method . 63

5.2.5 Gossiping Method . 69

5.2.6 Push-Single/Gossiping Hybrid Method 78

5.3 Message Format and Timers . 79

5.3.1 Message Format . 79

5.3.2 Timers . 84

6 Evaluation 87

6.1 Setup of Experiments . 87

vi

6.1.1 Testbed Network . 87

6.1.2 Emulating Multiple Substrates . 89

6.1.3 Arrangement of Substrates for DT Protocol 89

6.1.4 Measurement Methodology . 91

6.1.5 Configuration Parameters . 93

6.1.6 Address Exchange Methods Used in Experiments 93

6.2 Experiment 1: 648 nodes in 64 substrates (8x8 grid) 95

6.3 Experiment 2: 2592 nodes and 289 substrates (17x17) 102

6.4 Experiment 3: Performance of CSA in a Dynamic Environment under Churn108

6.5 Experiment 4: Gossiping as a Source of Out-of-Band Address Information 110

6.6 Experiment 5: CSA Performance in Broadcast Substrates 112

6.7 Summary . 117

7 Conclusions and Future Work 118

7.1 Conclusions . 118

7.2 Future Work . 119

Bibliography 120

vii

List of Tables

4.1 Substrate address examples. 38

5.1 Operations of the request method. 53

5.2 Operations of the broadcast method. 58

5.3 Operations of the push method. 63

5.4 Operations of the pull method. 68

5.5 Operations of the gossiping method. 78

6.1 Average and standard deviation of the received CSA and DT trac for 64

substrates. 100

6.2 Average and standard deviation of the received CSA and DT traffic for

289 substrates. 105

6.3 Average and standard deviation of the received CSA and DT traffic with

broadcast method. 114

viii

List of Figures

3.1 An overlay socket and its components. 20

4.1 CSA can improve the rendezvous process for two nodes that are directly

connected via multiple substrate networks. 31

4.2 CSA improves connectivity and self-organization of nodes in different sub-

strate networks. 33

5.1 Processing an incoming message. 46

5.2 Processing an outgoing message. 47

5.3 CSA messages exchanged in a request address exchange. 48

5.4 Request method algorithm. 49

5.5 CSA message exchanged between two overlay sockets. 50

5.6 Broadcast method algorithm. 55

5.7 CSA message exchange for two overlay sockets on a broadcast substrate. 56

5.8 The modification of the address resolution process due to CSA. 60

5.9 Example of push method operation. 61

5.10 Example of pull method operation. 66

5.11 Example of pull method operation. 73

5.12 CSA message format. 79

5.13 Address key format. 80

5.14 Address List Update message format. 81

ix

5.15 Address list format. 82

5.16 Address element format. 82

5.17 Extended address list format. 84

6.1 The Emulab testbed at the University of Toronto. 88

6.2 Substrate arrangement for DT. 91

6.3 Buddy configuration for the DT protocol in a 2x2 grid. The arrows show

the neighboring region from which the pre-configured buddy is selected. . 92

6.4 Stability of the DT network with 648 nodes in 64 substrates (arranged in

a 8x8 grid). 96

6.5 Connectivity of the DT network with 648 node in 64 substrates (arranged

in an 8x8 grid): (a) contains all methods (b) contains only those methods

which have achieved a high level of connectivity. 98

6.6 Average CSA and DT traffic received by each node of the overlay network

with various third-party address exchange methods. 99

6.7 Stability of the DT network with 2592 nodes in 289 substrates (arranged

in a 17x17 grid). 103

6.8 Connectivity of the DT network with 2592 nodes in 289 substrates (ar-

ranged in a 17x17 grid). 104

6.9 Traffic generated by CSA and DT protocols with various methods of third-

party address exchange in 289 substrates (arranged in a 17x17 grid). . . . 105

6.10 Number of address lists with various third-party address exchange methods

in a 17x17 grid. 107

6.11 Stability of DT network in a situation with churn. 109

6.12 Improvement in the stability of the DT network with the gossiping method

after modification to the DT protocol, where gossiped address lists are used

in the rendezvous process. 111

x

6.13 Stability (a) and connectivity (b) in a DT Broadcast network with 1024

nodes. 115

6.14 Average received traffic with different broadcast variations in a DT Broad-

cast network with 1024 nodes. 116

xi

Chapter 1

Introduction

Over the last four decades, the Internet has transformed how people interact, how busi-

nesses are run, and how science is practiced. A large number of applications rely on

the Internet for their communication needs. The growth of its users and applications

has brought new stresses and unforeseen requirements which have revealed numerous

limitations in the Internet architecture. There is a growing consensus in the networking

community that some aspects of the Internet design, based on decisions made in the

1970’s, is severely limiting its security, availability, flexibility, and manageability. Au-

thors of [13, 15, 3] suggest that such limitations cannot be addressed with incremental

adjustment within the current architecture and a fundamental rethinking of the Internet

(a clean-slate design) is required.

Today, a diverse set of communication methods with different medium, technology,

and protocols are used to connect a diverse set of devices, ranging from powerful personal

computers to power and computation constrained sensors. While the underlying commu-

nication technologies of the Internet have continued to evolved overtime, its fundamental

design principles have remained more of less the same. The Internet provides a simple

best-effort packet-switched delivery service, one fixed-size address per network interface.

Any other functionality e.g., a reliable stream service, is implemented at the edge.

1

Chapter 1. Introduction 2

The authors of [27] argue that elements of the Internet design, in particular the end-to-

end principle, have hindered innovation in the Internet architecture. Desired mechanisms

such as multicast, QoS, and security have not been integrated except on a limited scale,

i.e., in enterprise network that are isolated from the public network.

Overlay networks have been used as a mean to deploy new services and to enable

innovation. More recently, there have been proposals that take advantage of overlay

networks to foster heterogeneity in the Internet architecture.

1.1 Overlay Networking

An overlay network is a network which is built on top of other underlay networks (sub-

strate network) for the purpose of providing a service that is not already available in

the substrate network. Nodes communicate using the substrate network to organize

themselves into a topology which is the overlay network. In an application layer overlay

network, the overlay nodes are running on Internet end-hosts and these instances are

connected using transport layer links also known as logical links.

Application layer overlay networks are an attractive method for the deployment of

new services in the Internet without requiring any changes in the underlying IP pro-

tocol. These networks provide previously non-existent services. Overlay networks are

often self-organizing to reduce management costs. Similarly, overlay networks are often

decentralized to improve the scalability and robustness.

Recently, overlay networks are being considered as one of the enabling technologies

for the next generation network architecture [3, 9]. In these proposals, overlay networks

are employed as a method of deploying new services on routers and in the middle of

the network, a role played by the IP protocol in the Internet architecture. For example

in [3], virtualization has been used to divide links and routers into slices to support

multiple experimental overlay networks simultaneously. These proposals change the role

Chapter 1. Introduction 3

of overlay networks in the overall architecture. Often, overlay networks are understood

in the Internet architecture as another layer between the application and the Internet.

Recent proposals such as [3] argue that overlay networks are well capable of playing the

role that the Internet Protocol (IP) used to play in the Internet.

There are many issues that have to be resolved before these proposals can be realized.

Some issues arise due to the heterogeneity of underlying networks at level below the

network layer. This creates new problems and challenges not present in application layer

overlay networks.

1.2 Network Heterogeneity

Network heterogeneity manifests itself in terms of diversity in the communication tech-

nologies, as well as in the types of devices that these networks interconnect. Today, net-

works connect devices whose power, processing, and communication capabilities greatly

differ from each other. According to [34], the heterogeneity of networked devices is more

likely to increase in the future to accommodate emerging applications such as smart

environments, factory automation, surveillance, vehicular communication, environmen-

tal and biomedical monitoring and others. As a consequence, we will see an increased

diversity in communication mediums and data link layer protocols.

Another recent development is the introduction of network-enabled devices that are

capable of using multiple methods of communication. For example, today most notebooks

are capable of exchanging information over WiFi (802.11 b/g/n), Bluetooth, Ethernet,

and telephone lines via a modem. Furthermore, smartphones are capable of using WiFi,

Bluetooth, and third generation cellular networks. Availability of these multi-interface

devices capable of accessing multiple networks requires inter-networking mechanisms to

build networks that span multiple different substrate networks.

Chapter 1. Introduction 4

1.3 Overlay Networks and Underlay Heterogeneity

This thesis addresses the design and implementation of mechanisms that can assist over-

lay networks to deal with heterogeneous substrate networks. In particular, the problem

that arise due to one-to-many address bindings that exist in this setting. We design com-

ponents for an existing overlay network system (HyperCast) to enable overlay networks to

operate over multiple heterogeneous substrate networks. We show that using our solution

and with minimal modifications, existing overlay protocols can operate across different

substrates and provide connectivity among nodes in interconnected heterogeneous net-

works. Our efforts are a step toward a network architecture that embraces heterogeneity

as a core principle.

1.4 An Overlay-based Network Architecture

While today’s Internet provides a single network that supports all types of electronic

communications, we envision that next-generation network designs will be built on spe-

cialized networks that serve individual applications. The core functions of each network

such as forwarding, naming and addressing, security, management and other will be de-

signed and implemented to meet specific requirement of the application it serves. A large

number of these networks is expected to coexist and serve radically different purposes.

These networks will be deployed as overlay networks on top of existing lower layer

networks. Each overlay network will be primarily constructed by users of its applica-

tion. Infrastructure nodes will be requested to provide connectivity between different

substrates. These infrastructure nodes will join the overlay network in a self-organizing

and on-demand fashion.

For our vision to be realized, many challenges have to be overcome. There are is-

sues regarding security, resource allocation and management, economical viability and

incentives, network heterogeneity, self-organization and discovery mechanisms. In this

Chapter 1. Introduction 5

thesis we provide mechanisms that allow overlay networks to handle multiplicity and

heterogeneity of substrate networks.

We use an address binding model that works in a environment with multiple het-

erogeneous substrate networks. In this address model, the identifier of the overlay node

is bound to multiple substrate addresses, one address for each substrate that the over-

lay node is connected to. Cross-Substrate Advertisement (CSA) is the mechanism that

helps overlay protocols to implement this new model. CSA uses an address format that

can be carried across different substrate networks. CSA provides different methods for

exchanging address bindings between nodes in the overlay network.

1.5 Thesis Organization

Chapter 2 discusses related research and previous work on this subject. Chapter 3 dis-

cusses concepts of overlay networking and how they are affected by existence of het-

erogeneous substrate networks. Our discussion in this chapter is in the context of the

HyperCast project, and we use abstractions and primitives that this project defines.

Chapter 4 presents the design of cross-substrate advertisement, a mechanism that allows

overlay protocols to operate on multiple heterogeneous substrates with minimal mod-

ifications. Implementation of CSA and its address exchange methods are outlined in

Chapter 5. Chapter 6 presents the design of experiments to evaluate our design and

implementation and analysis of their result. Finally, Chapter 7 concludes the thesis and

outlines future works.

Chapter 2

Previous Work

In this chapter we discuss the related work. The first section investigates the current

state of overlay networking. The following sections explore the literature on approaches

for inter-connecting heterogeneous networks. The last section summarizes and compares

previously discussed solutions.

2.1 Overlay Networks

Overlay networks have been extensively used as a method of providing new services in the

Internet. Examples of such services are multicast [8, 24], quality-of-service [36], robust

routing [2], and content-distribution [1]. In this context, overlay networks are application-

layer networks, meaning that nodes in the overlay networks are applications that run on

the end-hosts which are connected to the Internet. Nodes in these networks self-organize

the network topology, and communicate in a peer-to-peer fashion. Application-layer

overlay networks generally rely on the Internet to provide end-to-end connectivity.

Network-layer overlay networks have been used as means to provide end-to-end con-

nectivity among nodes in different data link layer networks by inter-connecting these

networks. An example of such overlay networks is the Internet which interconnects mul-

tiple data link networks [10]. In Delay Tolerant Networking (DTN) [14], an overlay

6

Chapter 2. Previous Work 7

network is constructed to interconnect nodes that exist in networks with different tim-

ing characteristics and potentially different forwarding processes. Two main parts that

overlay networks of this kind have to provide are a forwarding process and an addressing

scheme.

2.2 Overlay Networks and Identifier/Locator Sepa-

ration

One of the most attractive features of overlay networks is their ability to decouple the

identities of nodes (identifier) from the addresses of their attachment points in the sub-

strate networks (locators). This feature simplifies support of privacy and mobility. An

identifier which is independent from the location in the substrate network need not be

modified when the node changes its network attachment point. This makes it possible to

achieve mobility and multi-homing with respect to the underlay substrates without the

additional complexity needed for communicating new or additional identifier(s). For this

address decoupling to work, each node needs to maintain a list of bindings between the

identifier of its neighbors and their addresses in substrate networks.

An overlay network defines the address space from which node identifiers are selected.

Example of identifiers used by overlay protocols are self-authentic cryptographic identi-

fiers [5, 30], coordinates in multidimensional plane [24, 32], or random identifiers from

a flat space [33, 35] (common among DHTs). In many structured peer-to-peer overlay

networks, identifiers have significant topological relevance. In fact, in such cases the node

identifier is also its locator in the overlay topology which should not be confused with its

locators in substrate networks.

The idea for separating the identifier and the locator has previously been explored in

context of alternative inter-networking protocols such as PIP [16], Nimrod [7], and 8x8

(also known as GSE) [31]. In 1993, PIP pioneered the idea of separating identifier from

Chapter 2. Previous Work 8

locators by introducing the concept of forwarding directives and hierarchical identifiers

composed of multiple flat IDs. Later this work became the basis for IPNL (IP Next

layer)[17] which uses fully qualified domain names (FQDN) as identifiers and IP addresses

as locators.

Similarly, many next-generation network architectures such as FARA [11], Triad [18],

SNF [20], IPNL [17] and 4+4 [37] rely on naming structures that separate identifiers and

locators. These naming and addressing systems are significantly more flexible, expressive,

and comprehensive than the hierarchical IP address space.

In FARA, each node maintains a local set of bindings (associations) between node

identifiers and their locator (i.e., forwarding directives). These bindings are purely end-

to-end and are invisible to routers. FARA does not implement any particular protocol

but instead tries to demonstrate that identifier/locator split does not prevent design of

efficient protocols.

When simply separating a node identifier from its location, it becomes trivial to spoof

a host identity and hijack its packets from anywhere in the network. To avoid this, it

is necessary to use cryptographic methods for verification of identities to prevent simple

spoofing of the identity. An elegant implementation of this approach has been employed

by the Host Identity Payload (HIP) [30]. HIP uses a cryptographic key to represent

the identity of a node. A hash of this key is carried in a shim layer between IP and

transport layer headers to which application-layer entities bind. Only the owner of the

key can cryptographically prove that it is the legitimate owner of this hash. This way,

HIP separates identity and location while avoiding simple identity spoofing. Although

HIP was originally designed as an extension of the IP network but its approach has been

adopted by many proposals that advocate the separation of the identity and location

that are not based on the IP network.

An overloaded address1 provides a much simpler solution for this kind of hijack at-

1An address that is both identifier and locator, e.g., an IP address in the Internet architecture.

Chapter 2. Previous Work 9

tacks. Since the forwarding process guarantees that the packet will always be delivered to

the host located at the address, assuming routers along the path have not been compro-

mised, one can safely conclude that the packet is as well delivered to the host identified

by the address.

2.3 Network Heterogeneity

The homogeneous internetworking layer of the Internet allows both applications and un-

derlying communication protocols to be developed independently [6, 10]. This has been

cited as a major reason for the success of the Internet. Recently, however, it has been seen

that due to this homogeneity, the IP protocol suite can make any fundamental change

difficult [12]. Furthermore, the packet-switched, best-effort IP network is inherently in-

capable of properly utilizing some of the recently developed communication technologies,

and devices [29]. For example, complexity and overhead added by IP can be prohibitive

for sensor networks in which devices have limited capabilities.

The inability of the Internet to efficiently accommodate increased heterogeneity in the

network substrates and devices has convinced many researchers to look for alternative

designs such as [3, 12, 13]. These designs revisit fundamental design principles and try

to provide new solutions to issues that are addressed by IP network. In particular, issues

regarding inter-connectivity among multiple substrate networks are considered.

The authors of [9] argue that overlay networks provide a way to first experiment with

new routing and architecture designs and then to incrementally deploy these new designs.

The authors of [3] propose an implementation of this idea by introducing virtualization

into the network. In this proposal, virtualization is employed to slice links and routers

and other network resources in order to support multiple virtual networks simultaneously.

The infrastructure provides a set of dedicated but multiplexed virtualized overlay nodes,

a method first advocated by PlanetLab.

Chapter 2. Previous Work 10

Plutarch [12] defines a framework in which the heterogeneity of the underlay networks

is explicitly exposed to the upper layers and argues that there are situations in which

hiding the differences between substrates under a single common overlay, similar to what

is done by IP, is infeasible or undesirable. Furthermore, it is claimed that a model of

networking based on the assumption of existence of heterogeneous substrates not only

provides a better framework to evaluate new architectures but also captures the current

state of the Internet better than the original Internet design principles [10].

2.4 Inter-Connectivity of Heterogeneous Networks

The main design objective of delay tolerant networking (DTN) [14] is to provide com-

munication among networks with heterogeneous timing characteristics, e.g., near-earth

satellite communications, sensor networks, and military ad hoc networks. Although orig-

inally, the heterogeneity in DTNs referred to the diversity in timing characteristics of

networks, now the term also covers the diversity in the forwarding mechanisms, address-

ing schemes, and other characteristics of networks. The main concepts embodied by DTN

are an overlay network that spans multiple regions, a globally interoperable naming sys-

tem, and a novel set of transport protocols designed to tolerate a large amount of delay

at each hop.

In the original architecture for DTN proposed in [14], the identifier for a node is the

concatenation of its region ID, a globally known fully qualified domain name (FQDN),

and its identifier in the region, the entity ID (e.g., a MAC address, or an IP address).

Note that with this naming system, a node that is connected to multiple regions has

a different identifier for each region. The advantage of this region-dependent address

organization is that it makes it possible to implement an efficient two-level hierarchical

routing. At the first level, i.e., inter-region, the routing is done solely based on the region

ID, and at the second level, i.e., intra-region, the routing is done only based on the

Chapter 2. Previous Work 11

entity ID.

Plutarch [12], which tackles the issue of heterogeneity in the Internet, proposes two

abstractions: context and interstitial function (IF). A context is a region of the network

that is homogeneous in some regards and contains a set of bindings with reference to

which names may be resolved. The purpose of IF is to pass the data at the border of two

adjoining contexts. The IF can manipulate data in order to enable an end-to-end service.

The most important one of these data manipulations is the rebinding of names in the

destination context. However, the IF abstraction allows any necessary manipulation at

the contexts border, e.g., transcoding, inserting forward error correction, transport layer

signaling, etc..

In Plutarch, the binding of names with addresses happens at the end systems. Each

end system exists in an explicit context in which all usable names and addresses are

bound. For example, the binding between the destination name and its address happens

when the source node receives a chain of contexts as a result of resolving a destination

name. If the destination is accessible through multiple contexts, multiple of these context

chains are returned when resolved. Plutarch assumes that only one of these context chains

will be instantiated and used at any instant.

The goal of SpoVNet (Spontaneous Virtual Networks) [5] is to provide a framework

for building services on top of a heterogeneous set of substrate networks. This goal is

achieved by providing a generic underlay abstraction, that is an overlay network built on

top of heterogeneous substrate networks. The underlay abstraction has two layers. The

lower layer, called base communication, is responsible for managing multiple underlay

addresses that may exist for an end-point. This layer deals with mobility, and multi-

homing. The base overlay is the second layer and provides end-to-end connectivity using

a key-based routing scheme. End-to-end services such as multicast are then built on top

of this underlay abstraction.

The current implementation of the base overlay in SpoVNet uses Chord. Chord [35],

Chapter 2. Previous Work 12

a popular structured peer-to-peer network, organizes nodes in a ring structure and imple-

ments an efficient distributed hash table. The authors of [5] maintain that it is possible

to replace Chord with any arbitrary structured overlay that supports key-based routing.

Although it is possible to route all messages using the base overlay, the structured over-

lay may not provide the most efficient path available. Instead, the services on top of the

underlay abstraction are expected to use the base overlay only to resolve node identifiers

to their corresponding set of locators, and then use the communication base to establish

connections between nodes.

FARA (Forwarding directive, Association, and Rendezvous Architecture) [11] is an

architecture that incorporates a new organization of the concepts of naming and bind-

ing, two fundamental concepts for the current Internet and any future internetworking

architecture. In FARA, communication happens between pairs of entities, which are gen-

eralization of the application concept and may span multiple physical machines. Packets

are exchanged through logical links, called associations. FARA decouples the network

layer node identity (association ID) from the underlay network locators (forwarding di-

rective).

A main objective of FARA is to avoid introducing a new global namespace. This is

achieved by assuming that the bindings between the association IDs and forwarding di-

rectives are unique only within entities involved in each particular communication. These

bindings are stored locally in the entity, as part of the communication state alongside the

application state. FARA envisions a rendezvous service that helps entities to discover

and locate other entities for each particular service, and expects a handshake phase be-

tween two entities to establish an association and related association IDs. Furthermore,

it predicts the need for mechanisms for maintaining address bindings between a node

identifier and its multiple locators.

Chapter 2. Previous Work 13

2.5 Inter-Connectivity in the Augmented IP Net-

work

Another related body of works are motivated by the interrupted end-to-end connectivity

in the Internet due to NAT and other similar middle-boxes. Among them are proposals

that envision the existence of multiple address realms in the future of the Internet, e.g.,

TRIAD [18], IP Next Layer (IPNL) [17], and 4+4 [37]. Different from works mentioned in

the previous section, which try to address a broad spectrum of diversity in the network,

these works are concerned with the much narrower problem of providing connectivity

among different address realms of a single network (i.e., IPv4). Although different in

scope, both sets of works address a similar core issue of designing a naming and addressing

systems, and related mechanisms for creation and manipulation of the name/address

bindings for an environment with multiple addressing contexts.

IPNL [17] builds an overlay (or “next layer”) protocol on top of multiple IPv4 realms.

Enhanced NAT boxes, called nl-routers, forward packets between these realms. An nl-

router that connects a private realm to the public IPv4 realm is known as the frontdoor.

A triplet of the frontdoor address, realm number, and host address, called IPNL address,

fully identifies a host in IPNL. However, IPNL addresses are not used as long-term

identifiers, but only as short-term locators. IPNL uses fully qualified domain names

(FQDN) as host identifiers. The primary reason for this approach is to not require

renumbering of hosts in the private realm when the frontdoor changes. IPNL also provides

a mechanism which enable one end of a connection to automatically learn about possible

changes in the IPNL address of the other end. Such a mechanism supports mobility of

hosts.

Since each nl-router can be connected to multiple realms, an nl-router has to deal with

multiple address realms. When an IPNL address is used, the realm number identifies the

correct address realm in which the host address may be used to locate the destination.

Chapter 2. Previous Work 14

Since each realm is associated with its own globally unique domain name, the FQDN also

uniquely identifies the address realm. In addition, each end system can be connected to

more than one realm at the same time, but this results in multiple FQDN for that

host, one for each realm. Note the similarity of this design to the two-level hierarchical

addressing schema in a DTN. The difference is that, in DTN, the host address can be

of any type while, in IPNL, it is either a host name or a private IP address. Further, in

DTN, the domain portion of the address is always an FQDN while, in IPNL, it can be

either an FQDN, or a tuple of the frontdoor address and realm number.

Similar to IPNL, 4+4 [37] also deals with the problem of interconnecting IPv4 address

realms. However, unlike IPNL, each front door is connected to only a single realm, which

makes realm identifiers unnecessary in 4+4. It uses a pair of IP addresses, which consists

of the frontdoor public IP address and the host private IP address, as the host identifier.

4+4 only uses DNS to learn the two addresses of each host, and therefore, FQDNs are

not host identifiers as they are in IPNL. 4+4 packets are minimally encapsulated IP

packets. They contain two 64-bit fields for the source and destination addresses. The

fields are placed such that the outer header always contains addresses that are understood

by the IPv4 routers in the realm the packet is transiting; that is, in a private realm the

private half of the extended address is visible in the outer header, while in the public

Internet, the public half is visible. This ensures that routers can forward packets toward

the destination without understanding 4+4. Thus 4+4 requires changes only in NAT

boxes, and no changes at end-systems or routers.

TRIAD [18] is another internetworking architecture that addresses the lack of end-

to-end connectivity caused by NAT and other middle-boxes. It proposes a content layer

which uses FQDNs as node identifiers. TRIAD uses source-based routing to route mes-

sages based on the destination domain name. Forwarding tables in relays are indexed

with domain names instead of IP addresses. The Name-based Routing Protocol (NBRP)

is a routing protocol which is responsible for distributing routes to domain names among

Chapter 2. Previous Work 15

relay nodes. The Internet Relay Protocol (INRP) is a protocol that uses the routing

information maintained by relay nodes to resolve a name to a list of relay addresses.

Both INRP and NBRP can be implemented as extensions to the current domain name

system.

To establish communication between two nodes, the sender node uses INRP to send

the first message to destination domain. This is done by having each relay forward the

message to the next-hop relay node based on routing tables which are indexed by domain

names. The last hop, i.e., the authoritative relay of the destination domain, will deliver

the message to the destination node. The reply message which travels the request path

back to the sender contains addresses of all relay nodes. The sender uses this chain

of addresses for subsequent packets. As two NAT-extended architectures, TRIAD and

IPNL are similar in many aspects of their naming and addressing. Unlike IPNL, TRIAD

combines the naming and routing infrastructures and can support more than two levels

of hierarchy among domains.

2.6 Summary

We discussed the related work on inter-connectivity of heterogeneous networks, which are

motivated by networks with multiple address realms and namespaces. Although some

of these works have different foci, common to them is the design of flexible naming and

addressing systems. The naming system supports multiple addressing realms at a partic-

ular layer with a dynamic binding that allows mobility and multi-homing. Examples of

such addressing realms are context in Plutarch, connectivity domain in SpoVNet, region

in DTNs, and realm in IPNL.

With the existence of multiple addressing realms, bridging across these realms be-

comes a critical function of the architecture. There are two fundamental alternatives to

bridge between addressing realms: translation and common namespace. With transla-

Chapter 2. Previous Work 16

tion, gateways between networks translate a unique identifier from one address realm to

a unique identifier in another. NAT is a common example of bridging by translation. In

the common namespace approach, the identifier used at a particular level belongs to a

common namespace shared by all networks. The local locator are then mapped to these

identifiers which eliminates the need for translation. This is the approach taken by the

original IP network, and favored by almost all inter-networking proposals. The difference

between these proposals lies in the scope of this namespace and the mechanism by which

the common identity is translated to the local locator [4].

For example in DTN, the common namespace is global (FQDN based) and with a

late binding between the name and the address at each realm boundary. IPNL and 4+4

operate in a similar way, except that there is a certain structure among different address

realms which makes it possible to design a more efficient binding process. In FARA, the

common namespace is shared only among communicating entities, and has a small scope.

In SpoVNet, the common namespace is shared among all nodes in the base overlay, the

common identifier is resolved to another globally unique locator by the source, which

is then used for routing the message to the destination address realm. The abstraction

defined by Plutarch, allows either one of these two alternatives to be implemented. The

IFs at boundaries of address realms can either translate one node identifier to another,

or simply rebind the same identifier to another network locator in the new context.

In our work, we do not define a common namespace but rather allow the overlay

protocol to define its own namespace. Similarly, we do not try to propose a specific

solution for inter-connecting multiple address realms (i.e., substrate networks) and it is

left to be a responsibility of the overlay topology. Instead, we are interested in identifying

fundamental functions, primitives, and mechanisms that can be used by various solutions.

In particular, we look at methods for efficient propagation of address bindings in the

overlay network.

Chapter 3

Overlay Networks in a

Multi-Substrate Environment

In this chapter we discuss how the fundamental concepts of overlay networking have to

be modified to suite overlay networks that operate over multiple heterogeneous substrate

networks.

Since our design and implementation is part of the HyperCast project we take concrete

examples from this project. The HyperCast project defines a set of abstractions and

primitives for overlay networking. HyperCast provides a comprehensive implementation

based on this abstractions that allows rapid development of new overlay protocols [25].

3.1 Overlay Networking Concepts

An overlay network is essentially a network built on top of one or more underlay networks

(also referred to as substrate network). Nodes in the overlay network are connected to

each other through logical links. Each logical link corresponds to a path, which may

consist of many physical links, in an underlay network. Application layer peer-to-peer

networks are examples of overlay networks which are built on top of the transport layer

of the Internet.

17

Chapter 3. Overlay Networks in a Multi-Substrate Environment 18

In HyperCast, any packet based communication channel can be a substrate network.

This channel should provide either a unicast or multicast packet delivery service. It

should also be able to provide an address for the sender of any incoming message. Form

and function of this address are discussed later in this chapter. HyperCast does not

assume the availability of bi-directional communication2 in the substrate network.

This minimal set of requirements allows HyperCast to use a broad range of substrate

networks. For example TCP/IP, UDP/IP, IP, Ethernet, 802.11 networks, and even an-

other overlay network can all be used as underlay network in HyperCast. This makes

HyperCast suitable as a potential platform for building overlay networks with multiple

heterogeneous substrates.

3.2 HyperCast

As discussed, HyperCast provides basic components that help distributed applications

to construct overlay networks based on different overlay protocols over a single substrate

network. HyperCast provides an application programming interface (API) similar to that

of the widely used BSD sockets, which is called the Overlay Socket. And overlay socket

allows the application to create a new overlay network, join and leave an existing overlay

network, and send data to and receive data from other members of the overlay network.

HyperCast hides from the application the complexity that is involved in maintaining

the overlay topology and forwarding the application data messages. This transparency

reduces the complexity of API for overlay sockets.

2In a bi-directional communication, a node which receives a message should be able to send a message
back to the sender

Chapter 3. Overlay Networks in a Multi-Substrate Environment 19

3.2.1 Overlay Socket

An overlay socket in HyperCast is an end-point of communication in an overlay network.

The application can use overlay socket to send application data messages to other mem-

bers over the overlay network. An application starts using an overlay network by creating

an overlay socket. To organize the overlay network topology and for various other tasks,

overlay sockets exchange control messages (protocol messages) among each other.

The design of the overlay socket is modular. HyperCast isolates various functions

in overlay networks and defines interfaces for them. This separation of functions (e.g.,

message forwarding, security, topology maintenance and etc) enables the modular design

in which an implementation of a common function can be used with various overlay

protocols. This minimizes the effort required to design and implement a new overlay

network. The main components of the overlay socket include the overlay node, the

forwarding engine, the adapter, the interface, and the address repository. Figure 3.1

shows the main components of an overlay socket and their relationship to each other.

3.2.2 Overlay Node

The overlay node in HyperCast handles discovery of other nodes, establishing neighbor-

hood relationships, and maintaining logical links between neighbors. The overlay node

is the only component of the overlay socket that is aware of the overlay topology.

Overlay nodes exchange protocol messages with each other to construct and maintain

the logical topology of the overlay network. The format and content of these messages are

determined based on the type of the overlay protocol that the node implements. Although

the internal functionality of the overlay node depends on the protocol it implements,

all types of overlay nodes present the same interface to other components. HyperCast

requires the overlay node to be able to make forwarding decisions and calculate the next

hop node for each incoming message using only the destination of that message and its

Chapter 3. Overlay Networks in a Multi-Substrate Environment 20

Overlay Socket

Overlay Socket Interface

Send Message Receive
Message

Forwarding
Engine

Adapter
Adapter Interface

Application & Protocol Messages

Overlay Node

Overlay Node Interface

Application
message

Callback

Timers

Address
Repository

Address
Resolution

Timer

Interface
1

Interface
2

Interface
N

Substrate
network 1

Substrate
network 2

Substrate
network N

Protocol
message

NextHop

Figure 3.1: An overlay socket and its components.

local information about the overlay topology.

3.2.3 Adapter and Interfaces

Each overlay socket has one adapter, which provides an abstraction layer of the substrate

networks. Every other component of the overlay socket uses the adapter to send and

receive messages to destinations identified by substrate addresses. In addition to providing

Chapter 3. Overlay Networks in a Multi-Substrate Environment 21

send and receive functions, the adapter is responsible for the creation and manipulation of

substrate addresses. These addresses are treated as opaque objects by other components

of the overlay socket, e.g., the forwarding engine and the overlay node. Section 3.2.4

contains more information on substrate addresses.

The adapter maintains two buffers for incoming messages, one for protocol messages

and one for application messages. Incoming and outgoing messages are not processed

by the adapter. The adapter treats them as byte arrays. The adapter contains a timer

thread which provides timing service for all components of the overlay socket.

Internally, the adapter has one interface for each substrate to which the overlay socket

is connected. Each interface implements the send and receive functions specific to that

substrate and is able to construct and manipulate the substrate specific address format.

Examples of types of interfaces are UDP Unicast interface, UDP Multicast interface,

TCP interface, and Ethernet interface. There is a different interface type for different

communication protocols, e.g., TCP and UDP. Moreover, if a protocol supports multiple

delivery modes (e.g., multicast and unicast) there is a separate interface for each delivery

service. Finally, although discouraged, an adapter may contain multiple interfaces to the

same substrate.

3.2.4 Addressing Structure

HyperCast defines two types of identifiers. The logical address uniquely3 identifies an

overlay node within a single overlay. The underlay address identifies a network attach-

ment point (or multiple ones in case of a multicast or anycast address) in an underlay

network and is used to send messages in that underlay substrate network. In Hypercast,

the overlay node identifier, i.e., the logical address, is decoupled from address(es) of its

network attachment point(s), i.e., the underlay addresses.

3In some cases, it is possible for a logical address to lose its uniqueness temporarily for a short period
of time. Such incidents are considered an address conflict and are resolved by the overlay protocol as
soon as detected.

Chapter 3. Overlay Networks in a Multi-Substrate Environment 22

Applications that use an overlay network and most internal functions of the overlay

network such as naming, routing, and topology maintenance use logical addresses. The

underlay addresses are kept and maintained only in the adapter in the overlay socket.

These addresses are treated as opaque objects by all other components of the overlay

socket and are presented to the adapter in order to send a message. The adapter provides

an API for creation and manipulation of underlay addresses.

Logical Address

A logical address uniquely identifies an overlay node in an overlay network. In HyperCast,

each node is expected to be able to provide a next hop destination for each message using

only the destination’s logical address of that message.

Underlay Address

An underlay address is an identifier that locates an end-point or multiple end-points

in a substrate network. The forwarding mechanism of the substrate network uses an

underlay address in order to deliver a message. HyperCast supports a range of options

for the function and form of an underlay address. For example, an underlay address may

be location dependent. It is possible for the forwarding mechanism to modify the source

or destination underlay address on the fly. In the following, we list general characteristics

of the underlay address in HyperCast.

• An underlay address must be expressed in a well-defined syntax.

• An underlay address must be reversible, meaning that the source underlay address

of an incoming message can be used to send a reply back to the sender of the

message. For example a public IP address is a reversible address.

• An underlay address may not uniquely identify a single destination. In particular

a multicast group address is an underlay address.

Chapter 3. Overlay Networks in a Multi-Substrate Environment 23

• An underlay address may be composed of several sub-addresses, each of which is

a locator in a smaller scope, e.g., an <IP, Port number> is an address that is

composed of two locators: an IP address which locates a host in an IP network,

and a port number which locates a service on a host.

• An underlay address may be dependent on the location of the entity it identifies

in the substrate network. For example the IP address of a host in the Internet

depends on its location. Such addresses often make it possible to have an efficient

forwarding.

• An underlay address does not guarantee global reachability in its substrate and

may describe a forwarding process that fails to deliver the packet from some parts

of the network. For example a MAC address in a wireless 802.11 ad hoc network

may be unreachable from some parts of the network when there is a partition.

HyperCast requires substrate networks to be able to provide the source underlay

address of any incoming message. This requirement along with the reversibility of the

address guarantees that the receiver of a packet is able to contact its sender through the

same substrate.

Address Bindings

Each overlay node has a separate underlay address for each attachment point to a sub-

strate network. The association between an overlay node identifier (i.e., logical address)

and the identities of its network attachment points (i.e., underlay addresses) is expressed

in the form of a binding. Each node in the overlay network maintains a set of such

address bindings for all other nodes with which it communicates.

Overlay protocols designed for a single substrate environment simply assume that each

overlay node has only one network attachment point. This assumption greatly simplifies

the design of mechanisms that are responsible for maintaining address bindings. However

Chapter 3. Overlay Networks in a Multi-Substrate Environment 24

in an multi-substrate environment, each overlay node can potentially be attached to

several network attachment points, each belonging to a different substrate. This requires

address bindings which are more complex, and thus, more sophisticated mechanisms for

obtaining and maintaining them.

An alternative approach is to allow each overlay node to have multiple logical ad-

dresses, one per each substrate. This is the approach taken by some delay tolerant net-

working architectures [14], where each node has an identifier for each domain to which

it is connected. The advantage of this approach is that the overlay protocol can use the

same one-to-one address bindings and relatively simple mechanisms to maintain them.

This approach essentially delegates the problem of having multiple identifiers for a

single service to the distributed application which runs on top of the overlay network.

In this approach, the distributed application has to deal with complexity of maintaining

the association between the identifier of each of its instances with multiple identifiers of

its underlying overlay socket.

Another reason in favor of solving the problem of multiple underlay identifiers at the

overlay layer instead of higher layers (i.e., distributed application) is that the overlay is

operating directly above the substrates. This direct access enables the overlay network

to make intelligent decisions when resolving a logical address to an underlay address by

choosing the underlay address from the substrate that provides the best service for the

application.

In the light of the above discussion, having the overlay network deal with one-to-many

address bindings and other related issues that arise in a multi-substrate environment can

reduce the complexity of the design of the distributed applications. In the next section,

we discuss the implications of having multiple substrates on the address scheme. The

detail of our design is discussed in Chapter 4.

Chapter 3. Overlay Networks in a Multi-Substrate Environment 25

Substrate Independent Address Format

As discussed in Section 3.2.4, each underlay address describes a forwarding process that

is useful only in the context of its substrate. As we will discuss later in Section 4.1.1, it

is often necessary to carry underlay addresses in an overlay protocol message to enable

overlay nodes to self-organize into a network topology.

In a multi-substrate environment, it is possible for a message that is transmitted in

a substrate network to contain underlay addresses which do not belong to the carrier

substrate. As such, there is no guarantee that a node forwarding this message or its

receiver knows how to interpret and handle the underlay addresses included in that

message. Therefore, it is necessary to have a uniform and well defined way of representing

addresses across all substrates. We refer to such a representation of an underlay address

as a Substrate Address. An overlay socket parses and interprets a substrate address

consistently, independent of the substrate to which it belongs. This allows messages to

contain substrate addresses with an unknown format without risking incorrect parsing

or interpretation of these addresses.

A substrate address contains information that identifies its substrate in addition to

the underlay address which locates the end point in that substrate. The identifier for the

substrate consist of an address realm and a protocol type. The design and implementation

of substrate address is discussed in Section 4.1.3.

3.2.5 Address Repository

The address repository is the component in the overlay socket that maintains address

bindings. The address repository is a sub-component of the adapter and can only be

accessed through the adapter. The address repository provides a resolution function that

resolves a logical address to a substrate address. Additionally, it allows other components

(e.g., the overlay node) to add new address bindings, and remove or update existing

Chapter 3. Overlay Networks in a Multi-Substrate Environment 26

bindings.

In the previous version of HyperCast (Hypercast 3.0), address bindings are kept by

the overlay node and can only be modified by the overlay node. By introducing the

address repository, it is now possible for other components other than the overlay node

to access and modify address bindings. The separation of address binding maintenance

from the overlay node makes it possible to design a component that deals with these

bindings and that can be used with multiple different protocols. Lastly, it simplifies the

design of new overlay protocols.

3.2.6 Forwarding

In Hypercast, forwarding decisions are made by the overlay node exclusively based on

the destination logical address for unicast messages and the source logical address for

multicast messages. The actual forwarding mechanics are implemented by the forwarding

engine. By separating the mechanics of forwarding from the routing process, HyperCast

separates the control plane of the overlay network from its data plane.

When an overlay socket receives an application message it passes the message to the

forwarding engine. If the message is destined to the local overlay socket it is passed to

the application. Additionally, if the message has to be forwarded, the forwarding engine

requests the node to provide the next-hop or next-hops and forwards the message.

3.3 Self-Organization in a Multi-Substrate Environ-

ment

A key strength of overlay networks is their ability to self-organize. In general, self-

organization in networking means that the network must be able to spontaneously orga-

nize toward desirable global properties without a central entity with global information.

Chapter 3. Overlay Networks in a Multi-Substrate Environment 27

Scalability, low maintenance, and robustness of self-organizing solutions makes them de-

sirable for distributed applications.

One area of overlay networking in which self-organization is used, is in the creation

and maintenance of the topology of the overlay network. In an overlay network, the

topology dictates the neighborhood relationships of each node. We distinguish two sepa-

rate functions involved in the creation and maintenance of the topology in self-organizing

overlay networks.

The first function provides necessary mechanisms for new nodes to join the overlay

network, and is referred to as bootstrap or rendezvous. During rendezvous, a new node

either contacts an existing member node or requests that a member node contacts it,

in order to join the overlay network. In HyperCast, two different methods are used

by overlay protocols to bootstrap. A node either contacts a known entity, a peer (i.e.,

buddy) or a server, or broadcasts a message. The first method requires the node to have

a pre-configured address for at least one peer or server. The second method requires a

multicast substrate to be available.

The second function is responsible for maintenance and improvement of the estab-

lished topology in order to preserve its desired structure and is referred to as topology

maintenance. For example, a structured peer-to-peer overlay protocol such as Chord tries

to organize nodes into a logical ring and maintain that structure. This is done by nodes

periodically communicating with their neighboring nodes. It is through these communi-

cations that nodes learn about changes in the network topology due to node departures,

node arrivals, partitions and other events. Nodes cooperate and make necessary modifi-

cations to their neighborhood to ensure that the overlay topology is not affected. It is

important to realize that the bootstrap and topology maintenance functions are protocol

dependent.

In both these functions, nodes rely on various methods to obtain substrate address

information of other nodes in order to potentially establish neighborhood relations with

Chapter 3. Overlay Networks in a Multi-Substrate Environment 28

them. One method for obtaining substrate address information is to use an out-of-

band mechanism, for example through configuration, via a server, or a discovery service

such as DHCP. The drawback of relying on out-of-band mechanisms is their reliance on

manual configuration and external infrastructure. Another method is to use broadcast

communication. In this method, each node broadcasts messages which include its own

address and some topology-relevant information and waits to receive broadcast messages

from other nodes. Bootstrap function almost exclusively uses the two previous methods

because they do not require existence of any overlay links.

Finally as the third method, nodes use already established links in the overlay network

to exchange substrate address information. The topology maintenance function uses this

method to exchange substrate address information. This method uses a mechanism which

we refer to as a node advertisement. A node advertises the address information of itself or

that of another node by including address information in a protocol message sent to other

nodes. This substrate address information allows the receiver of the node advertisement

to be able to contact the advertised node. Section 4.1.1 contains an elaborate definition

for the node advertisement in the context of HyperCast and includes some examples of

it.

As discussed above, mechanisms for self-organization of a topology in an overlay net-

work depend on nodes obtaining substrate addresses of other nodes, or availability of

broadcast communication. For this reason, self-organization mechanisms that are de-

signed for a particular substrate and are effective on that substrate may not be effective

in a multi-substrate environment. Therefore, an overlay network needs additional mech-

anisms to be able to self-organize and operate in a multi-substrate environment.

Chapter 4

Cross-Substrate Advertisement

Cross-substrate advertisement (CSA) is a set of mechanisms by which overlay sockets

exchange address information of one substrate network across another substrate network.

CSA is needed in a multi-substrate environment to assist overlay nodes in learning about

alternative substrate addresses by which other overlay nodes can be reached.

As discussed in Chapter 3, an overlay node obtains one or many substrate addresses

of another overlay node from two sources: from members of the overlay network via ex-

change of protocol messages, or from out-of-band sources that are not part of the overlay

network (e.g., configuration, or a server). Regardless of the source of the substrate ad-

dresses, they are useful to the receiver only if the receiver is connected to their respective

substrates.

In a multi-substrate overlay network, it is important for nodes to receive the substrate

addresses that are useful, otherwise it negatively affects nodes ability to construct and

maintain the topology. A simple and inefficient approach is to always send the complete

list of substrate addresses of a node anytime its address information has to be included

in the message.

CSA is a set of mechanisms that assist overlay nodes in obtaining substrate addresses

of other nodes. The mechanisms supplement existing methods that overlay protocols use

29

Chapter 4. Cross-Substrate Advertisement 30

to exchange substrate address information. They determine when, and which substrate

addresses are exchanged.

In the following, we present two examples to illustrate the potential benefit of cross-

substrate advertisement in an overlay network with multiple substrate networks.

Example 1.

In the situation depicted in Figure 4.1, two nodes, A and B, are directly connected

through two substrate networks. The first substrate (S1) is capable of broadcast com-

munication, but it does not provide fast unicast communication. The second substrate

(S2) provides fast unicast communication, but does not support broadcast. B prefer S2

for exchanging protocol and application messages but it does not have address of A on

S2. B uses S1 to broadcast a rendezvous message in order to discover A. This message

which is carried on substrate S1 contains substrate address of B on S2. Once A receives

this message, A can contact B over S2 in order to establish a neighborhood. Note that

in this case, it is sufficient for A and B to exchange only their own address information

across the substrates.

Chapter 4. Cross-Substrate Advertisement 31

S2: Unicast-only substrate

S1: Broadcast capable substrate
1.Rendezvous

on S1

AB

Neighborhood
Message Exchange

Hello(+addressB2)

addressB2

S2: Unicast-only substrate

S1: Broadcast capable substrate
2.Contact on S2

AB

Hello

S2: Unicast-only substrate

S1: Broadcast capable substrate
3. Establish
neighborhood

AB

Figure 4.1: CSA can improve the rendezvous process for two nodes that are directly

connected via multiple substrate networks.

Chapter 4. Cross-Substrate Advertisement 32

Example 2.

In Figure 4.2 three nodes and three substrate networks are illustrated. Node A has

a neighborhood relation established with node B over substrate S2. Node C has joined

the overlay network over substrate S3 and with B as neighbor. However, node C prefers

substrate S3, and as it can be seen in the example it is possible for nodes A and C to

establish a neighborhood relation over substrate S1. Suppose C learns about A through a

protocol message by B. The CSA ensures that this message includes address information

of A for substrate S1. After receiving the message, node C can contact A on substrate S1,

and it establishes a neighborhood relation with node A over substrate S1. This scenario

is inherently more difficult than that of Example 1, since it is not sufficient that A and B,

or B and C to exchange their own address information with each other. Here, the address

information of a third party node (i.e, A) exchanged between B and C across substrate

networks. Also note that node B which advertises the substrate address information of

A for S1 does not itself have any connection to the substrate S1.

Chapter 4. Cross-Substrate Advertisement 33

S2

S1:Non-broadcast1. C joins via B

A

S3

B

C

Neighborhood
Message Exchange

S2

S1:Non-broadcast

2. B advertises
A to C

A

S3

B

C

S2

S1:Non-broadcast
3. C becomes

neighbor with A

A

S3

B

C

addressA1

Advertise A(+ addressA1)

Figure 4.2: CSA improves connectivity and self-organization of nodes in different sub-

strate networks.

Chapter 4. Cross-Substrate Advertisement 34

As demonstrated by these examples, exchanging address information across substrates

is crucial for self-organization of overlay networks in a multi-substrate environment.

Mechanisms for cross-substrate address exchange can be either part of the overlay proto-

col itself or operate independently. We propose a set of protocol independent mechanisms

that efficiently disseminate substrate addresses of overlay nodes. The primary benefit of

our approach is that it can be used with multiple overlay protocols without requiring any

modification to their rendezvous and self-organization methods.

4.1 Design

Cross-substrate advertisement has two main objectives. The first objective is to provide

necessary means which allow a node to obtain the complete substrate address information

of another node with whom a connection is already established. This is achieved by Direct

Address Exchange methods, in which two nodes that communicate directly exchange their

substrate address information with each other. The direct address exchange ensures that

a node is able to obtain the complete list of substrate addresses of its neighbors and

therefore becomes aware of alternative paths that exist between them.

The second objective is to provide necessary means for a node to be able to obtain

the complete substrate address information of an advertised node. This is achieved by

Third-party Address Exchange methods, which ensure that when a node receives a node

advertisement it also eventually receives the complete list of substrate addresses of that

node. This way the receiver knows about all substrates through which the advertised

node can be reached, and it is able to contact the advertised node if they share at least

one substrate.

An important aspect of our design is that we require address exchange methods to be

protocol independent. The main advantage of this approach is that the same methods

can be used by multiple overlay protocols. Another advantage of this design is that

Chapter 4. Cross-Substrate Advertisement 35

it simplifies the design of the overlay protocols. Finally, this design makes it easier to

adapt overlay protocols designed with a single substrate network to a multi-substrate

environment. The drawback of this approach is that it may not be as efficient as a design

which takes into account the specific behaviors of an overlay protocol.

4.1.1 Node Advertisement

A node advertisement is a protocol message that contains one or more substrate addresses

of one or multiple nodes. Nodes send advertisement messages with the intention of

enabling the receiver node to contact the advertised node using the included substrate

address information.

As discussed in Section 3.3, node advertisements are used by self-organizing overlay

protocols as a method for exchanging substrate address information that are used for

rendezvous and topology maintenance functions. Often nodes include other information

about the advertised node in addition to substrate address information. This additional

information provides context that helps the receiver node decide when and how it will

use the advertised substrate address information. For example, in HyperCast protocols,

an advertisement contains send the logical address of the node along with the substrate

address information.

In the following, we define some terms that are associated with node advertisement.

Advertisement message

The protocol message in which at least one node is advertised. The advertisement

consists of a logical address and one or more substrate addresses.

Advertised node

A node whose substrate address information is being advertised.

Advertisement pair

Chapter 4. Cross-Substrate Advertisement 36

Advertisement pair refers to the pair that consists of the logical address and sub-

strate address information of an advertised node.

Here are few concrete examples that showcase node advertisement in various overlay

protocols.

Delaunay Triangulation (DT) protocol: Each DT node, in each heartbeat, adver-

tises to each one of its neighbors, their respective clockwise (CW) and counter-

clockwise (CCW) neighbors in a HelloNeighbor message. These advertisements

include the logical address of the nodes along with their substrate address infor-

mation. The receiver node contacts both advertised nodes to form a neighborhood

relation with them.

Clustering (CT) protocol: In the CT protocol, a message known as the ReferralResponse

message is sent by a cluster head to a cluster member or another cluster head in

order to inform them about other cluster heads. The message contains entries that

have information about other heads that the sender knows about. Each entry is

a node advertisement as it contains the substrate address information of a head.

Additionally each entry includes the logical address of the head, and additional

information about the service it provides to its member nodes. In this case, the

node advertisement is the primary function of the ReferralResponse message.

Pastry protocol: In Pastry, nodes sometimes exchange their leaf set. The leaf set of

each node is a set of close nodes. For example when a new node joins the network, it

asks an existing member node for its leaf set and uses this information to populate

its own leaf set. A similar exchange happens when a node departs. In addition to

other information, each entry in the leaf set contains both the 128-bit node identier

which indicates the node’s position in a circular space (i.e., logical address) and

substrate address information of a Pastry node. Leaf set entries are considered

node advertisements with our definition.

Chapter 4. Cross-Substrate Advertisement 37

4.1.2 Substrate Address

A substrate address consists of an underlay address and information that uniquely iden-

tifies the substrate. It is possible for an underlay address to be mapped to different nodes

in different address domains. For example an private IP address can be used for differ-

ent host in different private networks. Thus, it is necessary to include information that

identifies the address domain and the scope within which the address uniquely identifies

an end-point. We refer to this address domain and scope as the address realm. Examples

of address realms are the public IPv4 network, any private IPv4 networks, any IPv6 net-

work, etc. In particular, in cases where there are multiple instances of the same network,

e.g., private IP networks, the address realm should include additional identification.

It is also necessary to identify the protocol type. Together, the underlay address,

the address realm identifier, and the protocol type can uniquely identify a communi-

cation end-point in an environment with heterogeneous substrates and communication

protocols. We use the following format for substrate addresses:

Substrate Address:

<address realm identifier, protocol type, underlay address>

Binary Form:

[hash(address realm, protocol type), underlay address length, underlay address]

Since the address realm identifiers and protocol types can have variable length, we

use fixed sized hash values when transmitting them in the messages. While the length of

the underlay address can be deduced from its substrate type, this is not done in practice

as it requires the length of underlay address for all possible address realms or protocol

types to be known globally.

In HyperCast, each interface in the adapter should be able to provide the overlay

socket with the tuple of <address realm, protocol type, underlay address>. Table 4.1

contains examples of such tuples for various interface types.

Chapter 4. Cross-Substrate Advertisement 38

Table 4.1: Substrate address examples.

Host Address Interface Information Substrate Address

128.100.100.128 TCP, port: 8080 <public ip, tcp, 128.100.100.128:8080 >

192.168.0.10 UDP Unicast, port:

8001, private network:

mylan

<private ip mylan, udp, 192.168.0.10:8001 >

192.168.0.10 UDP Unicast, port:

8001, private network:

ut12

<private ip ut12, udp, 192.168.0.10:8001 >

10.0.0.10 UDP Multicast,

multicast group:

224.228.19.78, port:

9999

<private1,multicast udp,

224.228.19.78:9999>

FF:FA:34:09:41 Ethernet, multiplex-

ing number: 1234

<EUI-48,multiplexed ethernet,

FF:FA:34:09:41/1234 >

(100,100) Overlay Inter-

face, overlay ID:

test overlay, protocol:

DT

<test overlay, DT, (100,100) >

The substrate address is the only form of address that is exchanged by the CSA

methods. The binary representation of the substrate address can be carried in the payload

of any type of message and via any substrate network. In a multi-substrate environment,

an overlay node may not be able to use all of the substrate addresses which it has received,

but only those for which it has an interface with matching address realm and protocol

type.

Chapter 4. Cross-Substrate Advertisement 39

4.1.3 Address List

In a multi-substrate environment, each overlay node is potentially connected to multiple

substrates and therefore has a list of substrate addresses. The address list of a node

is a list of substrate addresses that belong to that overlay node. The address list does

not necessarily contain all substrate addresses of an overlay node. The following is the

format of address list:

Address List: <Number of Addresses, <[Substrate Address #1, Prefer-

ences], . . . , [Substrate Address #N , Preferences]>>

Each substrate address in the address list comes with two preference values (each 4

bits long). These values are set when the address list is created for the first time by its

owner and are the preferences of the owner for receiving data and protocol messages on

that substrate address. A higher value represents a better preference. These values are

used by the address repository when it resolves a logical address to substrate addresses.

An overlay node does not need to have the complete address list of another overlay

node to be able to contact it. For example an overlay socket that is connected to only one

substrate can only use substrate addresses the belong to that particular substrate, and

thus only needs to receive those addresses. However, there are cases in which addresses

not used by an overlay node have to be kept by that node. In particular, this is the

case for node advertisements. When a node wants to advertise another node to one of

its neighbors, it may have to send substrate addresses not used by itself, to allow the

receiver to be able to reach the advertised node.

4.2 Address Exchange Methods

The CSA mechanism consists of two categories of address exchange methods: direct

address exchange methods and third-party address exchange methods. Direct address

Chapter 4. Cross-Substrate Advertisement 40

exchange methods enable a node to obtain the address list of its neighbors and nodes

with whom it communicates. These exchanges ensure that the node can always choose

the best available substrate to contacts its neighbors. The third-party address exchange

methods are used when addresses are exchanged in a node advertisement.

4.2.1 Direct Address Exchange

The efficiency of direct address exchange methods in dissemination of address lists de-

pends heavily on the type of the substrate network, in particular whether it is possible

to send broadcast messages. In order to be able to adapt to a variety of situation, we

have developed different strategies for direct address exchange.

Request Method

Whenever a node receives a protocol message from another node for the first time it

triggers a process that sends a CSA request message to obtain the sender’s address list.

After receiving a request, the sender responds with its address list. The validity of the

address list is limited and set by a configuration parameter. If a node receives a message

from another node whose address list lifetime is expired, it sends another request for

the address list. Since the request is triggered by an incoming protocol message, the

pattern of requests adapts to the pattern of protocol messages. In particular, when there

is no communication between two nodes, there will be no address list exchange. An issue

with this method is that it is not suitable for broadcast messages, since a single request

may trigger the transmission of many address lists to the requesting node which may

overwhelm the requesting node with address lists.

Broadcast Method

In this method, each node broadcasts its address list as a CSA message. This is done

either periodically or every time a broadcast message is sent. In the latter case, the CSA

Chapter 4. Cross-Substrate Advertisement 41

message that contains the address list is piggy-backed on the protocol message which

is broadcasted. In the former case, the CSA message is sent as a separate message.

This method does not take into consideration whether the receiver nodes already have

the sender’s address list. The primary issue with this method is that the volume of

broadcast traffic can become large.

Request/Broadcast Hybrid

If an overlay socket is connected to both unicast and multicast substrates, a combination

of both request and broadcast methods can be used.

4.2.2 Third-party Address Exchange

The third-party address exchange ensures that when a node receives a message that

contains a node advertisement, it also receives the address list of the advertised node.

There are three different methods for the third-party address exchange: push, pull, and

gossiping. In the push method the address list of the advertised node is included in the

protocol message that contains the node advertisement. In the other two methods the

address list is sent in a separate message.

Push Method

In this method, the complete address list of the advertised node is paired with its logical

address and is carried in the protocol message that contains the node advertisement

which means that no CSA message is required to exchange the address list. This also

means that no state is kept either by the sender, receiver, or third-party nodes. This

method is the simplest way to exchange the address list of advertised nodes.

The main drawback of this method is that the complete address list of the advertised

node is transmitted for all node advertisements even when the receiver does not need it,

e.g., it has received the address list before, or it is not going to use the node advertisement

Chapter 4. Cross-Substrate Advertisement 42

at all. More details on the implementation of this method are available in Section 5.2.3.

Push-Single Variation : This method is a variation on the push method. In this

method, only one substrate address is sent in node advertisements. The substrate address

sent is the most preferred substrate address according to the preference values that come

with substrate addresses in the address list.

Pull Method

In this method, the address list of the advertised node is exchanged upon request by

the receiver of the node advertisement. In pull method, no substrate address is sent in

the advertisement message when the logical address of a node is advertised. Instead,

whenever the receiver of the node advertisement wants to contact the advertised node,

the address list of the advertised node will be requested from its advertiser.

The advantages of this method is that the address list is sent only when it is needed.

Also the address list will not be requested again until it becomes stale even if it is

advertised multiple times by different advertisers.

One drawback of this method is that two CSA messages are needed to obtain the

address list of each advertised node. This makes the pull method unsuitable for cases

in which a large number of nodes are being advertised by an overlay node (e.g., head

referrals in CT protocol). More details on the implementation of this method can be

found in Section 5.2.4.

Gossiping Method

The gossiping method is not triggered by node advertisements, but instead it is running

as a background process. The gossiping method is similar to the pull method in not

pairing any substrate address with logical addresses in node advertisements. However, it

relies on a different mechanism to obtain the address list.

With gossiping, each node periodically sends a randomly chosen set of address lists

Chapter 4. Cross-Substrate Advertisement 43

to a randomly chosen destination. This process gradually populates each node address

repository. Eventually, each node will have the address list of all nodes that have been

advertised to it and can successfully contact any of them. The main advantage of this

approach over the pull method is its simplicity. Its advantage over the push method is

that it generates less traffic at the cost of increased delay.

The main disadvantage of this method is that there is no guarantee that the address

list of an advertised node is available when it is needed by a node. The other disadvantage

is that in large networks, the gossiping process may require nodes to keep a large number

of address lists. This can be mitigated by limiting the size of the repository that stores

these gossiped address lists and removing unused address lists from the address repository.

More details on the implementation of this method can be found in Section 5.2.5.

Push-Single/Gossiping Hybrid Method

It is possible to combine the gossiping method with the push method. Here, the push

method is used to exchange only one substrate address rather than the complete address

list. The nodes rely on the gossiping process in the background to provide them with

the complete address lists. Note that dissemination of complete address lists by the push

method renders the gossiping method unnecessary.

In this method, the receiver of a node advertisement initially attempts to use the

substrate address obtained through the push method to contact the advertised node. If

this attempt is successful the node can obtain the complete address information by using

a direct address exchange method. If this attempt fails, the receiver node has to wait

until it receives the address list through the gossiping process.

Chapter 5

Implementation

In this chapter, we discuss the implementation of a protocol for cross-substrate adver-

tisement for the HyperCast overlay software system. There are two design objectives

that have influenced the CSA implementation. First, CSA is designed to be protocol

independent in the sense that it can be used by any protocol that establishes an over-

lay topology. Second, the implementation of the CSA requires minimal modifications to

other HyperCast components.

5.1 CSA Processor

The challenge of realizing cross-substrate advertisement mechanism without expensive

modifications to overlay topology is that CSA requires access to all outgoing and incoming

protocol messages. We have implemented the CSA functionality as a component placed

between the node and adapter components in the overlay socket. In the context of

HyperCast, such a component is referred to as processor.

The CSA processor is constructed as a layer between the node and the adapter. To

the node, the CSA processor appears as the adapter while to the adapter, it appears as

the node. The CSA processor implements all address exchange methods. All incoming

and outgoing protocol messages are passed through the CSA processor. Furthermore,

44

Chapter 5. Implementation 45

all address resolution requests by the node pass through the CSA processor, which gives

the CSA processor control of the selection of the substrate addresses associated with a

logical address.

Figures 5.1, and 5.2, respectively, show the process of receiving an incoming message

and sending an outgoing message.

In Figure 5.1, an incoming message arrives to the adapter as a byte array. The adapter

then passes this byte array to the restoreMessage method of the CSA processor where

the message is inspected. If the incoming byte array is not of type CSA protocol then it

is passed to the node for further processing. In this case, the node returns the resulted

message to the CSA processor, which is then returned to the adapter to be buffered.

Otherwise, if the message is of type CSA protocol, it will be processed into a CSA

message by the CSA processor and returned to the adapter to be buffered. Messages in

the adapter buffer are removed one by one and passed to the messageArrivedFromAdapter

method of the CSA processor. The CSA processor processes CSA messages and passes

all other messages to the node. Note that, as it is described later, it is possible for a CSA

message to encapsulate a protocol message. In such a case, the encapsulated protocol

message is passed to the node.

In Figure 5.2, the node wants to send out a protocol message. The node passes the

outgoing message to the sendMessage method of the CSA processor. The CSA processor

may choose to send this message as a payload of a CSA message. Otherwise it passes the

message to the sendMessage method of the adapter. The adapter translates the outgoing

message to a byte array and sends it out. Note that, the CSA processor is transparent

to both the node and the adapter.

The CSA processor function is divided into several modules, each responsible for

adding one of the address exchange methods. The CSA processor is configured as part

of the overlay socket, and dependent on its configuration, various combination of address

exchange methods can be enabled.

Chapter 5. Implementation 46

Node

CSA Processor

Adapter

Byte Array

restoreMessage MessageArrivedFromAdapter

Byte Array

restoreMessage MessageArrivedFromAdapter

Byte Array

Protocol Message

CSA Message
Payload

Protocol Message

CSA
msg?

CSA Message
Payload Protocol Message

CSA or Protocol Message

CSA or Protocol Message

Protocol Message

No

Yes

Figure 5.1: Processing an incoming message.

The operation of the direct address exchange methods is generally triggered by in-

coming or outgoing messages. The operation of the request method is triggered by

incoming unicast protocol messages, whereas operation of the broadcast method is trig-

gered by outgoing broadcast protocol messages and a periodic timeout event (Timers are

explained in Section 5.3.2). The operation of the third party address exchange methods

is not triggered by incoming or outgoing protocol messages but rather whenever the node

resolves a logical address. For example, the operation of the push, pull, and gossiping

methods is triggered whenever a node resolves a logical address. The gossiping method

is also periodically activated by a timer.

A node queries the address repository to resolve a logical address either to use the

resulting substrate address information to send a message to the owner of the logical

address or to include the result in the payload of an outgoing message in order to advertise

Chapter 5. Implementation 47

Node

CSA Processor

Adapter

sendMessage

sendMessage
Protocol Message

CSA Message
Payload

Protocol Message

Piggy
back?

sendMessage

Byte Array

CSA or Protocol Message

No

Yes

Figure 5.2: Processing an outgoing message.

the owner of that address. Since the CSA processor is between the node and the adapter,

it can intercept such resolution requests and modify the result.

5.2 Implementation of Address Exchange Methods

In this section we describe the implementation of all address exchange methods. We also

include example scenarios that demonstrate how address exchange is carried out for each

method.

Chapter 5. Implementation 48

5.2.1 Request Method

The operation of the request method is triggered by the arrival of any protocol message.

The request method checks if the address list of the sender is available in the address

repository and whether it has recently been updated. Since the CSA processor does not

have access to the logical address of the sender, the address list of the sender is identified

as any address list that includes the source substrate address of the incoming message.

Note that the look up of an address list with a substrate address as key is efficient because

the entries in the address repository are indexed by both logical addresses and substrate

addresses. If no such address list exists or if the address list is too old, a request is sent

to the sender of the message requesting the complete address list of the sender. This is

done by sending an AddressListRequest message to the source substrate address of the

incoming message.

If the incoming message is a request for the address list of the local node (i.e., an

AddressListRequest message), the request method replies with a message that contains

its address list (i.e., an AddressListUpdate message). Figure 5.3 shows the order of

messages that are exchanged and Figure 5.4 includes the flow-chart of the request method

algorithm.

A

A

B

B

A B

Protocol Message

AddressListUpdate

AddressListRequest

1. Pass the protocol message to the node
2. Check for the adderss list of the sender
3. If not found or too old, request the
address list

1. Send the address list

Figure 5.3: CSA messages exchanged in a request address exchange.

Chapter 5. Implementation 49

CSA
Message ?

Unicast Message Arrived

Has a
protocol
message
payload?

Recent address
list available for

the sender?

Send Address List
Request Finish

NO

YES
Is it

AddressList
Request ?

Extract the address list
and respective keys
and update Address

Repository

NO
Send Address List

Update

Pass the
message to the

node

YES

YESYES

NO

NO

Figure 5.4: Request method algorithm.

Chapter 5. Implementation 50

Example Scenario

Node CSA
Processor

DT:HelloNeighbor

DT:HelloNeighbor

1
2

NodeCSA
Processor

DT:HelloNeighbor

DT:HelloNeighbor

4

DT:HelloNeighbor

13

Node A Node B

CSA:
AddressListRequest

DT:HelloNeighbor

14

15

CSA:
AddressListRequest

5

3

CSA:
AddressListUpdate(B)

CSA:
AddressListUpdate(A)

6

DT:HelloNeighbor
DT:HelloNeighbor

7

DT:HelloNeighbor

8

10
9

11

12

Tim
e

Figure 5.5: CSA message exchanged between two overlay sockets.

Figure 5.5 shows an example scenario that depicts the operation of the request method

in the CSA processor. The example shows the interaction of two overlay sockets with

request exchange method enabled. The overlay protocol of the sockets is assumed to be

the Delaunay Triangulation (DT).

The following is the description of each message and the reason for its transmission.

Protocol messages that belong to the Delaunay Triangulation (DT) protocol are prefixed

with “DT:” and CSA messages are prefixed with “CSA:”.

1. Node A sends a DT:HelloNeighbor message to Node B.

Chapter 5. Implementation 51

2. CSA Processor of A passes the message to the adapter which is then sent to the

network.

3. CSA Processor of B receives the DT:HelloNeighbor message. It notices that

it does not have the address list for the sender of this message and sends an

CSA:AddressListRequest to A.

4. DT:HelloNeighbor message from A is delivered to node B by the CSA Processor

5. At A, the CSA Processor receives the CSA:AddressListRequest message from B

and responds by sending an CSA:AddressListUpdate message to B.

6. CSA Processor of B receives the CSA:AddressListUpdate message from CSA Pro-

cessor of A and updates its address repository.

7. Node B sends a DT:HelloNeighbor to node A.

8. CSA Processor of B passes the message to the adapter, which is then sent to the

network.

9. CSA Processor of A receives the DT:HelloNeighbor message and notices that it

does not have the address list of the sender in its repository. So, it requests the

address list of its sender by sending an CSA:AddressListRequest message to B.

10. CSA Processor of A continues by passing the DT:HelloNeighbor message to node A.

11. CSA Processor of B receives the CSA:AddressListRequest message from A’s CSA

Processor and replies by sending an CSA:AddressListUpdate message to A.

12. At A, CSA Processor receives the CSA:AddressListUpdate message from CSA

Processor at B and updates its address repository.

13. Node B sends a DT:HelloNeighbor message to A.

Chapter 5. Implementation 52

14. CSA Processor of B passes the message to the adapter which is then sent to the

network.

15. CSA Processor of A receives the message. Since it already has a recent copy of

the address list of the sender of the message, it will pass the message to node A

without any additional operation.

Operations

Table 5.1 contains the list of events and the actions that they trigger in the request

method.

4An entry is considered old if the node has not received an update for it for at least one minute. The
exact amount of time is a configuration parameter but the default value is one minute.

5Key is usually a logical address. For exact definition of “key“ refer to Section 5.3.1.

Chapter 5. Implementation 53

Table 5.1: Operations of the request method.

Event Action

Receive a unicast protocol

message m from a node
if There is no entry in the address repository for

m.source address OR the entry is too old4 then

Send an AddressListRequest message to the source.

end if

Pass the message to the node.

Receive an

AddressListUpdate

message m

Update the address reposi-

tory:

for <key5 K, address list A> in m do

if There is already an address list for K in the address

repository then

Update the address lists with A and update its time-

stamp.

else

Add A to the address repository under key K.

end if

end for

Receives an

AddressListRequest

message m

Send an AddressListUpdate message to m.source address

Chapter 5. Implementation 54

5.2.2 Broadcast Method

The request method is not efficient for protocols that use multicast communication. To

avoid the cost of exchanging multiple message in request address exchanges, the broadcast

method relies on pushing the address lists on broadcast substrates and preventing other

nodes from requesting them.

Figure 5.6 shows a flow chart of the broadcast method. The first time that a node

broadcasts a message on a substrate, the CSA processor piggybacks the address list

on that message. Every time the broadcast method sends out the address list on a

broadcast substrate, it schedules to send the address list on that substrate again in

BroadcastPeriod. If there is any outgoing broadcast message on that substrate within at

most AcceptableBroadcastLag of the upcoming scheduled broadcast time, the broad-

cast method piggybacks the address list on it and resets the scheduled broadcast time.

This is an attempt to reduce the number of broadcast messages.

The above method for broadcasting the address list ensures that the node broadcasts

its address list only on substrates which have been used at least once by the node. Ad-

ditionally, it ensure that the time between two consecutive broadcasts does not exceed the

BroadcastPeriod 6 value defined in the configuration file. The AcceptableBroadcastLag

determines the amount of time that the broadcast method is allowed to fall behind a peri-

odic schedule to take advantage of piggybacking opportunities. The actual time between

the consecutive broadcasts on each multicast interface depends on the outgoing broadcast

traffic of that interface but it is bounded as follows:

BroadcastPeriod − AcceptableBroadcastLag < Actual CSA broadcast period <

BroadcastPeriod

The frequency of sending broadcast messages should be large enough to avoid a timeout

of the node’s entry in the address repositories of its neighbors. At the same time, it

6The default value is 5000 ms.

Chapter 5. Implementation 55

should be small enough to avoid generating a large amount of traffic.

Piggy-back Variation: In this variation, the broadcast method piggybacks the address

list on all outgoing broadcast messages. Thus, there is no need to keep a schedule for

periodical broadcast of the address list. If a node uses broadcast messages very often

this method can become costly but if the node’s usage of broadcast messages is sparse

this variation is more efficient than a periodic broadcast.

Outgoing Broadcast
Message on interface I

Broadcast
AddressListUpdate on

Interface I

Finish

Is the next scheduled
broadcast time for interface I

< NOW+
AcceptableBroadcastLag

Set BroadcastTimer(I) to NOW
+ BroadcastPeriod

Send an AddressListUpdate
message with the protocol

message as payload

YES

NO

BroadcastTimer(I)
Expires

Figure 5.6: Broadcast method algorithm.

Example Scenario

Figure 5.7 depicts an example scenario that shows how the broadcast method operates.

It shows the interaction of two overlay sockets that have the broadcast method enabled in

their CSA processor. The overlay protocol of the sockets is the spanning tree (SPT) pro-

Chapter 5. Implementation 56

Node CSA
Processor

SPT:Beacon
CSA:AddreListUpdate[Beacon]

NodeCSA
Processor

Node A Node B

SPT:Beacon

CSA:AddreListUpdate

CSA:AddreListUpdate

SPT:BeaconSPT:Beacon

CSA:AddreListUpdate

9

SPT:Beacon

1 2

4

57 6

8

3
Br

oa
dc

as
t P

er
io

d

Br
oa

dc
as

t P
er

io
d

CSA:AddreListUpdate

10

Broadcast Period

Ac
ce

pt
ab

le
 B

ro
ad

ca
st

 L
ag

Figure 5.7: CSA message exchange for two overlay sockets on a broadcast substrate.

tocol that uses broadcast messages for rendezvous and topology maintenance. Protocol

messages that belong to the SPT protocol are prefixed with “SPT:” and CSA messages

are prefixed with “CSA:”. The following is the description of each message.

1. Node A broadcasts a SPT:Beacon message.

2. CSA Processor at A notices that the outgoing broadcast message is close enough

(within AcceptableBroadcastLag) to the next scheduled broadcast for the

CSA:AddressListUpdate on this particular interface. CSA Processor at A takes

advantage of the opportunity and piggybacks the CSA:AddressListUpdate on the

outgoing broadcast message. It also resets the timer for the next schedule of address

list broadcast on this interface.

3. CSA Processor at B receives the CSA:AddressListUpdate message and updates

the address repository of B with the latest address list from A. It then passes the

Chapter 5. Implementation 57

payload of the CSA:AddressListUpdate which is a SPT:Beacon message to B.

4. CSA Processor at B broadcasts its address list on this substrate at the scheduled

broadcast time.

5. Node B broadcasts a Beacon message.

6. CSA Processor at B receives the message, but since it is not close to its next sched-

uled broadcast it does not attach an CSA:AddressListUpdate. CSA Processor at

B passes the beacon to the adapter, which is then broadcast on the substrate.

7. CSA Processor at A receives the SPT:Beacon from B and passes it to A.

8. CSA Processor at A broadcasts its address list on the next scheduled broadcast

time.

9. CSA Processor at B broadcasts its address list on the next scheduled broadcast

time.

10. CSA Processor at A broadcasts its address list on the next scheduled broadcast

time.

Operations

Table 5.2 includes events and actions of the broadcast method.

5.2.3 Push Method

In the push method, whenever a protocol message contains a node advertisement, the

entire address list of the advertised node is included in the message.

In HyperCast, the node resolves a logical address for two purposes: first, to send

a message to the node identified by that logical address, and second, to include the

result in a message for node advertisement which is the logical address of the node with

Chapter 5. Implementation 58

Table 5.2: Operations of the broadcast method.

Event Action

There is an outgoing

broadcast message m on

interface I

if There is no BroadcastTimer scheduled for interface I

(i.e., first broadcast on that interface) or 0 < next sched-

uled broadcast for interface I - AcceptableBroadcastLag

< now then

Piggyback the address list on this protocol message.

Remove the current BroadcastTimer(I) if exist

Schedule a new BroadcastTimer(I) event for [now +

BroadcastPeriod]

end if

BroadcastTimer for in-

terface I expires
Broadcast AddressListUpdate message through interface I

Schedule a new BroadcastTimer(I) event for [now +

BroadcastPeriod]

Chapter 5. Implementation 59

its substrate address information. In both cases, the node obtains the substrate address

information of a node through a query to the address repository. Since the CSA processor

can intercept such queries it can return different results for different third-party address

exchange methods.

For the first case, only one of the substrate addresses (i.e., the preferred substrate

address) is needed, while for the second case, the complete address list is needed. To deal

with both cases without introducing separate resolution methods, the CSA processor im-

plements the resolution method that is otherwise implemented by the address repository

of the adapter and returns a tuple. This problem exist for the pull method too, and a

similar solution is used.

Figure 5.8 shows how CSA modifies the address resolution process for the push and

pull methods. When push or pull methods are not used, the resolution method return a

usable substrate address that has the highest preference value (i.e., preferred substrate

address). For the push method, the resolution method returns a tuple that contains two

sets of values as the result of a logical address resolution. The sets contain both the

preferred substrate address and the complete address list for the resolved logical address.

For the pull method, the resolution method returns a tuple that contains two sets of

values as the result of a logical address resolution. However in this case, the sets contain

the preferred substrate address and the logical address of the local node. The discussion

regarding how this tuple is used in pull method can be found in Section 5.2.4.

When such a tuple is included in a message for node advertisement, its complete

address list part is used. When this tuple is presented as a destination for a message,

its preferred substrate address part is used as the destination address. All of this is

transparent to the node, and this tuple is treated by the node like any other address.

Chapter 5. Implementation 60

Address
Repsitory

Node

X PSAX

Address
Repsitory

CSA (push)

X PSAX

Node

X {PSAX,<ALX>}

X <ALX>

Address
Repsitory

CSA (pull)

X PSAX

Node

X {PSAX,LAlocalnode}

PSAX: Preferred substrate address of X
<ALX>: Address List of XX: logical address getSubstrateAddress(logical address)

getAddressList(logical address){ }: tuple

Figure 5.8: The modification of the address resolution process due to CSA.

Chapter 5. Implementation 61

Example Scenario

A B

X

Protocol message
containing <X,<ALX>>

B adds the mapping

X~><ALX>

B wants to advertise X to Y 1.resolve X
[<ALX>,SAX]= resolve(X)

2.send message to Y that contains
advertisement pair for X

B

Protocol message
containing <X,<ALX>>

Y

A B

A's address repository:
B~><ALB>
X~><ALX>

B's address repository:
A~><ALA>
Y~><ALY>

Initial state:

Protocol Message
BX

1.resolve X
[<ALX>,SAX]=resolve(X)

2.send message to X:[<ALX>,SAX]

Protocol messages that
contain the advertisement
pair for X

X : Logical address of X <ALX> : Address list of X
SAX : One substrate address of X [P1,P2] : 2-tuple result of resolution

: Neighborhood

3

2

1

B wants to contact X

Y

Figure 5.9: Example of push method operation.

Figure 5.9 shows an example of push method in operation. The following is the

description of each part in this example.

Initial state Nodes A and B are neighbors, therefore both already have the address lists

of each other in their repository. Node A is also a neighbor of node X, and thus

has the address list of X in its address repository. Similarly, Node B is a neighbor

Chapter 5. Implementation 62

of node Y and has the address list of Y in its address repository.

1 As part of the overlay protocol, A wants to advertise X to B. A resolves the logical

address of X in order to send both the logical address and the entire list of substrate

addresses of X to Y as a node advertisement. The result of this resolution is a tuple

that contains the address list and the preferred substrate address of X. Since, in the

push method, only the address list part of this tuple is included in the messages,

the address pair in the protocol message payload is <X,< ALX >>. After receiving

the message, B uses the advertised pair to create an entry in its address repository

for node X.

2 Suppose that as part of the overlay protocol operation, B wants to advertise X to Y.

1. B resolves the logical address of X. The CSA processor in B returns the result

of this resolution, which is the same as the result in 1.

2. B sends the protocol message to Y that contains an advertisement of X.

Similar as in 1, the advertisement pair in the payload of this message is

<X,< ALX >>.

3 Suppose that, B wants to send a message directly to X.

1. B resolves the logical address of X to obtain a substrate address of X. The

CSA processor in B returns the same result as in 1.

2. B sends a message destined to X and passes the result obtained in the previous

step as the destination address. The CSA processor in B which sits between

the node and the adapter, handles the send message process and uses the

preferred substrate address of X which is part of the result in the previous

step as the destination address for the message to X.

Chapter 5. Implementation 63

Operations

The push method in the CSA processor is invoked whenever the node resolves a logical

address or attempts to send a message. Table 5.3 contains the list of all events and

actions for this method.

Table 5.3: Operations of the push method.

Event Action

Node resolves the logical

address LAX

Return a tuple that contains the address list associated with

the LAX in the address repository and the preferred sub-

strate address of LAX ,i.e.,<ALX ,PSAX>7.

Node sends a message

<ALX ,PSAX>
Send the message to PSAX

5.2.4 Pull Method

The pull method initiates an address exchange process only when the address list of

an advertised node is needed. In HyperCast, this translates to the moment when the

node resolves the logical of the advertised node. Unlike the push method, in the pull

method the entire address list of the advertised node is not included in the message. In

fact, no substrate address of the advertised node is included in the message. Instead the

advertiser includes the logical address of an node from which the receiver can obtain the

address list of the advertised node. This node is the advertiser itself.

7PSA: Preferred substrate address, and AL: Address list.

Chapter 5. Implementation 64

Recall that a node resolves a logical address of another node to obtain the substrate

address information for that node either before sending a message to it or for creating

an advertisement pair to advertise that node in a protocol message. Similar to the push

method, when the pull method is active, two different sets of information are needed in

these tasks.

To deal with this, the CSA processor implements the resolution method that is oth-

erwise implemented by the address repository of the adapter. In the case of the pull

method, this resolution method returns a tuple that consists of the preferred substrate

address for the logical address that is being resolved and the logical address of the local

node (i.e., the advertiser). When this tuple is used as the destination for a message, its

first part is put to use. The second part is used when the tuple is included in a protocol

message to advertise a node.

Upon receiving a message that contains an advertisement pair, the destination node

will create an entry with the following form in its address repository:

<Logical address of the advertised node ⇒ Logical address of the advertiser node >

When the destination node resolves the logical address of the advertised node for the

first time, the pull method requests its address list from its advertiser. As discussed

before, a tuple is returned as the result of this resolution. This tuple can be included in a

message for advertisement but if the node uses it as a destination address for an outgoing

message, the CSA processor puts the message in a waiting list until its corresponding

address list which has been requested arrives. In case that the node does not receive the

address list after a long time, i.e., BufferedMessagesTimeoutTimer 8, the entry times

out and the message is dropped.

The push method is simpler than the pull method because the push method does not

need to keep track of the advertiser for each advertised node.

8The default value is 5 seconds.

jorg
Highlight
What are the two steps?

Chapter 5. Implementation 65

Example scenario

An example of the pull method operation is shown in Figure 5.10. The example involves

four nodes: A, B, X, and Y. A and B exchange the address list of X after X is advertised

by A to B. The following is a detailed description of this example.

Initial state Nodes A and B are neighbors, and both have each other’s address lists.

Node A is a neighbor of node X, and it has the address list of X in its address

repository. Also, B is a neighbor of node Y, and it has the address list of Y in its

address repository.

1 Suppose that as part of the operation of the overlay protocol, A wants to advertise X

to B.

1. A resolves the logical address of X in order to create an advertisement pair and

include it in the protocol message payload. The result of this resolution is a

tuple that contains the the preferred substrate address of X and logical address

of A. When this tuple is used for advertisement, its first part is included in

the message. Therefore the address pair carried in the advertisement message

is <X logical address, A logical address>.

2. A sends a protocol message containing the node advertisement pair <X logical

address, A logical address> to B.

3. After receiving the message, B inserts this address pair in its address reposi-

tory.

2 B wants to advertise X to Y. B resolves X. As a result of this resolution, the CSA

processor in B returns a tuple that contains NULL as the substrate address for X

since B does not yet have the address list of X in its address repository, and the

logical address of B as the advertiser.

Chapter 5. Implementation 66

A B

X

Protocol message
containing <X,A>

3.B adds the mapping
X~> A

A wants to advertise X to B

resolve X
[B,A,Null]=resolve(X)

B

Protocol message
containing <X,B>

Y

A
CSA: AddressListRequest (X)

B

CSA: AddressListUpdate
([X,<ALX>])

B updates the mappings

X~><ALX>

Protocol Message

B

A

BX

A B

A address repository:
B~><ALB>
X~><ALX>

B address repository:
A~><ALA>
Y~><ALY>

1.resolve X
[B,A,SAX]=resolve(X)

2.send message to SAX

Initial state:

X : Logical address of X <ALX> : Address list of X
SAX : One substrate address of X [P1,P2,P3] : 3-tuple result of resolution

: Neighborhood

1.resolve X
[A,X,SAX]=resolve(X)

2.send message to SAX

1

Y

2 B wants to advertise X to Y

3

4

5

6 B wants to contact X

Figure 5.10: Example of pull method operation.

jorg
Callout
2 questions:
1. Why is message sent to SA_x ?
2. When the tuple <X,A> is sent, is "A" sent as part of a piggybacked CSA message?

Chapter 5. Implementation 67

3 During the address resolution process in the previous step, the CSA processor in B

realizes that the actual address list for X is not available in the address repository;

therefore it requests the address list of X from its advertiser, A, by sending an

AddressListRequest message to A. (B knows A is the advertiser because its logical

address is mapped under the X logical address instead of the address list of X)

4 B advertises X to Y. Similar to 1, the advertisement pair in the protocol message is

<X logical address, B logical address>.

5 B receives the AddressListUpdate message from A that contains the X address list.

B updates the entry for X in the address repository.

6 Suppose that B wants to send a message directly to X.

1. B resolves the logical address of X. The CSA processor in B returns a tuple

that contains the preferred substrate address of X, and the logical address of

B.

2. B sends a message destined to this tuple. The CSA processor in B, uses the

preferred substrate address of X from this tuple to send the message to X.

Note that in this example, if B wants to send a message to X at any stage before

5 (i.e., before it receives X address list), the message is put in a waiting list until B

receives the X address list from A. However, B still could advertise X because the node

advertisement in the pull method does not require the address list of X to be available

as no substrate address of X is transmitted in the node advertisement with this method.

Operations

The pull method is used when a node resolves a logical address and upon an incoming

AddressListUpdate messages. Table 5.4 contain events and their respective actions for

the pull method.

Chapter 5. Implementation 68

Table 5.4: Operations of the pull method.

Event Action

Node resolves the logical

address LAX

if LAX is mapped to another logical address, i.e., the logical

address of its advertiser then

Send a AddressListRequest message to its advertiser

and request the address list for the key=LAX .

Return a tuple that contains NULL for the substrate ad-

dress, and the logical address of the local node as the new

advertiser. (<NULL,LAlocalnode>)

else

Return a tuple that contains the preferred substrate ad-

dress and the logical address of the local node as the ad-

vertiser, LAX .(<PSAX ,LAlocalnode>)

end if

AddressListPullTimeout

timer expires
for each entry e in the waiting list do

if now - e.timestamp > AddressListPullTimeout

then

Delete e. (i.e., drop the message e.message)

end if

end for

Chapter 5. Implementation 69

Event Action

Node sends a mes-

sage m to an address

that is in fact a tuple

<PSAX ,LAadvertiser>

if PSAX is not NULL then

Send the message to PSAX

else

Buffer message m in the waiting list and wait for an address

list for the key: LAX

end if

Receives an

AddressListUpdate

message m

for each <key, address list> k, al in m do

Update the Address Repository entry for k with al.

for each message wm in the waiting list do

if wm is waiting for the address list of the key k then

Send out wm and remove it from the waiting list

end if

end for

end for

5.2.5 Gossiping Method

The gossiping method of the CSA consists of a periodic exchange of address lists. Each

overlay node periodically sends a gossip message to another node which contains one or

more address lists. The destination of gossip messages and address lists that they contain

are selected from entries in the address repository.

In the gossiping method, when a node advertises another node in its protocol message,

no substrate address of that node is included in the message payload. Instead, nodes rely

on the gossiping process to provide the address lists of the advertised nodes.

Chapter 5. Implementation 70

When sending a message, a node resolves the logical address of the destination node to

obtain its substrate address. If the address list of this node has already been obtained via

the gossiping process, the preferred destination substrate address is known and returned

to the node, which is then used to send the message. On the other hand, if the address

list is not available in the address repository, the returned value will have an empty

value for the preferred substrate address. When the node uses this returned value as a

destination, the message is dropped.

Note that this is different from the pull method approach in which the message is

buffered until the address list is obtained. This is because in the pull method the amount

of time which the node has to wait until it receives the address is usually small (in the

order of the average round trip time between two nodes), while this is not the case for

the gossiping method. Having to wait a long time in the waiting list means a very large

number of buffered messages which have mostly become useless given how old they are.

Due to the above reasons, we just drop such messages in the gossiping method.

Example scenario

Figure 5.11 shows an example of the gossiping method in operation. The following is the

description of the example in Figure 5.11.

Initial state Node A and B are neighbors and have each other’s address list in their

address repository. Additionally, Node A is neighbor of node X, and it has the

address list of X in its address repository.

1 A wants to advertise X to B. A resolves X’s logical address in order to pair the result

with the logical address of X and to include it in the advertisement message payload.

When the result of the resolution is included in the message, no substrate address

will be included, thus the advertisement pair in the message is <X logical address,

NULL>. After receiving the message, B inserts an empty mapping for X in its

address repository.

Chapter 5. Implementation 71

2 B wants to send a message directly to X.

1. B resolves the logical address of X. The result is empty as B has not received

the address list for X yet. B’s node uses this result as the destination for the

message.

2. The CSA processor at B gets the outgoing message destined to an empty

address. The CSA processor drops the outgoing message.

Gossip Suppose that node U which is an overlay node that has address lists of X and

B in its repository has randomly chosen B as its destination for gossiping. U has

also randomly chosen the address list of X to gossip. U sends a gossip message

to B containing the logical address of X and the address list of X. After receiving

the gossip message, B updates the corresponding entry in the address repository.

By doing so, the received address list of X will replace the already existing empty

mapping.

3 B wants to advertise X to Y.

1. B resolves the logical address of X. Similar to step 1, an address pair <X

logical address, NULL> is created.

2. B resolves Y to obtain a substrate address of Y to which the protocol message

can be sent.

3. B sends the protocol message that contains the advertisement pair for X to Y.

4. Y receives the advertised address pair and creates an empty entry in its address

repository.

4 B wants to send a message directly to X (as in step 2). However this time the address

resolution is successful and the message is successfully sent.

1. B resolves the logical address of X. Since the address list of X is now available,

the result is the preferred substrate address of the X.

Chapter 5. Implementation 72

2. The protocol message is sent to X.

Chapter 5. Implementation 73

A B

X

Protocol message
containing <X>

B adds the mapping
X~>[]

1.resolve X
[SAX]=resolve(X)

2.resolve Y
3.send message to Y which contains
advertisement pair for X

B

Protocol message
containing <X>

Y

A B

A address repository:
B~><ALB>
X~><ALX>

B address repository:
A~><ALA>
Y~><ALY>

Initial state:

Protocol Message

B

X

1.resolve X
[]=resolve(X)

2.try to send message to []
=>drop the message

U B

CSA:AddressListGossip
<X, <ALX>>

B updates the mapping
X~><ALX>

Gossip:

B

1.resolve X
[SAX]=resolve(X)

2.send message to SAX

Protocol messages
that contain X
advertisement

X : Logical address of X <ALX> : Address list of X
SAX : One substrate address of X [] : the result of resolution

: Neighborhood

2

Y

1

B wants to contact X

3

4

B wants to advertise X to Y

B wants to contact X

4.Y adds the mapping
X~>[]

Figure 5.11: Example of pull method operation.

Chapter 5. Implementation 74

Gossiping in the Literature

Gossiping addresses is an information dissemination problem where a piece of informa-

tion, originally known by a single node is spread to a set of nodes. The optimal solution

of this problem with a deterministic series of message exchanges which requires the least

number of message exchanges and gossiping rounds have been extensively studied for

various types of graphs e.g. complete graphs, grid graphs, and hypergraphs [19].

Gossiping schemes with random message exchanges for information dissemination

have been used in computer networks [21]. Such randomized gossiping provides a simple,

robust, and scalable alternative to more rigid deterministic communication structures.

For example, it has been shown that in a network with n nodes, a uniform gossiping

scheme can spread a piece of information to all nodes in the network in O(log(n)) rounds

and with Θ(nlog(n)) messages. A deterministic solution (e.g., a tree with constant de-

gree) can similarly do so in O(log(n)) rounds but with only Θ(n) messages [22].

Gossiping for CSA

The objective of the gossiping method in CSA is the efficient dissemination of address

lists across multiple substrates. The ideal result of this method is to have each node

know the address lists of all other nodes. However in large overlay network, it is not

possible for nodes to store a complete set of address lists.

When some nodes in an overlay protocol may have a special role and are advertised

and contacted more often than other nodes (e.g., backbone nodes), the gossiping process

should give priority to the dissemination of the address lists of these special nodes.

The following aspects of a gossiping process are important in determining its effec-

tiveness.

• Timing

The gossiping process is carried out in rounds. Gossiping messages are sent peri-

odically and independent of protocol messages.

Chapter 5. Implementation 75

• Content of Gossip

Each node has an address repository of address lists. Each node starts with the

address list of itself, and over time, it adds new address lists obtained via gossiping

and other address exchange methods. The node selects address lists to gossip from

this repository. Each node can explicitly express whether it wants its address list to

be gossiped or not. This is indicated by flags that are associated with each gossiped

address list.

• Destination of Gossip

Similar to the content of the gossip, the destination for gossips is also selected from

the local address repository but only from entries that are reachable, i.e., share at

least one substrate with the node. The destination and the content are selected

independent of each other. Finally, each node can set a flag on its address list that

shows whether it wants to participate in the gossiping process as a destination for

gossips or not.

• Time-to-live of Gossip

In order to have an efficient gossiping process it is important to stop circulating

gossip messages after they reached all participants. If the network size is available,

it is possible to calculate how many times a single gossip is required to be forwarded

in order be fairly certain (i.e., with a probability close to one) that all the nodes have

received it. Unfortunately this information is not easily available in peer-to-peer

overlay networks. One option is to have a large fixed upper bound on the number of

times that an address list can be gossiped. This solution can be expensive for small

network in terms of bandwidth and number of messages and, similarly, for large

network by declaring a gossip messages outdated too soon. A better solution is to

use a heuristic to guess the size of network. Fortunately in our case, the address

lists are being gossiped which have a one-to-one relation with nodes. We think

Chapter 5. Implementation 76

that it is possible, to implement an estimation function that passively looks at the

number of address lists that have already been received to estimate the number of

nodes in the overlay network. However, this solution is not implemented in this

work.

Implementation Details

Following the above guideline we have designed the following gossiping scheme. In this

scheme, in each gossiping round9, one address list is randomly selected as the destination.

The address list is selected among all address lists in the CSA processor repository which

have their ReceiveGossiping flag set to 1. Address lists do not have equal probability

of being selected and their selection probability varies depending on several factors. The

selection probability of an address list is proportional to its weight which is calculated

based on

w(i) =


(maxi(Sd[i])− Sd[i]) ∗ I[i] if node i is reachable

0 if node i is not reachable
(5.1)

where:

1. Sd[i] is number of times that the address list i has been previously selected as

destination for the gossip.

2. I[i] is number of interface addresses in the address list i.

This equation ensures that unreachable nodes are not selected as the destination.

Additionally, it assigns more weight to address lists which have not previously been

selected and is biased to send gossips to new nodes. It also gives more weight to nodes

which have more interfaces and are connected to more substrates. This encourages the

address list to be send across substrates.

9The time between two consecutive gossiping round is provided in the configuration file. The default
value is 500 ms.

Chapter 5. Implementation 77

The probability of an address list being selected given its weight is calculated by

Equation 5.2. This equation ensures that when the weight for an entry is set to 0, the

probability of its selection will also be 0.

P (address list i is selected) =


w(i)−miniw(i) + 1∑N

i=1 w(i)−N ∗ (miniw(i) + 1)
if w(i) 6= 0

0 if w(i) = 0

(5.2)

where N is the number of all address lists in the address repository.

After selecting the destination, the gossiping method randomly selects a set of address

lists from the address repository that have an AdvertiseGossiping flag set to 1 for

inclusion in a gossiping message. The number of address lists included in a gossip message

to be gossiped has an upper bound determined by a configurable parameter10. Similar

to the destination case, the selection probability of each address list varies depending on

several factors, and the respective weight of each address list is calculated by

w(i) = maxi(Sg[i])− Sg[i] (5.3)

where Sg[i] is the number of times that address list i has been previously gossiped by the

local node. This equation

The destination and content of gossips are both selected from the address lists in

the address repository but independent of each other. Note that the effectiveness of the

gossiping process in disseminating address list is sensitive to the above weight assignments

and overlay topology. The gossiping process efficiency can be improved by appropriating

these weights based on the overlay topology.

10The configuration parameter is MaxGossipPerMsg. (Default value is 1)

Chapter 5. Implementation 78

Operations

Table 5.5 contains the events that trigger an action by the gossiping method.

Table 5.5: Operations of the gossiping method.

Event Action

GossipTimer expires
Choose a destination from the address repository. (For de-

tails refer to Section 5.2.5)

Construct a gossip message by choosing address lists to be

gossiped.

Send the gossip message to the selected destination.

Receives an

AddressListUpdate

message m

Extract all address lists and update the local Address Repos-

itory.

5.2.6 Push-Single/Gossiping Hybrid Method

This method combines the gossiping method and the push method (see Section 4.2.2).

In this method, the push method is used to send only one substrate address (hence the

name push-single) as the substrate address information part of a node advertisement.

This substrate address is the most preferred substrate address according to the preference

values assigned by the owner of the address list. To receive the complete address list, the

node relies on the gossiping method which is active in the background.

Chapter 5. Implementation 79

5.3 Message Format and Timers

5.3.1 Message Format

The cross-substrate advertisement protocol is implemented as a an overlay protocol in Hy-

perCast. Therefore, its message format follows the convention of any protocol messages

in Hypercast: (1) the first byte identifies the protocol, (2) the next two bytes define the

total length of the message, and (3) the next byte specifies the protocol specific message

type. All cross-substrate advertisement messages have common header fields as shown in

Figure 5.12. These fields are referred to as the CSAdvertisementExchange header. The

remainder of the message is different depending on the message type.

 

Figure 5.12: CSA message format.

The following message types are defined for the CSA protocol:

1. Address List Request;

2. Address List Update;

3. Address List Update With Payload;

4. Address List Gossip.

Address List Request

Type: 0x00

This message is used to request an address list from another overlay socket. It carries an

Chapter 5. Implementation 80

address key that identifies the address list which is being requested.

The CSA processor requests address lists from other nodes in two cases: 1) A message

has arrived from a node whose address list is not available or is old; 2) The pull method

is used for a third-party address exchange, and an address list for an advertised node is

needed. In this case a request is sent to the advertiser for the advertised node.

The address key determines which address list is requested. For example, for the

pull method, the address key is the logical address of the advertised node for which the

address list is being requested. The format of the address key is shown if Figure 5.13.

It is possible to specify the key to be empty which means that the address list of the

receiver of the message is requested. The following are all different types of the address

key:

None (0x00) This identifies an empty key. No key value is carried with this type of key,

hence the size of this key is 1 byte.

Logical Address (0x01) This type of key is a logical address. The key value carried

is a logical address. The size of the logical address is a parameter of the overlay

protocol and is known by all nodes in the overlay network. Therefore there is no

need to include the length along with the logical address.

Arbitrary Size (0x02) This type of key is a byte array of arbitrary size. In this case,

the first byte of the key value is the array size.

Key ValueType

1 byte variable size (depending on the Type)

Figure 5.13: Address key format.

Chapter 5. Implementation 81

Address List Update

Type: 0x01

This message contains a set of address lists with their keys. It is used in two situations.

First, in response to an AddressListRequest, in which case it contains the address list

for the requested node. Second, as a broadcast message which is sent periodically in

broadcast-capable substrates, where it contains the address list of the sender. Figure

5.14 shows the format of the type dependent part for this message. It includes a list of

address lists and their corresponding address keys. Figure 5.15 shows the format of an

address list. Each address list consists of a list of address elements. Figure 5.16 shows

the format of the address element. Each address element consists of a substrate address

and two 4 bits preference values. Section 4.1.3 contains more information about these

preference values.

Number of Address
Lists

Address List #1
(variable size)

Address List #N

1 byte

. . .

Address Key #1
(variable size) Number

of
Address

Lists
Address Key #N

Figure 5.14: Address List Update message format.

When a CSA processor receives an AddressListUpdate message, it processes each

address list by translating its address elements to substrate addresses. If the hash value of

an address element matches the hash(address realm, protocol type) of an interface

of the overlay socket, it belongs to that interface s substrate network. In this case, the

address byte array of the address element is processed by that interface into a substrate

Chapter 5. Implementation 82

Number of Entries
(1 byte)

Number
of entries

in the
address

list

...

Address Element #N
(variable size)

Address Element #1
(variable size)

Figure 5.15: Address list format.

Address byte array
(length byte)

Length
(1 byte)

Hash Value
(2 bytes)

Address Type
(1 byte)

Data
(4 bits)

Protocol
(4 bits)

Preference value for protocol messages
Preference value for data messages

Substrate Address

Figure 5.16: Address element format.

address.

Any address element with a hash value that does not match the hash value of any

interface of the overlay socket, is kept as a byte array and tagged with a special interface

ID that indicates it is not usable by this overlay socket. Although the local node cannot

use such addresses, they are kept alongside the usable interface addresses as the node

may later send them to other nodes in a node advertisement.

The hash function used for hashing the address realm and protocol type values is

based on the hash function that is used to generate the overlay hash in the HyperCast.

The overlay hash function returns a 4 bytes value, however we need a 2-byte value as the

hash value of the address realm and the protocol type values. To address this issue, the

4-byte value returned by the overlay hash function is transformed to a two bytes value

by taking the XOR between first two bytes of the 4 bytes hash value as the first byte,

Chapter 5. Implementation 83

and the XOR between last two bytes of the 4 bytes hash value as the second byte. With

this 2-byte hash value 65536 unique substrates can be coexist.

Address List Update With Payload

Type: 0x02

This message is similar to the AddressListUpdate message with an additional protocol

message payload included at its end. This message is primarily used to piggyback address

list update message on outgoing broadcast protocol messages whenever possible.

Address List Gossip

Type: 0x03

This message is used in the gossiping method to transfer multiple address lists (up to

255). Each address list in this message has additional information associated with it. We

refer to each address list along with its associated additional information as an extended

address list. The format of the extended address list is shown in Figure 5.17. Each

extended address list carries the following properties in addition to the normal address

lists:

• Gossiping Counter: The gossiping counter is the number of nodes which has

gossiped this address list before. Every time an address list is being gossiped, its

gossiping counter is increased by one. The gossiping algorithm can use this value

to decide whether this address list has been already gossiped enough or still needs

to be gossiped. Although the current implementation of the gossiping method does

not use this field, it is kept for future implementation.

• Gossiping Flags: Two flags, ReceiveGossiping and AdvertiseGossiping are defined

as following:

– Flag ReceiveGossiping(R): If this flag is set, the owner of this address list

Chapter 5. Implementation 84

wants to participate in the gossiping of address lists and can be selected as

a destination for gossip messages. This flag is configured using the property

GossipReceiver in the configuration file (default: true).

– Flag AdvertiseGossiping(A): If this flag is set, the owner of the address list

wants its address lists to be gossiped. This flag is configured using the property

GossipAdvertisable in the configuration file (default: true).

Address ListGossiping
FlagsGossiping Counter

4 bytes 1 byte variable size

 unusedR A

Figure 5.17: Extended address list format.

5.3.2 Timers

Timers in HyperCast are the mechanism by which components, such as the node and the

CSA processor, schedule their time dependent operations. Each component can setup a

timer that expires after a certain amount of time. Upon expiration, a callback is issued

to handle the timer event. For creating a periodic event, the expiration callback sets the

timer again. The following are the timers of the CSA processor. The timeout values of

the timers are properties which are set in the configuration file.

BroadcastTimer There is one BroadcastTimer per broadcast interface of the overlay

socket. The broadcast timer for a interface indicates the next time that the address

list of the local node must be broadcast on that interface. Upon the timer expira-

tion, the CSA processor broadcasts an AddressListUpdate message containing its

Chapter 5. Implementation 85

address list on the corresponding interface. The timer is reset every time it expires

or whenever the address list is piggybacked on an outgoing broadcast message, i.e.,

when a protocol message is going out within at most AcceptableBroadcastLag

of the expiry time of the timer.

Related values: BroadcastPeriod (default: 5000 ms), AcceptableBroadcastLag

(default: 1000 ms)

GossipTimer If gossiping is enabled in the CSA processor, this timer expires periodi-

cally for each gossiping round. In each round, the node sends out one AddressListGossip

message.

Related values: GossipTime (default: 2000 ms)

AddressListTimeoutTimer When this timer expires, the CSA processor checks all

its address lists in the address repository and removes them if they are stale. An

address list is stale if it has not been updated for AddressListTimeout time. This

timer expires periodically every AddressListTimeout /2.

Related values: AddressListTimeout (default: 60 seconds).

AddressListRequestTimeoutTimer This timer is used when the pull method is en-

abled in the CSA processor. When this timer expires, the CSA processor re-

moves any pending address list request for which no response has been received

for AddressListRequestTimeout time. This allows the CSA to try again to send

another request for the address list.

Related values: AddressListRequestTimeout (default: 2000 ms).

BufferedMessagesTimeoutTimer Similar to the previous timer, this timer is period-

Chapter 5. Implementation 86

ically active when the pull method is used. On its expiry, the CSA processor drops

messages which have been waiting too long (longer than BufferedMessagesTimeout

time) on the address list of their destination to be successfully pulled from its ad-

vertiser.

Related values: BufferedMessagesTimeout (default: 2000 ms).

Chapter 6

Evaluation

In this chapter, we present our evaluation of the cross-substrate advertisement mecha-

nisms. The evaluation has two objectives. First we evaluate the overhead of the CSA

mechanism proposed in this thesis. Second, we assess the effectiveness of the CSA mech-

anism in supporting self-organizing overlay networks in a multi-substrate environment.

In particular, we study the effect of CSA on the rendezvous process of the overlay, the

overlay topology, and overlay robustness.

For the evaluation, we have conducted measurement experiments on a testbed net-

work. Before presenting the experiments, we describe the testbed network and how we

create a multi-substrate environment in which our mechanisms are evaluated.

6.1 Setup of Experiments

6.1.1 Testbed Network

For our experiments we use a local testbed network configured using Emulab. Emulab is

a software system for networked and distributed system experimentation [38]. It manages

a pool of physical machines and a switching infrastructure based on VLAN technology

providing a exible way to remotely congure a network configuration. Emulab has a

87

Chapter 6. Evaluation 88

web-based access system to control and manage ongoing experiments.

The Emulab testbed at the University of Toronto consists of 22 Dell PowerEdge 2950

III PCs (20 test machines and 2 control servers), with 2 Quad-Core Intel Xeon Processors

5400 series clocked at 2.00 GHz, and 4GB DDR2 RAM. Each PC is equipped with an

Intel VT PCIe Quad-port Copper Gigabit Ethernet NIC and a NetFPGA [26] board with

4 Gigabit Ethernet interfaces. So, each PC has 8 Ethernet interfaces that can be used in

an experiment. The PCs are interconnected by four 48-port Cisco Catalyst 4948-10GE

switches. Figure 6.1 is a photo of this testbed.

Emulab enables the creation of arbitrary network topologies and supports a wide vari-

ety of operating systems. We run our experiments on a Fedora Core 6 Linux distribution

with the 2.6.20.6 Linux kernel.

Figure 6.1: The Emulab testbed at the University of Toronto.

Chapter 6. Evaluation 89

6.1.2 Emulating Multiple Substrates

In order to be able to create many substrate networks we use UDP/IP substrate net-

works. Each substrate has a private IP address space and its own distinct address realm.

Multicast substrates are UDP multicast/IP substrate networks. Again, each substrate

has its own multicast group address and address realm. This ensures that a broadcast

message in one multicast substrate cannot be received in others.

Since all substrates are UDP/IP, addresses of nodes in different substrates have the

same format, i.e a pair of an IP address and a port number. However, since each substrate

address includes the address realm of the substrate, addresses will only be used in their

own substrate network.

6.1.3 Arrangement of Substrates for DT Protocol

For our experiments, we use a structured overlay protocol, which is based on building a

Delaunay Triangulation topology. The protocol is referred to as DT protocol. For the DT

protocol to form a single complete triangulation, neighboring nodes in the topology must

have at least one substrate in common. Note that a DT node has an (x,y) coordinate

as its logical address. Given coordinates of all nodes, it is feasible to use coordinates of

a node and Delaunay Triangulation properties to identify the neighbors of one node in

the topology. Since neighborhood relations are determined by the coordinates, we can

ensure feasibility of a stable triangulation topology over the given substrates by carefully

assigning coordinates to nodes in each substrate.

The following rules define how coordinates are assigned to nodes in substrates to

ensure that the DT protocol can create a stable Delaunay triangulation over a multi-

substrate environment.

1. The coordinates of all the nodes that belong to one substrate are within a confined

square-shaped area referred to as substrate field. For example, the node in a sub-

Chapter 6. Evaluation 90

strate whose substrate field is centered at (xo, yo) and with side length L will have

coordinates (x, y) such that (−L
2
,−L

2
) ≤ (x, y)− (xo, yo) ≤ (L

2
, L

2
).

2. Substrate fields are arranged in a K-by-K two dimensional grid. For K > 1, each

substrates is adjacent to either 3, or 8 other substrate fields depending on its

position in the grid.

3. Each substrate field is divided into four equal square shaped regions.

4. The two top regions of each substrate field are shared with the top neighboring

substrate field. Similarly the two bottom, two left, and two right regions are share

respectively with the bottom, left, and right neighboring substrate fields. The top

right region of each substrate field is also shared with the top right neighboring

substrate field. Similarly, top left, bottom right, and bottom left are shared with

respective diagonally neighboring substrate fields. Therefore, a single region can

potentially belong to multiple substrate fields.

5. Depending on the region in which a node is located, a node is connected to one,

two, or four substrates.

Figure 6.2 shows a scenario with 4 substrates and their respective substrate fields,

which are arranged in a 2x2 grid based on the above mentioned rules. As can be seen, each

substrate field overlaps with three other substrate fields in this example. Nodes whose

coordinates fall into region R1,1 are only connected to substrate S1. Nodes in region

R2,1 are connected to substrates S1 and S3, and nodes in region R2,2 are connected to

substrates S1, S2, S3, S4.

All nodes in a region are pre-configured with the address of one special node, i.e., a

“buddy”, in the same region. With this buddy, nodes in the same region can rendezvous

and construct the topology at least within this region. All nodes in the same region has

one additional buddy which is located in a neighboring region. The neighboring regions

Chapter 6. Evaluation 91

from which the second buddy is selected are assigned based on a specific scheme which

is shown in Figure 6.3. As it can be seen in this figure, the buddies are selected such

that the form a chain among regions. This scheme ensures that the least but sufficient

amount information about buddy nodes is available so that nodes in different substrates

can form a connected overlay network.

R 1,1

R 2,1

R 3,1

R 1,2

R 2,2

R 3,2

R 1,3

R 2,3

R 3,3

Region R1,1

S1

S2

S3

S4

Substrate Field

Figure 6.2: Substrate arrangement for DT.

6.1.4 Measurement Methodology

The number of overlay nodes is distributed evenly to all hosts involved in an experiment.

Nodes which belong to one region are started, stopped and controlled remotely using

Chapter 6. Evaluation 92

R1,1

R2,1

R3,1

R1,2

R2,2

R3,2

R1,3

R2,3

R3,3

Figure 6.3: Buddy configuration for the DT protocol in a 2x2 grid. The arrows show the

neighboring region from which the pre-configured buddy is selected.

the monitor and control system of HyperCast [23]. Each overlay node periodically logs

parameters in a file. These files are collected at the end of an experiment for further

processing.

To see the overhead incurred by the CSA, we measure the traffic generated by the CSA

and compare to the traffic generated by the DT protocol. We measure the effectiveness of

CSA methods by measuring their impact on overlay protocol properties such as stability

and connectivity. The following are the definition of stability and connectivity that we

use for the DT protocol:

Stability of DT protocol: In the context of the DT protocol, a node is stable if it has

established neighborhood relation with all nodes in the overlay network that pass

its neighbor test. The neighbor test can be found in [24]. If all nodes are stable,

then a logical Delaunay triangulation has been established globally.

Connectivity of DT protocol: In the DT protocol, a node is a leader if it does not

have a neighbor with a larger coordinate11. We say that a set of nodes is connected

11coord(A) < coord(B), if yA < yB , or yA = yB and xA < xB .

Chapter 6. Evaluation 93

if there is only one leader in the overlay network. Initially, all nodes assume to be

a leader, and the number of leaders decreases as the network is established. Note

that a DT network maybe connected, while not being stable, while a single stable

network is always connected.

The running time of an experiment is 450 seconds. This is large enough so that a DT

network of the considered scale can become stable. CSA and DT parameters are logged

every second.

6.1.5 Configuration Parameters

The following are relevant parameters of DT and CSA protocols:

• DT

– Fast Heart Beat time (i.e., Heart beat when node is not stable): 500 ms.

– Slow Heart Beat time (i.e., Heart beat when node is stable): 500 ms.12

• CSA

– Maximum number of address lists per gossip message: 1 address list.

– Gossiping table size: unlimited.

– Address List Timeout: 60 seconds.

– Address List Request Timeout: 2000 ms.

– Buffered Message Timeout: 5000 ms.

6.1.6 Address Exchange Methods Used in Experiments

The following configurations have been evaluated in the experiments. The request method

has been used in all of the following configurations for direct address exchange.

12Slow and fast heart beats are intentionally set to be equal in order to have the same timing behavior
for all choices of third-party address exchange methods regardless of their effect on the stability.

Chapter 6. Evaluation 94

• None: Uses no third-party address exchange method which means that no sub-

strate address information is included in the protocol messages.

• Push: Uses the push method for third-party address exchanges.

• Pull: Uses the push method for third-party address exchanges.

• Gossiping (250 ms): Uses the gossiping method with a gossiping period of 250 ms

for third-party address exchanges.

• Gossiping (500 ms): Uses the gossiping method with a gossiping period of 500 ms

for third-party address exchanges.

• Gossiping (1000 ms): Uses the gossiping method with a gossiping period of

1000 ms for third-party address exchanges.

• Push-single: Uses the push-single variation of the push method for third-party

address exchanges which includes a single substrate address in protocol message

for node advertisements.

• Push-single & Gossiping (500 ms): Uses a combination of the push-single

method and the gossiping method with gossiping period of 500 ms for third-party

address exchanges.

The following configurations use the broadcast method as well as the request method

for direct address exchanges, and the push method for third party address exchanges.

• Periodic Broadcast (6 s): For the broadcast method, the BroadcastPeriod is

set to 6 seconds and AcceptableBrodcastLag is set to 200 ms.

• Periodic Broadcast (30 s): For the broadcast method, the BroadcastPeriod

is set to 30 seconds and AcceptableBroadcastLag is set to 1000 ms.

• Piggyback Broadcast: Uses the piggyback variation of the broadcast method.

Chapter 6. Evaluation 95

6.2 Experiment 1: 648 nodes in 64 substrates (8x8

grid)

In this experiments, we have used the DT protocol to study the overhead and effective-

ness of cross-substrate advertisement methods. The experiments consist of unicast-only

UDP/IP substrates as described in Section 6.1.2 which are arranged in a grid as described

in Section 6.1.3. All substrates contain the same number of nodes. In the experiments we

have evaluated different third-party address exchange methods by varying the number of

substrates and the number of nodes in each region.

We first show measurements conducted on a DT network with 648 nodes. There

are 64 substrates arranged in a 8x8 grid and 81 regions (in a 9x9 grid). There are 8

nodes in each region, which means that there are 32 nodes in each substrates. Each data

point is the average of three runs with the same initial configuration and coordinates

for nodes. 16 PC from the Emulab testbed were used for this experiment. The network

configuration is that all PCs share a single 1Gbps LAN.

Figure 6.4 shows the percentage of stable nodes in the DT network as a function of

time. The push and pull configurations are both highly successful in quickly establishing

a stable DT network (in less than 20 seconds they achieve 100% stability). This is because

both methods are good at providing each node with enough substrate address information

of their neighbors so they can become stable. The none configuration achieves 0% of

stability due to the fact that the node advertisements do not include any substrate address

information thus nodes cannot contact potential neighbors to establish neighborhood and

achieve stability.

The gossiping method takes a longer time to reach stability than the push and pull

methods. The graph contains the results of the gossiping method with three configura-

tions with gossiping time interval set to 250, 500, and 1000 ms. The speed of reaching

stability is inversely related to the gossiping time interval. This is expected as a smaller

Chapter 6. Evaluation 97

gossiping time interval means faster spread of address list information. With the push-

single method, the network does not achieve complete stability. This is because, the

push-single method provides only one substrate address which is not always sufficient for

establishing required neighborhood relations in the configured network. The combination

of the gossiping method and the push-single method is able to achieve 100% stability.

This combination results in an initial jump in the number of stable nodes which is due

to the effect of the push-single method. Additionally, with this method, the network be-

comes completely stable, because, over time, the gossiping method disseminates complete

address lists which makes up for the shortcoming of the push-single method.

Figure 6.5(a) depicts how the number of leader nodes in the DT overlay network

decreases over time with each third-party address exchange methods. As discussed before,

a fully connected DT network has only one leader node. When no third-party address

exchange is used (i.e., in the none configuration), the number of leader nodes cannot be

reduced to fewer than around 250 leaders. This large number of leaders indicates the

difficulty of the experimental setup. The push and pull methods enable the network to

become fully connected (i.e., to one leader) in less than 20 seconds.

With all three gossiping configurations, the number of leaders decreases over time

and the network becomes increasingly connected. The decrease rate of number of leaders

increases with smaller gossiping intervals. Over the duration of the experiment, the

gossiping method is unable to create a connected network with a single leader. For all

values of the gossiping interval, the rate at which the number of leaders decreases declines

over time. This is due to the fact that, over time, the efficiency of the gossiping method

declines. Apparently, as the experiment progresses the address list information exchanged

by nodes contains less and less new information. It may be possible to improve this issue

by improving the gossiping scheme.

In Figure 6.5(b) we show the same data as Figure 6.5 for values of the number

of leader less than 10. The figure shows which methods succeed in creating a single

Chapter 6. Evaluation 100

Table 6.1: Average and standard deviation of the received CSA and DT trac for 64

substrates.

Method CSA (bps) stddev DT (bps) stddev Total (bps)

none 33.21 53.52 2318.69 3255.67 2351.9

gossip (1000ms) 568.56 744.55 3534.30 2072.20 4102.86

gossip (500ms) 1116.03 1500.17 3815.05 1783.79 4931.08

gossip (250ms) 2173.22 2940.41 4111.36 1455.59 6284.58

push-single 69.43 32.05 6339.75 1839.02 6409.18

push-single & gossip (500ms) 928.52 915.32 6466.30 1727.30 7394.82

pull 80.77 38.37 6294.49 1813.41 6375.26

push 55.56 16.11 15060.39 5058.43 15115.95

shows the min and maximum for the value in all runs. As it can bee seen the DT protocol

traffic varies with different third-party address exchange methods. This is because the

size of messages which include node advertisements is different with each method as they

each include a different value as the substrate address part of the advertisements.

The most amount of traffic is generated by the push method. In this case, the increase

in the traffic is in the DT protocol traffic because in the push method, the complete

address lists of nodes are included in the protocol messages every time they are advertised.

The inclusion of the complete address list information with each node advertisement is

particularly inefficient with the DT protocol, because in each heartbeat, it advertises two

nodes (i.e., clockwise and counter-clockwise neighbors) to all of its neighbors. The least

amount of traffic is generated when no third-party address exchange method is used (i.e.,

none method) since no substrate address information is being transmitted in the protocol

messages.

Note that although in both none and gossiping methods, no substrate address infor-

mation is being transmitted in DT messages, the DT traffic with the gossiping method

Chapter 6. Evaluation 101

is about 50% higher than with the none method. This is because the gossiping method

achieves a much higher percentage of stability which means that, on average, nodes have

more neighbors than with the none method. A larger number of neighbors means a larger

number of DT message exchanges in each heartbeat. Therefore, although both methods

produce DT messages of the same size, the total number of messages and thus the average

incoming traffic are higher in the gossiping method.

Compared to the push method, the pull method generates considerably less protocol

traffic. The reason is that the pull method only transmit the logical address of advertisers

node in node advertisements, whereas the push method transmits the complete address

list. In the pull method, the receiver of the advertisement requests the address list

only when it is needed regardless of the number of times it has been received in node

advertisements, while in the push method the address list is transmitted in each node

advertisement. Given that the pull method has achieved good results regarding the

connectivity and stability of the DT network, it can be concluded that the pull method

offers the best tradeoff overall.

The volume of protocol traffic generated by the push-single method is about the same

as the protocol traffic generated by the pull method. This is not surprising because the

size of the DT logical address (8 bytes) is close to the size of an a single substrate address

in our experiment, i.e., the size of an IP address, a port number, in addition to the

size of address realm hash , address type and address length (10 bytes). However, as

discussed before, the push-single method only achieves about 80% stability compared to

100% stability achieved by the pull method. This is because the push-single provides

nodes with only a single substrate address of the advertised node which may not be

sufficient in a multi-substrate environment. Note that the 80% number for push-single

depends on the arrangement of the nodes can be different with a different arrangement.

As seen in Figures 6.4 and 6.5, the combination of the gossiping method with the push-

single method was able to match the performance of the pull method. However, this

Chapter 6. Evaluation 102

performance gain comes at the cost of increased CSA traffic due to gossips.

Finally, as it can be seen in Figure 6.6, the traffic generated by the gossiping method

is proportional to the length of the gossiping interval.

6.3 Experiment 2: 2592 nodes and 289 substrates

(17x17)

We now repeat the same experiment as before for a larger scale. The number of regions,

and the total number of nodes in this experiment is increased by a factor of 4 while number

of nodes per region is kept the same. Thus, the outcome will provide insights into the

impact of increasing the number of substrates. In this experiments an overlay network

with 2592 nodes is constructed. The nodes are equally divided among 324 regions, i.e., 8

nodes per region. Each four neighboring regions form a substrate with 32 nodes. These

289 substrates are arranged in a 17x17 grid. As in the previous experiment, each data

point is the average over 3 runs with the same initial values.

Figures 6.7 shows how the stability of the overlay network changes over time with

the CSA methods. Comparing this figure with Figure 6.4 confirms that increasing the

number of substrates does not have much impact. Figure 6.8 shows how number of

leaders decreases over times. The result are similar to Experiment 1.

Table 6.2 and Figure 6.9 include the average CSA and DT traffic received by each

node. The difference with the result in Experiment is small confirming that the average

traffic of CSA methods and DT protocol is not sensitive to the number of substrates.

Figure 6.10 shows the average number of address lists that nodes have in their address

repositories. With the none configuration, each nodes has at most three address lists in

its address repository. At each node, the three address lists are for the node itself and

for its two configured buddies which have been obtained with a direct address exchange

Chapter 6. Evaluation 96

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450

P
er

ce
nt

ag
e

of
 s

ta
bl

e
no

de
s

time (seconds)

pull/push
push-single and gossip (500 ms)

push-single

gossip (250 ms)

gossip (500 ms)

gossip (1000 ms)

none

Figure 6.4: Stability of the DT network with 648 nodes in 64 substrates (arranged in a

8x8 grid).

Chapter 6. Evaluation 103

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450

P
er

ce
nt

ag
e

of
 s

ta
bl

e
no

de
s

time (seconds)

pull/push

push-single and gossip (500 ms) push-single

gossip (250 ms)

gossip (500 ms)

gossip (1000 ms)

none

Figure 6.7: Stability of the DT network with 2592 nodes in 289 substrates (arranged in

a 17x17 grid).

Chapter 6. Evaluation 98

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350 400 450

N
um

be
r

of
 le

ad
er

 n
od

es

time (seconds)

all others

none

gossip (1000 ms)

gossip (500 ms)

gossip (250 ms)

none
push

pull
gossip (250 ms)
gossip (500 ms)

gossip (1000 ms)
push-single

push-single with gossip(500 ms)

(a) All methods

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350 400 450

N
um

be
r

of
 le

ad
er

 n
od

es

time (seconds)

pull/push

push-single

push-single with gossip (500 ms)

(b) Only methods which achieve a high level of connectivity

Figure 6.5: Connectivity of the DT network with 648 node in 64 substrates (arranged

in an 8x8 grid): (a) contains all methods (b) contains only those methods which have

achieved a high level of connectivity.

jorg
Oval

Chapter 6. Evaluation 104

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300 350 400 450

N
um

be
r

of
 L

ea
de

r
N

od
es

time (seconds)

none
push

pull
gossip (250ms)
gossip (500ms)

gossip (1000ms)
push-single

push-single with gossip (500ms)

Figure 6.8: Connectivity of the DT network with 2592 nodes in 289 substrates (arranged

in a 17x17 grid).

Chapter 6. Evaluation 99

connected overlay network with one leader. The push-single method which exchanges

one substrate address decreases the number of leaders to about 5, however, it does not

decrease the number of leaders any further. When combined with the gossiping method

(push-single & gossiping), it achieves complete connectivity in about 300 seconds. Note

that the push and pull method both achieve full connectivity after about 15 seconds.

 0

 5

 10

 15

 20

none
gossip (1000 m

s)

gossip (500 m
s)

gossip (250 m
s)

push-single

push-single and gossip (500 m
s)

pull
push

T
ra

ffi
c

(k
bp

s)

Overlay Protocol
CSA Protocol

Figure 6.6: Average CSA and DT traffic received by each node of the overlay network

with various third-party address exchange methods.

Table 6.1 contains the average CSA and DT protocols traffic that each node has

received during the experiment. We measure the received traffic because the node reports

of their transmitted traffic may not be the actual transmitted traffic as messages may be

dropped at CSA processor or the adapter due to the unavailability of substrate address

information.

Figure 6.6 presents the data from Table 6.1 as a graph. The error bar for each bar

Chapter 6. Evaluation 105

Table 6.2: Average and standard deviation of the received CSA and DT traffic for 289

substrates.

Method CSA (bps) stddev DT (bps) stddev Total (bps)

none 35.19 56.23 2347.93 3305.09 2383.12

gossip(1000ms) 643.81 836.92 3597.72 2168.30 4241.53

gossip(500ms) 1158.63 1521.63 4344.48 1782.10 5503.11

gossip(250ms) 2311.99 3099.60 4079.49 1413.61 6391.48

push-single 74.67 35.84 6359.99 1863.33 6434.66

push-single & gossip(500ms) 1213.63 1405.86 6643.47 1867.93 7857.1

pull 85.94 39.15 6339.71 1791.46 6425.65

push 59.65 15.83 16173.47 5069.95 16233.12

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

none
gossip (1000 ms)

gossip (500 ms)

gossip (250 ms)

push-single

push-single and gossip (500 ms)

pull
push

T
ra

ffi
c

(k
bp

s)

Overlay Protocol
CSA Protocol

Figure 6.9: Traffic generated by CSA and DT protocols with various methods of third-

party address exchange in 289 substrates (arranged in a 17x17 grid).

Chapter 6. Evaluation 106

method. With the push, pull, and push-single methods, each node on average has about

the same number of address lists in its address repository, which is about 8 to 9. In

addition to the address lists of itself and its two buddies, the address repository contains

the address lists for about 5 to 6 neighbors (the average number of neighbors of a node

in a Delaunay triangulation graph is 6). Note that this number is achieved at around

90 seconds into the experiment, which is around the time that the first set of unused

address lists expires and is removed from the address repository. This confirms that the

address list timeout mechanism properly prevents unused advertised address lists to be

permanently stored in the address repository.

All three variations of the gossiping method, initially have a linear increase in their

number of address lists until they reach a stable number of address lists with a steeper

increase for shorter gossiping intervals. The number of address lists around which the

method becomes stable depends on the number of address lists which can be in circulation

between two consecutive AddressListTimeoutTimer events, as this many address list will

be updated and thus remain in the address repository. This value itself depends on the

gossiping interval and is larger for smaller gossiping intervals.

After reaching stability, the number of address lists still decreases overtime at each

AddressListTimeoutTimer event (i.e., every 30 seconds), however, these removed ad-

dress lists are replaced with new ones learned through gossiping process. This creates

the visible zig-zag pattern of curves that starts after they reach their peak. The total

number of address lists decreases after this peak because, as explained before the rate by

which a node receives new address lists is decreasing over time. This can be improved

by improving the gossiping scheme.

Chapter 6. Evaluation 107

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450

N
um

be
r

of
 A

dd
re

ss
 L

is
ts

time (second)

none
push

pull
gossip (250ms)
gossip (500ms)

gossip (1000ms)
push-single

push-single with gossip (500ms)

Figure 6.10: Number of address lists with various third-party address exchange methods

in a 17x17 grid.

Chapter 6. Evaluation 108

6.4 Experiment 3: Performance of CSA in a Dy-

namic Environment under Churn

In this experiment we examine how each third-party address exchange method performs

in a situation in which many nodes depart simultaneously from the network. The setup

for this experiment is as in Experiment 1, with the difference that half-way through the

experiment (at time 250 seconds) 25% of the nodes in each region leave the network. We

are interested in comparing how each method behaves after the departures of the nodes

to gain insight into the robustness of the CSA methods after churn.

Figure 6.11(a) shows the stability of the network with different CSA methods over

running time of the experiment. Figure 6.11(b) shows the same data in the time interval

between 230 seconds and 270 seconds which is 20 seconds before and after the departure

event.

Until the departure event the outcomes are very similar to those seen in Figure 6.4.

When the departure event happens, overlay nodes whose neighbors have left the overlay

network, have to establish neighborhood relation with nodes which are being advertised

to them for the first time. After the departure event, the push and pull methods recover

quickly as they are able to quickly obtain the address lists for such newly advertised

nodes. The gossiping method, requires a longer time to regain the same level of stability

that it had before the departure event. This is due to the fact that it takes a longer time

for the gossiping method to obtain the address list of newly advertised nodes compared

to the push and pull methods.

Chapter 6. Evaluation 109

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450

P
er

ce
nt

ag
e

of
 s

ta
bl

e
no

de
s

time (seconds)

none
push

pull
gossip (250ms)
gossip (500ms)

gossip (1000ms)
push-single

push-single with gossip (500ms)

(a) Result of the entire experiment

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 230 235 240 245 250 255 260 265 270

P
er

ce
nt

ag
e

of
 s

ta
bl

e
no

de
s

time (seconds)

none
push

pull
gossip (250ms)
gossip (500ms)

gossip (1000ms)
push-single

push-single with gossip (500ms)

(b) Detailed snapshot in the time interval between 230 seconds and 270 seconds.

Figure 6.11: Stability of DT network in a situation with churn.

Chapter 6. Evaluation 110

6.5 Experiment 4: Gossiping as a Source of Out-of-

Band Address Information

As discussed in Section 4.2.2, as part of the gossiping process, each node receives address

lists that are not directly useful for the node itself but are kept for the sole purpose of be-

ing gossiped to other nodes. This address lists exchanged by the gossiping method can be

a valuable out-of-band source of information for the rendezvous mechanism of an overlay

protocol. To demonstrate how this information can be used, we have created a modified

version of DT buddylist protocol which takes advantage of the address lists acquired by

gossiping method in its rendezvous process in addition to its statically configured buddy

addresses.

The DT buddylist protocol sends an IAmHere to one randomly chosen buddy among

all its buddies (two in this case). The modified DT protocol sends an IAmHere message

to five randomly chosen gossiped address lists from its address repository in addition to

the buddy.

Figure 6.12 shows how the use of gossiped address lists in the rendezvous process

improves the speed by which the DT protocol becomes stable in a setup as in Experiment

3. In Figure 6.12(a) shows the improvement when gossiping (250 ms) is used and Figures

6.12(b) and 6.12(c) respectively show the improvement with gossiping (500 ms) and

gossiping (1000 ms) methods. As it can be seen in these figures, using the address lists

obtained through gossiping, the overlay nodes improve their rendezvous process. As a

result, the overlay networks stabilized in a shorter amount of time after the start of the

experiment and after the departure event. This improvement is more apparent anywhere

that the original stability level is low e.g., the gossiping (1000 ms) method.

Chapter 6. Evaluation 111

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

P
er

ce
nt

ag
e

of
 s

ta
bl

e
no

de
s

time (seconds)

gossip (250 ms)

gossip (250 ms) with address list use

(a) Gossiping (250 ms)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

P
er

ce
nt

ag
e

of
 s

ta
bl

e
no

de
s

time (seconds)

gossip (500 ms)

gossip (500 ms) with address list use

(b) Gossiping (500 ms)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

P
er

ce
nt

ag
e

of
 s

ta
bl

e
no

de
s

time (seconds)

gossip (1000 ms)

gossip (1000 ms) with address list use

(c) Gossiping (1000 ms)

Figure 6.12: Improvement in the stability of the DT network with the gossiping method

after modification to the DT protocol, where gossiped address lists are used in the ren-

dezvous process.

Chapter 6. Evaluation 112

6.6 Experiment 5: CSA Performance in Broadcast

Substrates

In this experiment, we try to gain insight in the effectiveness of the broadcast address

exchange method for overlay networks that use broadcast substrates. For this experiment

we use the DT broadcast protocol which is a version of the DT protocol that uses broad-

cast messages for rendezvous. In the DT broadcast protocol, the leader of the network

broadcasts a beacon every BeaconTime when a node receives this message it will contact

the leader if does not have a better neighbor. In the steady state there is only one leader

and thus only one node broadcasts DT messages.

In this experiment, only two substrate networks are used, which consist of two Eth-

ernet LANs with different rates (100 Mbps, 1 Gbps). We use 8 hosts for this experiment.

Overlay nodes are equally distributed across the hosts.

We use an overlay network with 1024 overlay nodes for this experiment. Each overlay

socket is configured with two interfaces: a UDP multicast interface which is connected to

the 100 Mbps LAN which is used for rendezvous messages, and a UDP unicast interface

which is connected to the 1 Gbps LAN which is used for all other messages. We use the

same parameters for DT and CSA as in the previous experiment, except that DT now

has a BeaconTime parameter which is set to 1000 ms.

Two variations of the CSA broadcast method are tested in this experiment. The first

variation, referred to as piggyback broadcast, always piggybacks the complete address list

of the sending node on any outgoing broadcast message. In the other variation, referred to

as periodic broadcast, each node piggybacks its address list on the first outgoing broadcast

message after which it starts to periodically broadcast its address list on its broadcast

interface. The push method is used for third-party address exchanges.

Figure 6.13 shows the stability and connectivity of the DT Broadcast network over

time. With both variations of the CSA broadcast method, the network becomes stable

Chapter 6. Evaluation 113

and connected in about 10 seconds. Since with both variations the first broadcast of

each node always includes the sender’s address list, we do not expect a big difference in

the outcome. The small difference between these method is due to slight differences that

exist between the times that nodes send their first broadcast. In DT broadcast, each

nodes waits a random amount of time between 0 and BeaconTime before broadcasting

its first beacon which causes the slight difference in the outcomes.

There is a significant difference between the CSA broadcast methods with respect to

the amount of traffic generated by them. Table 6.3 and Figure 6.14 show the average

received protocol traffic generated by each method. The most efficient method in terms

of the protocol traffic is the piggyback broadcast method. The most traffic is generated

by periodic broadcast with a broadcast period of 6 seconds. The traffic generated by this

method is 50 % more that the traffic generated by the DT protocol. A better choice for

the broadcast period is to set it to a fraction of the of the address list timeout value. This

ensures that address lists will not be timed out in address repositories while limiting the

broadcast traffic at the same time. The 30 seconds broadcast period is half the address

list time out value (60 seconds). The periodic broadcast with broadcast period of 30

seconds significantly reduces the protocol traffic.

Although the broadcast period was increased by a factor a 5, the reduction in the

traffic is a factor of 6. This is because the initial number of leaders when broadcast

period of 30 seconds is used, is smaller which means that a smaller number of nodes send

broadcast messages.

We note that the results are specific to the DT broadcast protocol. Periodic broadcast

may be more efficient with different protocols. This is because, in DT broadcast, all

nodes except the leader node send only few broadcast messages when they are joining

the network, but otherwise do not broadcast messages.

Chapter 6. Evaluation 114

Table 6.3: Average and standard deviation of the received CSA and DT traffic with

broadcast method.

Method CSA (bps) stddev DT (bps) stddev Total (bps)

broadcast-periodic (6s) 13221.76 85.35 8539.31 1840.17 21761.07

broadcast-periodic (30s) 1978.22 97.85 8517.20 1847.01 10495.42

broadcast-piggyback 942.27 162.60 8644.23 1845.37 9586.50

Chapter 6. Evaluation 115

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14

P
er

ce
nt

ag
e

of
 s

ta
bl

e
no

de
s

time (seconds)

no broadcast
broadcast-piggyback

broadcast-periodic (30 s)
broadcast-periodic (6 s)

(a) Stability of the DT network

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14

N
um

be
r

of
 L

ea
de

r
N

od
es

time (seconds)

no broadcast
broadcast-piggyback

broadcast-periodic (30 s)
broadcast-periodic (6 s)

(b) Connectivity of the DT network

Figure 6.13: Stability (a) and connectivity (b) in a DT Broadcast network with 1024

nodes.

Chapter 6. Evaluation 116

 0

 5

 10

 15

 20

broadcast-periodic (30 s) broadcast-periodic (6 s) broadcast-piggyback

T
ra

ffi
c

(k
bp

s)

Overlay Protocol
CSA Protocol

Figure 6.14: Average received traffic with different broadcast variations in a DT Broad-

cast network with 1024 nodes.

Chapter 6. Evaluation 117

6.7 Summary

In our experiments, the pull method appeared as the most efficient third-party address

exchange method. The push method yields a good performance in terms of disseminating

address lists but incurs more overhead in terms of protocol traffic. A combination of the

push-single method with the gossiping method improves the performance of the gossiping

method while incurring a modest protocol traffic.

We showed that all third-party address exchange methods are able to recover quickly

after a significant disruption in the network. Furthermore, we showed that it is possible

to improve the performance of an overlay protocol by taking advantage of the opportunity

of gossiped address list information.

Finally, we analyzed and discussed variations of the broadcast method for direct

address exchange.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we presented cross-substrate advertisement (CSA), a mechanism that im-

proves the ability of overlay networks to be effective in an environment of heterogeneous

substrate networks. CSA assists the overlay networks to deal with one-to-many address

bindings that are inherent to environments with multiple substrate networks.

We presented two categories of address exchanges for self-organizing overlay networks

referred to as direct address exchange and third-party address exchange. For direct

exchange we proposed two methods: the request method for exchanging and updating

address bindings between communicating pairs of overlay nodes in unicast substrates,

and the broadcast method for direct address exchanges in broadcast substrate networks.

For third-party address exchange, we proposed push, pull, and gossiping methods. Our

evaluation shows that the pull method is superior in achieving desirable network proper-

ties without incurring high overhead. An important contribution of our work is that we

identified crucial issues that must be considered when designing a self-organizing overlay

protocol for an environment with heterogeneous substrate networks. And finally, our

solution allow existing HyperCast overlay protocols to be able to operate in a multi-

118

Chapter 7. Conclusions and Future Work 119

substrate environment with minimal modifications.

7.2 Future Work

This thesis offers opportunities to be extended and continued in the following directions.

1. Investigating Partial Address Exchange: With the exception of the push-

single method, all third-party address exchange methods only exchange complete

address lists. It is possible to design more sophisticated strategies to exchange

a subset of address lists that are tailored to the sender and receiver of a node

advertisement. Such exchanges of partial address lists can become a factor in

situations where nodes have many interfaces.

2. More Flexible Gossiping Schemes: We use a simple gossiping scheme that does

not take into account the topology of the overlay network. Our gossiping scheme

could be modified to suit a particular overlay topology. It may be feasible to design

a versatile gossiping scheme whose address list dissemination performance can be

tuned for particular overlay protocols.

3. Unstructured Peer-to-Peer Overlay Protocol: In our evaluation we used

CSA mechanism in structured overlay networks (Delaunay triangulation). Since,

in a multi-substrate environment, nodes are restricted to choose their neighbors

from substrate networks which they have access to, it is sometimes not feasible

to construct a complete structured overlay topology. Unstructured overlay net-

works are better suited to deal with interconnecting heterogeneous networks. The

effectiveness CSA with an unstructured overlay network remains to be investigated.

4. Automatic Address Realm Discovery: Currently in our design, address realms

are statically configured. Such static configuration is not desirable for self-organizing

Chapter 7. Conclusions and Future Work 120

peer-to-peer networks. It may be possible to design a method for automatic selec-

tion or detection of an address realm for each substrate. The authors of [28] have

proposed one possible solution which is based on a gossiping approach. It remains

to be seen what other approaches can be used for this purpose and how they can

be used with CSA.

Bibliography

[1] Akamai. http://www.akamai.com.

[2] David G. Andersen, Hari Balakrishnan, Frans M. Kaashoek, and Robert Morris.

Resilient overlay networks. In Proc. of the ACM Symposium on Operating Systems

Principles (SOSP 2001), pages 131–145, 2001.

[3] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Overcom-

ing the Internet impasse through virtualization. Computer, 38(4):34–41, 2005.

[4] Börje Ohlman Bengt Ahlgren, Lars Eggert and Andreas Schieder. Ambient net-

works: bridging heterogeneous network domains. In Proc. of the 16th Annual IEEE

International Symposium on Personal Indoor and Mobile Radio Communications

(PIMRC 2005), Berlin, September 2005.

[5] Roland Bless, Christian Hübsch, Sebastian Mies, and Oliver P. Waldhorst. The

underlay abstraction in the spontaneous virtual networks (SpoVNet) architecture.

In Proc. of the Next Generation Internet Networks (NGI 2008), pages 115–122, April

2008.

[6] Randy Bush and David Meyer. Some Internet architectural guidelines and philoso-

phy. RFC 3439, Internet Engineering Task Force, December 2002.

[7] Isidro Castineyra, Noel Chiappa, and Martha Steenstrup. The Nimrod Routing

Architecture. RFC 1992, Internet Engineering Task Force, August 1996.

121

Bibliography 122

[8] Yang-Hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A case for end

system multicast. In Proc. of the ACM Sigmetrics, pages 1–12, 2002.

[9] Dave Clark, Bill Lehr, Steve Bauer, Peyman Faratin, Rahul Sami, and John Wro-

clawski. Overlay networks and the future of the Internet. COMMUNICATIONS &

STRATEGIES, 63(3), 2006.

[10] David Clark. The design philosophy of the DARPA Internet protocols. SIGCOMM

Comput. Commun. Rev., 18(4):106–114, 1988.

[11] David Clark, Robert Braden, Aaron Falk, and Venkata Pingali. FARA: reorganizing

the addressing architecture. In Proc. of the ACM SIGCOMM Workshop on Future

Directions in Network Architecture (FDNA 2003), pages 313–321, 2003.

[12] Jon Crowcroft, Steven Hand, Richard Mortier, Timothy Roscoe, and Andrew

Warfield. Plutarch: an argument for network pluralism. In Proc. of the ACM

SIGCOMM Workshop on Future Directions in Network Architecture (FDNA 2003),

pages 258–266, 2003.

[13] Aaron Falk David D. Clark, Scott Shenker. GENI research plan. Technical report,

Research Coordination Working Group, April 2007.

[14] Kevin Fall. A delay-tolerant network architecture for challenged Internets. In Proc.

of the ACM SIGCOMM Conference on Applications, Technologies, Architectures,

and Protocols for Computer communications, pages 27–34, New York, 2003.

[15] Anja Feldmann. Internet clean-slate design: what and why? SIGCOMM Comput.

Commun. Rev., 37(3):59–64, 2007.

[16] Paul Francis. Pip near-term architecture. RFC 1621, Internet Engineering Task

Force, May 1994.

Bibliography 123

[17] Paul Francis and Ramakrishna Gummadi. IPNL: A NAT-extended Internet archi-

tecture. In Proc. of the ACM SIGCOMM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, pages 69–80, 2001.

[18] Mark Gritter and David R. Cheriton. An architecture for content routing support

in the Internet. In Proc. of the 3rd USENIX Symposium on Internet Technologies

and Systems (USITS 2001), 2001.

[19] Sandra M. Hedetniemi, Stephen T. Hedetniem, and Arthur L. Liestman. A survey

of gossiping and broadcasting in communication networks. Networks, 18(4):319–349,

1988.

[20] Andreas Jonsson, Mats Folke, and Bengt Ahlgren. The split naming/forwarding

network architecture. In Proc. of the First Swedish National Computer Networking

Workshop (SNCNW 2003), Arlandastad, 2003.

[21] Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking

Schindelhauer. Randomized rumor spreading. In Proc. of the 41st IEEE Annual

Symposium on Foundations of Computer Science (FOCS 2000), pages 565–574,

2000.

[22] David Kempe and Jon M. Kleinberg. Protocols and impossibility results for gossip-

based communication mechanisms. In Proc. of the 43rd IEEE Annual Symposium

on Foundations of Computer Science (FOCS 2002), pages 471–480, 2002.

[23] Jörg Liebeherr. Monitor and control system for HyperCast.

http://www.comm.utoronto.ca/hypercast/design/MonitorAndControlv20.pdf.

[24] Jörg Liebeherr, Michael Nahas, and Weisheng Si. Application-layer multicasting

with Delaunay triangulation overlays. IEEE Journal on Selected Areas in Commu-

nications, 20(8):1472–1488, October 2002.

Bibliography 124

[25] Jörg Liebeherr, Jianping Wang, and Guimin Zhang. Programming overlay networks

with overlay sockets. In Proc. of the 5th COST 264 Workshop on Networked Group

Communications (NGC 2003), LNCS 2816, pages 242–253, 2003.

[26] John W. Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad

Naous, Ramanan Raghuraman, and Jianying Luo. NetFPGA–an open platform

for Gigabit-rate network switching and routing. In Proc. of the IEEE International

Conference on Microelectronic Systems Education (MSE 2007), pages 160–161, 2007.

[27] Nick McKeown and Bernd Girod. Clean-slate design for the Internet, April 2006.

White paper: http://cleanslate.stanford.edu.

[28] Sebastian Mies, Oliver Waldhorst, and Hans Wippel. Towards end-to-end connec-

tivity for overlays across heterogeneous networks. In Proc. of the International

Workshop on the Network of the Future (Future-Net 2009), co-located with IEEE

International Conference on Communications (ICC 2009), Dresden, June 2009.

[29] Pablo Molinero-Fernández, Nick McKeown, and Hui Zhang. Is IP going to take over

the world (of communications)? SIGCOMM Comput. Commun. Rev., 33(1):113–

118, 2003.

[30] Robert Moskowitz and Pekka Nikander. Host Identity Protocol (HIP) architecture.

RFC 4423, Internet Engineering Task Force, May 2006.

[31] Mike O’Dell. GSE-an alternative addressing architecture for IPv6. RFC draft-ietf-

ipngwg-gseaddr-00, Internet Engineering Task Force, February 1997.

[32] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.

A scalable content-addressable network. In Proc. of the ACM SIGCOMM Con-

ference on Applications, Technologies, Architectures, and Protocols for Computer

Communications, pages 161–172, 2001.

Bibliography 125

[33] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized ob-

ject location, and routing for large-scale peer-to-peer systems. In Proc. of the

IFIP/ACM International Conference on Distributed Systems Platforms (Middleware

2001), pages 329–350, 2001.

[34] Ignacio Solis and Katia Obraczka. FLIP: A flexible interconnection protocol for

heterogeneous internetworking. Mobile Networks and Applications, 9(4):347–361,

2004.

[35] Ion Stoica, Robert Morris, David Karger, Frans M. Kaashoek, and Hari Balakrish-

nan. Chord: A scalable peer-to-peer lookup service for Internet applications. In

Proc. of the ACM SIGCOMM Conference on Applications, Technologies, Architec-

tures, and Protocols for Computer Communications, pages 149 – 160, San Diego,

August 2001.

[36] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy Katz.

OverQoS: An overlay based architecture for enhancing Internet QoS. In 1st USENIX

Symposium on Networked Systems Design and Implementation (NSDI 2004), San

Francisco, March 2004.

[37] Zoltán Turányi, András Valkó, and Andrew T. Campbell. 4+4: an architecture for

evolving the Internet address space back toward transparency. SIGCOMM Comput.

Commun. Rev., 33(5):43–54, 2003.

[38] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac

Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated exper-

imental environment for distributed systems and networks. SIGOPS Oper. Syst.

Rev., 36(SI):255–270, 2002.

