
1

Elements of Application-layer Internetworking for
Adaptive Self-organizing Networks

Jörg Liebeherr Majid Valipour Tony Yu Zhao

Abstract—By providing a global infrastructure for information
exchange, the Internet has had a transformational impact on
society at large. At the same time, a number of indicators, among
them an observed ossification phenomenon, raise concerns about
the ability of the Internet to support future communication needs
and stipulate interest in alternative methods for internetworking.
This paper considers an internetworking approach based on
self-organizing application-layer networks. Rather than building
a single global infrastructure that provides universal access,
these networks take advantage of a diverse collection of network
infrastructures to interconnect users and devices participating in
a networked application. In this paper we discuss aspects such
as scalability, ability to adapt after disruptions, heterogeneous
substrate networks, distributed security, and dynamically created
network services. The discussions are supported by numerous
measurement experiments.

Index Terms—Internetworking, adaptive networks,
application-layer networks, multi-substrate networks, self-
organizing networks.

I. INTRODUCTION

The origins of the Internet resulted from a vision of inter-
connecting decentralized independent networks using arbitrary
designs and protocols [53]. This concept of internetworking or
interworking was achieved by providing a uniform abstraction,
that of a subnet, to represent any lower-layer network, such as
a single point-to-point link, a local area network, or a wide-
area switched network. The protocol architecture designed
to realize the interconnection of subnets turned out to be
capable of supporting a global communication infrastructure
connecting more than a billion devices.

While the Internet has been celebrated as one of the premier
engineering achievements of the 20th century [28], its sheer
scale, as well as trends in technology and business, have
created a set of formidable challenges.

• Ossification: Starting in the early 2000s, it has been
noticed that the ability to introduce new services or
incorporate major technological upgrades in the Internet
infrastructure has been largely lost. This phenomenon,
referred to as Internet ossification [3], [69], [84], inhibits
the ability to meet the demands of novel applications and
to face emerging security threats. For example, the new
version of the Internet protocol, IPv6, was specified in
the 1990s [34], yet it still accounts for only about 2% of
the traffic at one of the major exchange points for Internet
traffic [4].

J. Liebeherr is with the Department of Electrical and Computer Engineering,
University of Toronto, M. Valipour is with Google, Waterloo, and T. Y. Zhao
is with Ethoca Financial Services, Toronto. The work of M. Valipour and T.
Zhao was done when they were with the University of Toronto.

• Regulatory constraints: Some innovations in Internet
technology, among them the ability to offer different
types of service to network traffic, have raised concerns
of being used for purposes that do not benefit users. This,
in turn, has attracted the attention of regulatory agencies.
An example of regulatory policy is net neutrality, which
refers to a directive to network service providers to treat
all Internet traffic equally, thus disallowing any service
differentiation [29].

• Proprietary infrastructures: Many large content
providers, such as Google, Facebook, and Netflix,
now operate proprietary network infrastructures that
deliver services close to customer networks, thereby
bypassing most of the Internet infrastructure [3],
[42]. Other proprietary infrastructures offer wide-area
wireless services for low-power low-bandwidth data
services [92]. Operating outside the scope of the Internet,
the commercial interests of these providers are no longer
a driving factor for advancing the Internet.

• End-to-end principle: The end-to-end principle [18], [75],
which is central to the design philosophy of the In-
ternet, views the collection of subnets as a transparent
forwarding medium without considering location or re-
source availability when forwarding data in the network.
Doing so can create counterintuitive situations, where
data between co-located devices, e.g., a smartphone and
a laptop in the same office, traverses multiple remote net-
works, even though the devices have multiple modalities
available to exchange information directly.

• Global addresses: A prerequisite for using the commu-
nication services of the Internet is the allocation of a
unique – possibly shared – global Internet address. Once
a device has acquired such an address, it can send to
and receive from any other global address. A drawback
of using global addresses is that it creates security risks,
whereby any remote node with a global address has the
opportunity to access a device and exploit vulnerabilities.

• Internet of Things: The extension of Internet connectivity
to network-enabled sensors, actuators, and other physical
devices, referred to as the Internet of Things (IoT) [9], and
the resulting explosive increase of Internet enabled de-
vices possibly presents the most significant and immedi-
ate set of challenges for the Internet architecture. Among
them are the large projected number of network enabled
devices [49], limited computing capabilities of embed-
ded devices, the narrower application-specific scope of
computational tasks, delay-sensitivity of transmitted data,
and security. Standardization efforts for network-enabled

2

devices abound [77], [79] but leave the internetworking
framework of the current Internet largely in place [65].

With these considerations it is plausible that future com-
munication services will be provided by a variety of public
and private network infrastructures. While the Internet will
continue to be available as a global infrastructure, it will be
supplemented by special purpose networks that serve applica-
tions with demand for assurances on bandwidth availability,
security, low latency, high energy efficiency, and others. In
such a setting, the need arises to interconnect the available
network infrastructures, which, in turn, stipulates the explo-
ration of new approaches to internetworking.

In this paper, we contemplate internetworking through self-
organizing application-layer networks, which we refer to as
application networks. Self-organizing means that devices use
all communication modalities available to them to detect and
establish connectivity with other devices to form a network. In
contrast to centrally planned and managed network infrastruc-
tures, self-organizing networks are formed and operated in a
fully distributed manner, and do not rely on centralized mech-
anisms for network formation, management, or operation [8].
They may exist only for a limited time to perform a particular
task or provide connectivity to a group of devices. Their
topology can be highly dynamic as nodes may enter or leave
the network at any time. Furthermore, network and application
services in self-organized networks are provided by the nodes
themselves. In particular, all nodes of a network participate in
relaying data between sources and destinations of information.
As a consequence, the canonical distinction in communication
networks between endsystems as producers and consumers of
data, and relay switches that forward data between endsystems
falls away. Self-organization can be deployed on top of an
existing network infrastructure, as is the case for Internet
peer-to-peer networks [62]. Alternatively, network nodes can
self-organize to build their own network infrastructure, as in
the case of wireless sensor networks [1] and mobile ad-hoc
networks [41].

Application-layer network protocols are easy to deploy,
since there is no need for compatibility at the operating
system or hardware level. There is no need for universal
deployments of protocols and services, since the scope of
an application network is limited to the devices participating
in the same network. Moreover, since application networks
operate independently of each other, each application network
can be adapted to meet the requirements of a given application
scenario. In particular, application networks can be customized
to the constraints of low-power embedded devices and micro
controllers in IoT deployments. The latter can help with
resolving interoperability issues between IoT devices [46].

With application networks, each instantiation of a networked
application may result in the formation of a separate network.
All nodes of an application network participate in the same
application, and devices may participate in an arbitrary number
of such networks. Multiple application networks involving
multiple overlapping groups of users may co-exist on the same
underlying infrastructure.

The application networks considered in this paper evolved
from self-organizing peer-to-peer networks, which emerged in

The Internet
Net 1

Net 2 Net 3

Net 4

Net 5

Net 6

Net 7

(a) Internet as the central network.

The Internet

Net 1

Net 2

Net 3

Net 4 Net 5

Net 6

Net 7

(b) No central network.

Fig. 1. Interconnected collection of substrate networks.

Application network

Collection of substrate networks

Fig. 2. Multi-substrate application network.

the early 2000s for deploying application-layer services for
multicast delivery [26], distributed lookup [80], and failure
resilient delivery [5]. These networks generally assume that
the Internet provides a permanently available and universally
accessible substrate network. More recently, researchers have
considered constructing peer-to-peer networks over multiple
heterogeneous substrate networks, where any data link, net-
work layer, or even application network can constitute a
separate substrate network [59], [67]. The goal of these efforts
is to achieve an interconnection of applications running on
mobile and stationary endsystems and using a diverse set of
networking modalities, that may include the Internet but do
not require permanent access to its infrastructure.

We refer to a collection of multiple substrate networks as a
multi-substrate network. Examples of substrate networks are
sensor networks, multi-hop vehicular networks, mobile ad-
hoc networks, the Internet, and Internet-protocol based private
networks. The interconnection of nodes with attachment points
in different substrate networks by an application network will
be referred to as application-layer internetworking. A common
view for a connected collection of substrate networks is that
all substrate networks are connected to the Internet, leading
to a view of connectivity where the Internet is the central
network, as illustrated in Fig. 1(a). Here, all substrate networks
connect to the Internet, but not to each other. The assumption
of permanent connectivity to the Internet can be limiting in
environments with mobile nodes, intermittent or unavailable
Internet connectivity, or alternative network infrastructures.
This leads to a network model where the Internet is connected

3

to some but not all substrate networks, as illustrated in
Fig. 1(b). Fig. 2 illustrates an application network in a multi-
substrate setting, where nodes (drawn as small circles) located
in a collection of substrate networks form an application
network. The application network provides a network view
to users, where members can exchange information without
regard to their location in substrate networks.

Multi-substrate application networks impose numerous chal-
lenges with respect to addressing, discovery of nodes, network
topology maintenance, and security. The challenges increase
with the size of a network, the mobility of nodes, and the
number of substrate networks. The objective of this paper is
to survey central problem areas in multi-substrate application
networks, and evaluate solutions approaches to some of the
problems. Among the topics that are highlighted are the
scalability and agility of protocols for application networks,
the ability to support different types of substrate networks,
dissemination of address information, distributed security, and
adaptation of network services to the needs of applications.
For each studied problem area, we include measurements of
point solutions. The measurements are done on a Java-based
software system, which has been used by our research group to
investigate and evaluate concepts in single- and multi-substrate
application networks [55], [56].

Internetworking between heterogeneous substrate networks
has been considered before. Approaches to virtualize substrate
networks often rely on network-layer encapsulation (‘tunnel-
ing’), e.g., [11], [87]. Network architectures that relax the
assumption of permanent connectivity to the Internet [27],
[30] address similar problems as this paper in that they do
not assume a hierarchy of substrate networks or a central
entity. Concepts of a non-centralized architecture are studied
in [15], [50], however, without addressing the computation of
paths across multiple networks. Pathlet routing [43] proposes a
packet forwarding method for arbitrarily connected networks.
We note that there are alternatives to the distributed self-
organizing approach to application networks considered in
this paper. For example, the construction and operation of an
application network can be supported by centralized services
that can be accessed by some or all of its members. Further,
application networks can be aligned with a software defined
network architecture [52], whereby centralized controllers
coordinate routing paths in the application network. Also,
support for the creation and operation of application networks
can be provided by packet switches a the data link or network
layer.

The remainder of this paper is structured as follows. In
Sec. II we address the topology formation in application
networks and discuss measurements of topology formations
for different types of substrate networks. In Sec. III we discuss
solutions to disseminate address information of nodes in a
multi-substrate setting. In Sec. IV we consider distributed
solutions to data confidentiality and integrity in an application
network. In Sec. V we present the design for dynamic addi-
tions of network services in application networks. We present
conclusions in Sec. VI.

II. BUILDING APPLICATION NETWORKS

In this section, we discuss building blocks of application
networks that can operate over a variety of different substrate
networks. We refer to an entity of an application network as
a node. A node is an application program that is running
on a device. Each device can have arbitrarily many nodes
that each participate in a different application network. We
assume a message-passing mode of communication, which
either extends message-based services in lower layer sub-
strate networks, e.g., a point-to-point data link or a packet-
switched network, or which inserts message boundaries in
stream-oriented substrate networks, e.g., a TCP or Bluetooth
RFCOMM connection.

A. Protocols to Maintain the Network Topology

Application networks require protocol mechanisms to dis-
cover other nodes, to join and leave the network, and to
exchange messages. Each application network is viewed as
a collection of nodes that share a common network identifier,
which is associated with the configuration of the network, e.g.,
its network topology, its security properties, and the types
of supported substrate networks. An application network is
created implicitly by the first node that joins the network with a
specific network identifier. If the application network becomes
partitioned, e.g., due to communication failure or mobility of
nodes, each partition operates as an independent network with
identical identifiers. Also, a newly created node that has not
yet discovered other nodes of the topology is considered a
separate partition. When nodes in different partitions discover
each other, the partitions merge to form a single application
network.

The nodes of an application network cooperate to establish
a network topology graph. Application data is then routed
along the edges of the graph. Establishing and maintaining
a network topology involves (1) a discovery process by which
a node not connected to an application network can find nodes
of the network; (2) a neighbor selection method by which a
node determines the subset of reachable nodes that become its
neighbors in the network topology; and (3) a routing protocol
that determines the forwarding paths for application data in
the application network.

The topology of an application network is either structured
or unstructured. A structured topology refers to a network
graph, where the set of neighbors of each node and the routing
tables for forwarding data in the network are determined by
node identifiers. Examples of structured topologies include
rings [19], hypercubes [22], distributed hash tables (DHTs)
[80] and Delaunay triangulation [58]. In unstructured appli-
cation networks, a distributed routing protocol is needed to
set up forwarding tables at nodes that establish paths between
nodes [26]. To maintain the neighborhood relationships in a
topology, nodes periodically exchange control messages with
their neighbors. The time interval between the transmission of
successive control messages, referred to as the heartbeat time,
determines the responsiveness and rate of convergence after a
change of the network topology.

4

4000

20

25

30

35

40

2000
Final number of nodes (N+M)

N=0

M nodes are added

80006000

N=1000

0

to a network with N nodes.

T
im

e
−

to
−

st
a
b
il

iz
e
 (

se
c
)

10

10000

5

0

N=5000 N=7500N=2000

15

(a) Joining a network.

80000

N=5000

0

5

10

15

4000

20

25

30

35

2000

40

N=1000

10000
Final number of nodes (N−M)

M nodes are removed

N=2000

T
im

e−
T

o−
st

ab
ili

ze
 (

se
c)

from a netwok with N nodes.

N=10000

6000

(b) Leaving a network.

Fig. 3. Time period until the network topology stabilizes. (a) M nodes are
added to an existing network with N nodes. (b) M nodes instantly depart a
network with N nodes [58].

B. Measurement Experiments

We next present a set of experiments that measure the con-
struction and maintenance of application network topologies.
The first experiment shows that application-layer protocols can
support large-scale network topologies and adapt quickly to
major disruptions.

Experiment 1 (Scalability): The experiment, from [58],
measures the elapsed time until a set of nodes forms a stable
network topology. The topology is a Delaunay triangula-
tion [78]. In addition to the ability to accommodate concurrent
changes to the topology, a Delaunay triangulation has a well
defined stability criterion (see [58, Sec. II-C]). Each node is
identified by (x, y) coordinates, which, in this experiment,
are selected randomly. The experiment is run on a cluster of
100 servers connected by a switched Ethernet network. Nodes
are evenly distributed across the servers. The heartbeat time is
set to 250 ms if a node satisfies the stability criterion locally,
and to 2 s otherwise. In Fig. 3(a) we show the time required to
add M new nodes to a stable topology of N nodes, resulting
in a topology with M +N nodes. Each data point represents
the average of five repetitions of an experiment. The figure
shows that starting without an initial topology (N = 0), the
protocols can set up a stable topology with 10 000 nodes in
less than 40 seconds. Fig. 3(b) depicts a scenario where M
nodes simultaneously leave a stable topology with N nodes.
The graphs illustrate the time until the resulting topology of
N − M nodes has stabilized, where each data point again
represents an average of five repetitions. The graphs show that

I1

40 m

4
0

 m

~ 30 m

~ 1 m/s

I4

I2 I3

R

S

(a) Location of nodes.

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

Time (seconds)

C
on

se
cu

tiv
e

M
es

sa
ge

 L
os

s

(b) Consecutive losses.

S/1 I4/3 I1/2 S/1

R/2 I3/2 I2/3 S/1

R/1 I3/3 R/4 I1/2 S/1 I4/3 I4/4 I4/3

S/1 I4/3 R/2 S/1 R/2 S/1 R/3
R/4

I2/3 I2/2 I2/4 I2/5 I2/4

I1/2 S/1 R/2 I3/2 I2/3 I1/2 R/3 R/2

0 20 40 60 80 100 120 140 160 180

T
o

p
o

lo
gy

 C
h

an
ge

Time (seconds)

R

I1

I2

I3

I4

(c) Topology changes.

Fig. 4. Mobility experiment.

the topology is quickly repaired even when a large number of
nodes depart.

Obviously, the measurements above are specific to a partic-
ular network topology and subject to a considerable number
of configuration parameters. Also, the experiments are not
subjected to longer latencies as seen in a wide-area network.
Yet, they establish the feasibility of maintaining large-scale
application networks. The next experiment investigates the
viability of application network topologies in a mobile setting.

Experiment 2 (Mobility): The experiment, from a series
of outdoors measurements in 2012 on Android smartphones
with ad-hoc enabled Wifi radios, explores topology changes
and resulting performance degradations due to mobility of
nodes. Other measurement studies of ad-hoc networks with
Android smartphones are found in [35], [40], [68], [83], [85].
The neighbor selection protocol maintains the topology of an
unstructured spanning tree, similar to Perlman’s spanning tree
algorithm [70]. Here, one node is the root of the tree. Every
other node selects a node that offers the best path to the root
as its parent node. Neighbor discovery and selection is based
on a link quality metric, which is computed from periodically
transmitted broadcast messages [57, Sec. 4.1].

5

The setup of the experiment is shown in Fig. 4(a). Four
stationary devices (I1, I2, I3, I4) are placed in a square with a
side length of 40 m between them, and with a fifth stationary
device (S) placed in the center of the square. A mobile device
(R) moves at walking speed (∼1m/sec) in a circle pattern as
indicated in the figure. There is one node running on each
device, which allows us to interchange the terms ‘node’ and
‘device’. The node in the center (with label S) is set to be
the root of the spanning tree topology. Node S is the sender
and the mobile node R is the receiver of a data transmission,
which consists of 20 000 messages with a length of 512 Bytes
sent at a rate of 500 kbps.

The duration of the experiment is approximately 160 s,
during which the mobile node travels about one and a half
rounds of the circle. Fig. 4(b) presents a time series of
consecutively lost messages, where we observe that most
losses in the experiment occur in bursts. Fig. 4(c) shows
the changes of the network topology during the experiment.
For each node (except root node S), the graph has a line
with markers indicating time instants where a node selects
a new parent node in the topology. Each marker has a label
describing the result of the topology change. For example,
the label of the first marker of node R, given by ‘S/1’, states
that node R has selected node S (the root node) as its parent
node, and that the length of the path to the root node is
one hop, i.e., node R is directly connected to the root node.
The second marker of node R, ‘I4/3’, states that node R has
selected node I4 as its parent node and that the length of the
path to the root node is three hops. Fig. 4(c) indicates that
the topology changes frequently, even for nodes that are not
mobile. The topology changes are due to the time-varying link
quality metric. A comparison of Figs. 4(b) and 4(c) shows
that periods of burst losses (around 80, 130, and 150 seconds
into the experiment) coincide with time instants where the
mobile node R changes its position in the network topology
(first horizontal line in Fig. 4(c)). The experiment illustrates
the challenge in mobile application networks of balancing
the desire to adapt the network topology to the variability
of wireless communications with the performance degradation
that results from frequent topology changes.

Different types of substrate networks may impose additional
limitations on the maintenance of an application network. The
final examples in this section evaluate the compatibility of cel-
lular networks and Bluetooth with the creation of application
networks.

Experiment 3 (Cellular Network): The experiment mea-
sures the latencies introduced by cellular networks in the
creation of an application network [23]. It involves only two
devices, where one of the them, node A, has a LTE cellular
adapter that connects to a cellular service provider and the
other, node B, has wired connectivity to the Internet. In the
measurement scenario node A seeks to form an application
network with node B. Note that, with only two nodes, the
type of topology is not very relevant. For discovery, node A
is configured with the Internet address of node B.

Initially, node B creates an application network, where it is
the only member, and transmits a short message once every
10 ms. As long as node B has no neighbors, its messages

Time (ms)
0 500 1000 1500 2000 2500

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n

F
un

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 ms
150 ms
250 ms
500 ms
1000 ms

(a) Cellular network [23].

Time (ms)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n

F
un

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 ms
150 ms
250 ms
500 ms
1000 ms

(b) Bluetooth network.

Fig. 5. Empirical distribution of the join latency for different heartbeat times.

are dropped and not sent out. We measure the elapsed time
at node A between initiating the process of joining the
application network with node B and the arrival of the first
application message from node B, which we refer to as join
latency. Measurements of the join latency are conducted for
different values of the heartbeat time. Each experiment is
repeated 250 times.

TABLE I
STATISTICS OF THE JOIN LATENCY [23].

Heartbeat Median 95th Maximum
Time Percentile

25 ms 150 ms 300 ms 13520 ms
150 ms 235 ms 324 ms 3118 ms
250 ms 320 ms 496 ms 1797 ms
500 ms 590 ms 969 ms 2760 ms

1000 ms 1109 ms 1831 ms 5819 ms

Fig. 5(a) depicts the empirical distribution of the join
latency. Table I shows the median, 95th percentile, and the
maximum values. We first observe that the join latency in-
creases with the value of the heartbeat time. This is expected
since the convergence time of the network topology depends
on the heartbeat time. For heartbeats times between 250 and
1000 ms, the 95th percentiles are close to twice the heartbeat
time, whereas for heartbeat times of 25 ms and 150 ms,

6

1 53

Substrate S1 Substrate S2

(a) Substrate networks.

1 5

3

(b) Application network.

Fig. 6. Ring topology in a multi-substrate network.

the 95th percentile does not exhibit a strong correlation to
the heartbeat time. This indicates that for heartbeat times
of 150 ms or less, the delays incurred by the LTE network
dominate the join latency. It is worth pointing out that the
maximum join latency listed in Table I exceed 10 s. These
outliers, which are clearly not correlated with the heartbeat
time, may need to be addressed when operating application
networks that involve cellular networks.

Experiment 4 (Bluetooth): This experiment measures the
join latency over a Bluetooth link. It involves two Raspberry
Pi 3 devices that establish an application network over their
built-in Bluetooth 4.1 interfaces. The substrate network in
this case is a bidirectional Bluetooth RFCOMM connection
[44]. The setup of the experiment is identical to the previous
experiment, where a node on one device transmits messages
every 10 ms and a second node on another device joins the
application network and measures the time until the first
payload message arrives. The RFCOMM connection between
the devices is set up before measurements commence. Fig. 5(b)
shows the distribution of the join latency for different values
of the heartbeat time, where the distribution shows the results
of 250 repetitions. Compared to the measurements over the
cellular networks, the join latency typically spans multiple
cycles of the heartbeat time. As in the measurements of the
cellular network, the tail of the distributions grows with the
value of the heartbeat time.

C. The Need for Virtual Links

In a multi-substrate network, two nodes can exchange mes-
sages directly only if they are attached to the same substrate
network. This imposes restrictions when protocols require that
neighbors in the network topology must exchange messages
with each other.

The issue is illustrated in Fig. 6 for an application network
with a ring topology with three nodes. A ring is a structured
topology, where a node identifier is a number selected from
a given range, and the neighbors are the nodes with the next
highest and next lowest numbers (modulo the largest number
in the range). As shown in Fig. 6(a), node 1 has an attachment
to substrate S1, node 5 has an attachment to substrate S2,
and node 3 has attachments to both substrates. Fig. 6(b)
shows the topology of the application network. Since, nodes 1
and 3 as well as nodes 3 and 5 share a common substrate
network, they can exchange messages and become neighbors
in the topology. On the other hand, nodes 1 and 5 cannot
directly exchange messages, and therefore, without additional

a b

c

u

e1

e2e3

Fig. 7. Forwarding loop created by nested virtual links.

mechanisms, cannot become neighbors in the topology. This
is indicated in Fig. 6(b) by a dashed line.

The problem of establishing nodes without a common
substrate network as neighbors in a structured topology can
be solved with virtual links. A virtual link is constructed from
a multi-hop path in an application network and appears after
its construction as a new edge in the network. Let T = (V,E)
denote the network topology graph where V is the set of
nodes and E ⊆ V × V the set of edges. Given two edges
(u, v) ∈ E and (v, w) ∈ E we can create a virtual link
(u,w), denoted by (u,w) = vl〈(u, v), (v, w)〉. Virtual links
can be constructed from more than two edges. In Fig.6, the
construction of the ring can be completed with the virtual
link (1, 5) = vl〈(1, 3), (3, 5)〉. Examples of structured network
topologies with virtual links are the Unmanaged Internet
Protocol (UIP) [37], [38], which builds a DHT, and Virtual
Ring Routing (VRR) [19], which establishes a ring.

There are two methods to realize virtual links. One method
sets up routing table entries for the virtual link at all nodes that
are traversed by the virtual link. The other method employs
source routing, where the nodes of a virtual link are added as
a list to the message header. Each traversed node removes
its identifier from the list and then passes the message to
the next node in the list. Both methods require an additional
encapsulation header, and hence, establish a routing layer
between substrate networks and the application network.

Since virtual links appear just as regular links in the appli-
cation network topology graph, it is conceivable to construct
virtual links involving previously constructed virtual links.
This is referred to as virtual link nesting. An issue with nested
virtual links is that it may result in forwarding loops, as
illustrated in Fig. 7. Here, the network graph consists of four
nodes and three edges. Suppose there are two virtual links
e1, e2 which are constructed by

e1 = vl〈(a, u), (u, b)〉 ,
e2 = vl〈(b, u), (u, c)〉 .

If we build a nested virtual link e3 from e1 and e2, that is,
e3 = vl〈e1, e2〉, then the messages that are forwarded on e3
traverse the path a → u → b → u → c, meaning that u is
traversed twice.

Without mechanisms that prevent or remove forwarding
loops, nested virtual links quickly become impractical. With
source routing, forwarding loops are easily detected as long
as the source routes consist of a list of all nodes that are
traversed by the nested virtual link. This approach is taken
in VRR, where experiments showed that, after loop removal,

7

the paths between pairs of nodes are typically no longer
than twice the shortest path lengths in the topology. For a
substrate network with a grid topology, this finding has been
corroborated in an analysis of scaling properties of VRR [66].
It is not known whether these scaling properties generalize to
arbitrary substrate networks and other structured topologies.
Overall, the know-how of benefits and limitations of a virtual
link system in support of multi-substrate application networks
is very limited, and the topic awaits further exploration.

III. ADDRESS DISSEMINATION IN MULTI-SUBSTRATE
APPLICATION NETWORKS

A key problem in multi-substrate networks arises from
the more complex address bindings, where a node identifier
is associated with multiple addresses in different substrate
networks. Unless broadcast operations are available, a node
can exchange messages with another node on a particular
substrate network only if it knows the address of the other
node on that substrate network. The construction of application
networks can be facilitated by adding protocol mechanisms
that exchange address information between nodes.

A. Address Bindings in Application Networks

We consider that each node in an application network has a
unique identifier, which, in some topologies, may also play
the role of a locator address. Dependent on the network
topology, identifiers can be binary strings [80], coordinates
[58], or arbitrary identifiers [26]. For each attachment point
to a substrate network, a node has one substrate address. In
application networks with the Internet as substrate network,
the substrate address consists of an IP address and a TCP
or UDP port number. In data link networks, e.g., Bluetooth,
the substrate network is a MAC address and a demultiplexing
number, where the latter plays the role of a port number in the
sense that it enables multiple application on the same device
to share a network interface. We refer to the association of a
node identifier with a substrate address as an address binding.

1) Address bindings in single-substrate networks: In a
single-substrate scenario, each node identifier is associated
with one substrate address, resulting in a one-to-one binding.
For illustration, Fig. 8(a) depicts an application network with
four nodes with node identifiers A, B, C, and D. Nodes
connected by a link are neighbors in the application net-
work topology. Each node has an attachment to the same
substrate network, with substrate addresses SA(A), SA(B),
SA(C), and SA(D), respectively. The address bindings are
〈A;SA(A)〉, 〈B;SA(B)〉, and so forth. When node A sends a
message to its neighbor B, the message is addressed to SA(B)
in the substrate network.

With a single substrate, a node can exchange messages with
every other node, as long as it has the address binding of
the desired destination. In a single-substrate network, a node
that receives a message can often infer the address binding of
the sending node. For example, when B receives a message
from A, it can extract SA(A) from the source address in
the encapsulating header of the arrived message to create the
address binding 〈A;SA(A)〉.

C

A DB

Substrate Network

SA(A)
SA(C)

SA(B)
SA(D)

(a) Single-substrate application network.

C

A DB

SA(A) SA(B)

Substrate S3Substrate S2Substrate S1

SAS1(A)

SAS1(C)

SAS2(C)

SAS2(B) SAS3(A)

SAS3(B)

SAS3(D)

(b) Multi-substrate application network.

Fig. 8. Bindings of identifiers and substrate addresses.

2) Address bindings in multi-substrate networks: In a
multi-substrate application network, nodes can communicate
with each other directly only if they share a common substrate
network. Here, nodes have multiple address bindings, with
one substrate address for each connected substrate network,
resulting in a one-to-many mapping of node identifier to
substrate addresses. The set of all address bindings of a node
constitutes its address list.

Fig. 8(b) depicts the topology of a multi-substrate ap-
plication network with three substrate networks S1, S2,
and S3. Denoting by SAS1(A) the substrate address of
node A on substrate S1, the address list of node A is
{〈A;SAS1(A)〉, 〈A;SAS3(A)〉}. Whereas in a single sub-
strate network an address list can be extracted by inspecting
encapsulation headers of incoming messages, this is not the
case in a multi-substrate network. Hence, for nodes to take full
advantage of multiple substrate networks, additional mecha-
nisms are required by which nodes can disseminate address
lists. In the simplest case, each message sent between nodes
contains the complete address list of the sender, however, this
may incur unreasonable overhead. In practice, the dissemi-
nation of address lists must trade off the benefit of having
available address list information with the cost to disseminate
the lists.

B. Address Dissemination Methods

The following examples motivate protocol mechanisms for
exchanging address information across different substrate net-
works.
Example 1. In Fig. 9(a), two nodes, A and B, are both attached
to substrate networks S1 and S2. Only S1 supports a broadcast
delivery, while S2 is a non-broadcast network. Suppose nodes
A and B prefer to connect in the application network via

8

2. Contact A
 at SAS2(A)

A B

Substrate S1
(broadcast-enabled)

Substrate S2
(no broadcast)

SAS2(A)

1. Send
 address
 SAS2(A)
 to B

(a) Example 1: Exchange over connected broadcast
substrate network

3. Contact A
 at SAS1(A)

C

Substrate S1
(no broadcast)

Substrate S2
(broadcast-enabled)

2. Pass address
 SAS1(A) to C

Substrate S3
(broadcast-enabled) B

SAS1(A)

1. Send
 address
 SAS1(A)
 to B

A

(b) Example 2: Exchange over multiple substrate networks

Fig. 9. Exchange of substrate addresses across substrate networks.

S2, possibly because it offers a higher capacity or a higher
level of security. In this scenario, A and B can discover each
other on S1 using broadcast messages. Then, A can use S1
to send its substrate address in S2, SAS2(A), to B. Once B
receives A’s address in S2, it can contact A using the preferred
substrate network.

A scenario as in Fig. 9(a), where two nodes connected to the
same substrate network perform a direct exchange of address
information, is referred to as a direct address list exchange.
Example 2. In Fig. 9(b), there are three nodes (A,B,C) and
three substrate networks (S1, S2, S3), where S1 is a non-
broadcast network. Suppose, A has a neighborhood relation
established with B over substrate S2, and B is a neighbor
of C in substrate S3. Further, let the preferences of nodes A
and C be such that they rather connect over S1. Here, A and C
require each others’ substrate addresses in S1 to establish
communication over the non-broadcast substrate S1. This can
be done by sending the substrate address of A on substrate S1,
SAS1(A), to node C across substrates S2 and S3. Different
from Example 1, this scenario requires the support of an
intermediate node, node B.

A scenario as in Fig. 9(b), where a third-party forwards
address bindings for other nodes, is referred to as a relayed
address list exchange.

The dissemination of address information can be coupled
with the protocols for discovery and topology maintenance
(see Sec. II) by inspecting incoming and outgoing messages
at a node. Address information can be sent as standalone
messages, e.g., in response to a request, or piggybacked to
an outgoing message from the node.

Direct address list exchanges are relatively straightforward.
Simply, a node can attach its address list to each outgoing
message. Alternatively, whenever a node receives a message
from a remote node, it can check whether it has recent infor-
mation on the address list of the sender of the message, and, if
required, request the address list. In a broadcast network, there
is the additional option to broadcast a request for an address
list, similar as in the Address Resolution Protocol [71].

For a relayed address list exchange, there exist a broader
range of options for address dissemination.

1) Gossip Communication: In gossip communication [45],
a node that holds a piece of information periodically exchanges
it with a randomly selected node. In this fashion, all nodes
eventually obtain the information. In the context of address

dissemination, the information consists of address lists. Each
node periodically sends one or more address lists to one or
more randomly selected destinations, where the time period
between transmissions is referred to as the gossip interval. A
drawback of gossip communication is that it does not take into
consideration whether the disseminated information is actually
needed by the receiver. Conversely, there is no guarantee that
an address list of a remote node is available when needed.
Flooding of address lists can be viewed as an extreme form of
gossiping. With flooding, each node periodically disseminates
its address list to all neighbors in the topology, which, in turn,
forward them to their own neighbors. Because of the inherent
high traffic volume and unavoidable duplication of messages,
we do not consider flooding as a viable solution.

2) Protocol-driven dissemination: In virtually all protocols
for maintaining a network topology, neighboring nodes ex-
change information about (non-neighbor) nodes. Such third-
party node advertisements are used to learn about other
nodes in the network and identify potential new neighbors
in the network topology. By including address lists in third-
party node advertisements, the receiver of a third-party node
advertisement obtains the complete address information of the
advertised nodes. Since this dissemination method is governed
by the protocols that maintain the topology, we refer to it as
protocol-driven dissemination. For example, in Fig. 9(b), node
B is a neighbor of A, and therefore can learn its address lists
with a direct address exchange. If B sends a message to C
containing a third-party node advertisement of A and attaches
the address list of A, node C obtains the substrate address
needed to send a message to node A using S1.

Protocol-driven dissemination can operate in a proactive or
on-demand fashion.
Push. In a proactive approach, referred to as Push, the
complete address list of an advertised node is piggybacked
to each third-party node advertisement.
Pull. In an on-demand approach, referred to as Pull, address
lists are explicitly requested by a node. When a node wants to
send a message to an advertised node, it sends a request for
the address list to one of its neighbors. If the node receiving
a request holds the requested address list, it replies to the
requesting node. Otherwise, the receiving node itself issues a
request to resolve the address list. In this fashion, the request
is iterated until a node can respond to the query. A request for
an address list of a node can be sent either to the neighbor

9

that had earlier sent a third-party advertisement for the node
or it can be made to the next-hop neighbor on the path to the
requested node. The rationale for the former is that address
information about a node is more likely to be found at the
node that has sent an advertisement for this node. An argument
for the latter is that address information about a node is more
likely to be found closer to the location of the requested node
in the network topology.

The described Pull method shares aspects with existing
address resolution protocols for non-broadcast networks. For
example, the Next-Hop-Resolution-Protocol (NHRP) [63] for
IP-to-ATM address resolution, for situations where multiple
IP subnets are realized on a common ATM substrate, follows
the IP routing table to the subnet where the requested Internet
address is located.

C. Experimental Evaluation

We next present experiments that compare the effectiveness
of different address dissemination methods. The experiments
are conducted on a cluster of about 20 servers, where the work-
load is distributed approximately evenly across the servers.
The substrate networks in the experiments are set up as
UDP/IP networks, where each substrate network is assigned
a unique identifier. Two nodes share a common substrate
network and can exchange messages directly only if they
have a substrate address with the same substrate identifier.
All substrate networks are set up as non-broadcast networks.
Arrangement of substrate networks. Each substrate network is
associated with a square in a two-dimensional plane, covering
an area of (` × `). The areas of substrate networks are laid
out to form an overlapping tiling, with the length of overlap
given by `/2. In this fashion, a system of N × N substrate
networks creates (N + 1)× (N + 1) tiles, which we refer to
as regions.

The arrangement of overlapping substrate networks is illus-
trated in Fig. 10. The top of the figure shows the area asso-
ciated with substrate S4. Below it, substrates S1, S2, and S3

overlap to form an overlapping tiling. The overlapping areas
of substrate networks S1, . . . , S4 create nine regions, where
each region is associated with one or more substrate networks.
In the figure, the regions are labeled as R11, . . . , R33. By
distributing nodes to the regions, we associate the nodes with
substrate networks. For example, a node located in the labeled
region R11 is only attached to substrate network S1, while a
node in region R22 is connected to all four substrates.
Network topology. Nodes are assigned (x, y)-coordinates
such that the nodes are evenly distributed across the created
regions (see Fig. 11(a)). The application networks establish
a structured Delaunay triangulation topology [58], with the
(x, y)-coordinates as node identifiers (see Fig. 11(b)). The
protocol for Delaunay triangulations in [58] uses a central
server for the discovery process (see [58, Sec. IV.2]). The
experiments here use a different version of the protocol, which
performs node discovery using preconfigured addresses of
other nodes, the so-called buddies. Each node is assigned two
buddies, one is located in the same region, the other buddy
is node in a neighboring region. The buddies are configured

R11

R21

R31

R12

R22

R32

R13

R23

R33

Region R11

S1

S2

S3

S4
Substrate Area

Fig. 10. Substrate arrangement in a two-dimensional plane.

R11

R21

R31

R12

R22

R32

R13

R23

R33

(a) Placement of nodes.

R11

R21

R31

R12

R22

R32

R13

R23

R33

(b) Delaunay triangulation.

Fig. 11. Delaunay triangulation topology in a (2x2) grid of substrate networks
with 9 regions.

such that it is in principle feasible to form a single connected
application network.

The heartbeat time is set to 500msec. After each such time,
a node in the Delaunay triangulation protocol sends a Hel-
loNeighbor message to each of its neighbors, which includes
third-party node advertisements of the closest neighbors of the
node in a clockwise and counter-clockwise direction. The Push
and Pull methods add to these messages the address lists of
the closest clockwise and counter-clockwise neighbors.

Performance metrics. The experiments evaluate two perfor-
mance metrics:
• Stability: For a Delaunay triangulation topology, there exists
a local stability condition for each node (see [58, Sec. II-C]).
If all nodes satisfy this condition, it is assured that the network
has formed a stable Delaunay triangulation topology. The per-
centage of nodes that satisfy the stability condition measures
the progress towards completing the desired topology. This
metric does not, however, detect if the resulting network is
partitioned in multiple disconnected networks.
• Connectivity: The second performance metric is the number
of partitions, that is, the number of disconnected topologies
that have formed.

A single stable network with a Delaunay triangulation
topology has formed if and only if all nodes satisfy their
stability condition and there is only one partition.

We next present results for the address list exchange meth-
ods reviewed in the previous subsection. Gossip refers to

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450

pull/push

gossip (250 ms)

gossip (500 ms)

gossip (1000 ms)

none

P
er

ce
nt

ag
e

of
 s

ta
bl

e
no

de
s

time (seconds)

(a) Stability.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350 400 450

pull/push

none

gossip (1000 ms)
gossip (500 ms)
gossip (250 ms)

N
um

be
r

of
 le

ad
er

 n
od

es

time (seconds)

none
push

pull
gossip(250ms)
gossip(500ms)

gossip(1000ms)

(b) Connectivity.

 0

 5

 10

 15

 20

None Gossip
(1000 ms)

Gossip
(500 ms)

Gossip
(250 ms)

Pull Push

T
ra

ffi
c

(k
bp

s)

Topology messages
Standalone messages

(c) Protocol overhead.

Fig. 12. Experiment 1: Network topology with 64 substrate networks and
648 nodes [59].

the gossip protocol, with gossip intervals set to 250, 500 and
1000msec. Push and Pull denote the protocol-driven dissem-
ination methods. For comparison we include results without
address dissemination and refer to it as None. Each experiment
is repeated three times, and each data point presents the
average of the results.

Experiment 1 (64 Substrate Networks): The experiment
involves 64 substrate networks, laid out as an 8×8 overlapping
tiling, creating 81 regions. In each region, eight nodes are
started simultaneously resulting in an application network

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450

P
er

ce
nt

ag
e

of
 s

ta
bl

e
no

de
s

time (seconds)

none
push

pull
gossip(250ms)

gossip(500ms)
gossip(1000ms)

Fig. 13. Experiment 2: Stability in a scenario with churn (64 substrate
networks, 648 nodes; at t=250 sec, 25% of nodes in each region leave the
network).

of 648 nodes. Figs. 12(a) and 12(b), respectively, depict
the percentage of stable nodes in the application network
and the number of partitioned topologies as functions of
time. The graphs show that Push and Pull quickly establish
a single stable application network. The None option does
not lead to a stable network, thus providing evidence that
address dissemination is needed to establish a single connected
topology. Gossip communication shows a slow increase of
the stability and connectivity measures, with better results for
shorter gossip intervals.

Fig. 12(c) compares the overhead in terms of message trans-
missions incurred by the different methods. The figure depicts
the average amount of traffic due to address dissemination
received by a node, averaged over the length of the experiment.
Since the Push and Pull methods piggyback address lists
to messages that maintain the topology (the HelloNeighbor
messages), we account for all messages of the protocol that
build the Delaunay triangulation. These messages are labeled
as topology messages. The Gossip method exchanges address
lists in separate messages, which are labeled as standalone
messages. As expected, Push incurs the most overhead, while
the overhead for all other methods is modest. Since Pull
generates considerably less protocol traffic than Push, it offers
the best tradeoff overall.

Experiment 2 (Performance under churn): This ex-
periment examines the address dissemination methods in a
situation when the network experiences a major disruption.
The setup for this experiment is the same as in the previous
experiment. Half-way through the experiment, at 250 sec, 25%
of randomly selected nodes in each region instantly leave
the network. Fig. 13(a) presents the stability measure with
different dissemination methods over the duration of the entire
experiment. The figure shows that the departure event majorly
disrupts the network topology, as the percentage of stable
nodes drops to 30% or below. With Push and Pull, the network
quickly recovers to full stability. With gossip, we observe
that after an initial quick recovery, the stability settles at a
level that is below that just before the departure event. The
difference between the gossip and protocol-driven methods
is noteworthy. After the departure event, the protocol for the
network topology repairs the topology, resulting in increased

11

Neighborhood key
of local node:

1. Local node creates
a message key.

2. Message is encrypted
with message key.

3. Message key is
encrypted with
neighborhood key.

M

Message encrypted
with M

Message encrypted
with M

M

Message

encrypted
with

M

(a) Transmission of a message.

Neighborhood key
of local node:

1. Arrived message.

2. Message is decrypted
with neighborhood key
of neighbor.

3. Message key is
encrypted with
own neighborhood key.

Message encrypted
with M

Message encrypted
with M

M

Neighborhood key
of neighbor:

Message encrypted
with M

M encrypted
with

encrypted
with

M

(b) Forwarding of a message.

Fig. 14. Transmission and forwarding of a message with neighborhood keys.

protocol traffic in areas where a repair is needed. Since
protocol-driven methods piggyback address information to
protocol messages, they deliver address information where it is
needed. In contrast, gossip dissemination does not specifically
direct address lists to nodes affected by the departure event.
Here, the address information lost in the departure event must
be slowly re-acquired.

Obviously, the experiment outcomes above are subject to the
chosen protocol and their configuration parameters. Nonethe-
less, the results indicate that efficient address dissemination
methods are a crucial component in large-scale multi-substrate
application networks.

IV. SECURITY IN APPLICATION NETWORKS

A security architecture for self-organizing application net-
works should provide security services, such as integrity,
confidentiality, non-repudiation, authentication, authorization
and availability in a decentralized fashion without requiring
permanent availability of a global network infrastructure. Se-
curity in these networks can be approached in the conventional
end-to-end fashion where any two nodes that are endpoints
of a data exchange are responsible for establishing secure
channels between each other [12]. In application networks
there is an alternative perspective on security, where security
attributes are associated with the entire application network,
meaning that each member of the network is entitled to the
information sent across the network. Particular requirements
emerge in this setting for backward secrecy, that is, a new node
in an application network should not be able to access data
transmitted before the node joined, and forward secrecy, that
is, a node that has left an application network should not be
able to access data that is transmitted after the node departed.

In many ways, the problem of integrity and confidentiality
in application networks is related to secure group communi-
cation which has been investigated in depth in the context
of network-layer multicasting [72]. In most approaches to
secure group communication, all members of the group share
a single symmetric key, called the group key, which is used
for encrypting and decrypting data between group members.
Numerous methods are available for updating and distributing
group keys [24], [72], [89], [90]. An issue with group keys,
when applied to very large, highly dynamic groups with
forward and backward secrecy is that a new key must be
distributed to the entire group any time the group membership
changes.

An alternative to group key management is to treat each
node and its neighbors in the application network as a sep-
arate entity. Each node maintains a symmetric key, called
the neighborhood key, that it shares with its neighbors in
the network topology. Each time the set of neighbors of a
node changes, that is, a new neighbor appears or an existing
neighbor disappears, the node computes a new neighborhood
key and securely exchanges this new key with all its current
neighbors. Since nodes share keys only with their immediate
neighbors in the application network, whenever a new node
joins, leaves, or changes its position in the topology, only the
neighbors of this node need to update their own keys.

With neighborhood keys, only neighbors in the network
topology can read each others’ messages. When an encrypted
message is transmitted and forwarded by other nodes, the
message must be decrypted and re-encrypted at each hop,
which becomes impractical for large networks. The practicality
of neighborhood keys can be much improved with a small
twist that involves separate keys for each message, referred to
as message keys [57]. The method is illustrated in Fig. 14.
Fig. 14(a) shows the operations when a local node sends
a message. The node first creates a message key for this
message and uses it to encrypt the message. Then, the message
key is encrypted with the neighborhood key of the node and
appended to the message. This message is then transmitted to a
neighbor. The forwarding of a message is shown in Fig. 14(b).
When a local node receives a message from a neighbor, it first
decrypts the message key with the neighborhood key of that
neighbor. Then, the local node encrypts the message key with
its own neighborhood key, and transmits the message to one of
its neighbors. As shown in the illustration, a forwarding node
only needs to decrypt and re-encrypt the message key, which
is much faster than decrypting and re-encrypting the entire
message. In addition to encrypting messages, neighborhood
keys can also be used to ensure the integrity by adding digital
signatures.

The following measurement experiment investigates the
viability of this distributed security scheme.

Experiment: In the measurement experiment, six servers
are configured in a line topology using dedicated links as
shown in Fig. 16.

Each server runs one node of an application network, which
also has a line topology. The substrate network between
two nodes is a TCP connection over a dedicated Ethernet

12

Number of hops
1 2 3 4 5

A
vg

. t
hr

ou
gh

pu
t (

M
bp

s)

0

1

2

3

4

5

6

7

8

9

10

Neighborhood key (Confidentiality)
Neighborhood key (Integrity)
Group key (Confidentiality)
Group key (Integrity)

(a) Average throughput.

Number of hops
1 2 3 4 5

A
vg

. r
ou

nd
-t

rip
 ti

m
e

(m
s)

0

200

400

600

800

1000

1200

1400

Neighborhood key (Confidentiality)
Neighborhood key (Integrity)
Group key (Confidentiality)
Group key (Integrity)

(b) Average round-trip time.

Fig. 15. Performance of security algorithms.

1 2 3 4 5 6

Fig. 16. Network topology with five hops.

link. Node 1 transmits 10 000 messages with a payload of
2 048 Bytes back-to-back to a receiver, where the receiver is
one of nodes 2, . . . , 6. For each received message, the receiver
sends a 32-Byte long acknowledgement to node 1.

Measurements are done for two levels of security:

1) Integrity: The payload and header of a message have
digital signatures.

2) Confidentiality: In addition to signing the message head-
ers and payloads, the payload is encrypted.

We also evaluate a group key scheme, where all nodes are
provided with a common group key. This method does not
use message keys. The payload of each message is signed and,
for confidentiality, encrypted at the source and decrypted at the
destination. The digital signatures of the message headers must
be recomputed at each intermediate hop, since intermediate
hops modify the message headers.

All methods use the AES algorithm [32] for data encryption
and the SHA-1 algorithm [51] for digital signatures, with
a key length of 128 bits. Neighborhood keys are securely
exchanged between neighbors using the RSA algorithm [73].
Nodes authenticate themselves with each other by an exchange
of certificates, which include the public keys of the nodes.
Additional details on the security algorithms in the experiment
can be found in [54].

Figs. 15(a) and 15(b), respectively, show the average
throughput and round-trip times for different numbers of hops.
With one hop, node 2 in Fig. 16 is the receiver, with two
hops, node 3 is the receiver, and so on. The figure illustrates
the performance penalty of the neighborhood key method
compared to a shared key approach. Note that the average
throughput for all methods is higher with one hop, when there
are no intermediate nodes on the path from the sender to the
receiver. The experimental data shows that the neighborhood
key method results in lower throughput and increased delays

compared to the group key method. Note, however, that to
ensure forward and backward secrecy, the group key method
requires an additional protocol for disseminating group keys.

The above neighborhood key method falls short in achieving
fully distributed security, since it uses certificates for trust
establishment, which borrows from a global approach. There
are several methods for establishment of trust without a
centralized function. In a web-of-trust [33], each network node
is given the public keys of some other members, with which
it has a trust relationship, and relies on them to certify the
public keys of other members. A member accepts a signed
public key of another member if it can find a path of trust
relationships that leads to this member. Another method is to
distribute the function of the certificate authority, which can
be achieved with threshold cryptography [25], [64]. In (K,N)
threshold cryptography [76], a secret number D is added to a
randomly selected polynomial of degree K − 1 and evaluated
at N positions. Then, D can be computed by obtaining K
out of N values. To build a distributed certificate authority,
the private key of the authority is distributed using (K,N)
threshold cryptography, yielding N partial authorities. A new
member is authenticated when K partial authorities sign the
new member.

V. DYNAMICALLY CREATED NETWORK SERVICES

Possibly the biggest challenge for a standardization of
application networks is the diversity of networked applications,
which creates a need for a wide range of algorithms and
control mechanisms. Since the potential variety of services
for data dissemination, data fusion, data aggregation, as well
as support for flow control, error control, and congestion
control are boundless, deploying application networks with
implementations of all conceivable services is not plausible.
On the other hand, fixing the set of services supported by
application networks almost certainly results in application
networks being poorly matched for some applications. A better
approach is to give application networks the capability for
customization, so that they can take into consideration the
specific needs of applications and the resource constraints of
a specific network environment.

13

We next discuss a design that permits protocol services to
be dynamically added to an operational application network.
In particular, nodes can modify services on the fly to adapt to
changing application requirements. The design is motivated by
the observation that many protocol services can be concisely
described by finite-state machines. This can be exploited
by providing mechanisms whereby nodes of an application
network instantiate finite-state machines on-demand when a
particular protocol service is required. Realizing services in
this fashion adds the flexibility to adapt protocols to the needs
of applications. Services are instantiated only when and where
they are needed without requiring a universal deployment.
Descriptions of protocols by finite-state machines also help
with asserting correctness and other properties of a service.

A. Approaches to Protocol Customization

The concept of protocol customization and dynamic con-
figuration is frequently revisited in networking research. Ap-
proaches to protocol customization include modularization, ac-
tive networks, and automatic protocol generation. An example
of the first group is the x-kernel [48], which offers protocol
components, so-called micro-protocols, that can be configured
by a user. Micro-protocols are also used in [16] to assemble
a transport layer protocol architecture from smaller modules.
Protocol boosters, described in [36], are software modules that
seek to improve protocol performance by adapting network
processing to applications and the network environment.

Active networking, which blossomed in the 1990s, envi-
sioned that users inject programs into the network with the
goal of customizing network services [81]. In SwitchWare [2],
custom programs can be loaded on network nodes. In Active IP
[88] and ANTS [82], users inject programs into the network
by adding software to network packets. In ephemeral state
processing [20], network packets are allowed to create and
manipulate temporary state information at network switches
using predefined operations.

Research on automatic protocol generation dates back to
efforts to create protocol implementations from specification
of the OSI protocols, such as Esterel [13], Estelle [17], and
LOTOS [14], using custom compilers [21], [86]. An alternative
to finite-state machines is described in [6], where network
protocols are expressed in terms of a grammar. Several projects
have built execution engines that can instantiate network ser-
vices from protocol specifications [21], [39]. There have also
been efforts to automatically generate software for application-
layer peer-to-peer networks. For example, a finite-state ma-
chine approach for automatically generating network code for
peer-to-peer networks with a structured topology is adopted in
MACEDON [74]. Declarative overlays [61] is a methodology
for automatically generating peer-to-peer networks using a
declarative language based on database query languages.

B. Characterization by Finite-state Machines

Our discussion focuses on data delivery services that en-
hance a basic best-effort delivery in an application network.
With a best-effort service, messages may be delivered in a
different sequence than they were transmitted, and messages

1 2

3 4 5 6

S

MsgMsg

(a)

1 2

3 4 5 6

S

MsgMsg MsgMsg

Ack Ack

(b)

1 2

3 4 5 6

S

AckAck AckAck

(c)

Fig. 17. Hop-to-Hop Acknowledgements: (a) The sender (S) delivers a
payload message (‘Msg’) to its child nodes (nodes 1 and 2). (b) When nodes 1
and 2 receive the message, they send an acknowledgement (‘Ack’) to parent
node S, and forward the message to their respective child nodes. (c) When
nodes 3 − 6 receive the message, they send an acknowledgement to their
respective parent nodes.

1 2

3 4 5 6

S

MsgMsg

(a)

1 2

3 4 5 6

S

MsgMsg MsgMsg

(b)

1 2

3 4 5 6

S

AckAck AckAck

(c)

1 2

3 4 5 6

S

Ack Ack

(d)

Fig. 18. End-to-End Acknowledgements: (a) The sender (S) delivers a payload
message (‘Msg’) to its child nodes (node 1 and node 2). (b) When node 1
and node 2 receive the message, they forward the message to their respective
child nodes. (c) When leaf nodes 3 − 6 receive the message, they send an
acknowledgement to their respective parent nodes. (d) When non-leaf nodes
1 and 2 have received acknowledgments from all child nodes, they send an
acknowledgment to their parent node.

may get dropped or duplicated. As examples, we discuss
services that perform broadcast transmissions in an application
network with improved reliability semantics. A broadcast
transmission of a message can be thought of as occurring in
a rooted spanning tree that is embedded in the topology of
the application network, with the sender of the message as the
root of the tree. The embedded tree involves all nodes of the
application network. Starting at the sender, a node transmits a
payload message to neighbors that are downstream in the tree,
the so-called child nodes. The upstream node of a child node
is referred to as its parent node. Nodes that do not have child
nodes are called leaf nodes. We consider two variations of the
service:

• Hop-to-Hop Acknowledgement (H2HACK): A node that
receives a payload message from its parent node imme-
diately sends an acknowledgment to the parent node,
and forwards the payload message to its child nodes.
The service is illustrated in Fig. 17. If a node does not
receive an acknowledgement it retransmits the payload
message. When the network topology changes during
a transmission, it may happen that a node receives
an acknowledgement without ever having received the

14

corresponding payload message. In this case, the node
transmits a negative acknowledgement to its parent node,
which triggers a (re-)transmission of the payload mes-
sage.

• End-to-End Acknowledgement (E2EACK): A node that
receives a message from the parent node immediately
forwards the message to its child nodes. A node sends
an acknowledgement to its parent node only when (a)
it is a leaf node, or (b) it is not a leaf node (and not
the sender) and it has received acknowledgments from
all its child nodes. We refer to Fig. 18 for an illustration.
Rules for retransmissions and negative acknowledgments
are similar as for the H2HACK service.

The semantics of the two services are quite different. With
H2HACK, the only assurance is that each node has passed a
payload message to its child nodes. With E2EACK, there is an
assurance that all nodes have received the payload message,
as long as the network topology has not changed. These
services can be realized by the finite-state machines given in
Figs. 19(a) and 19(b). We refer to the appendix for a detailed
description of the services. A separate finite-state machine is
created for each message. The finite-state machines govern
the transmissions of positive and negative acknowledgments
for any node, be it the sender, a leaf node, or a non-leaf node.

C. Executable Specifications

Finite-state machine characterizations of services, as given
in Fig. 19, offer high-level design guidelines for developing
software. They can also provide a basis for verifying prop-
erties of a service, e.g., using model checkers such as Spin
[47]. Recently, the availability of execution environments for
generic finite-state machines [10], [31] has made it possible
to execute a service directly from its finite-state machine
description, which we refer to as an executable specification.
As they do not assume a specific data networking concept,
execution environments for generic finite-state machines are
more elementary, and at the same time more general than
special-purpose execution environments for network services
and protocols [21], [39], [60]. Most of all, no implementation
work is required to manage the finite-state machines. The
required effort is limited to building interfaces between the
execution environment and the application network software.

An executable specification contains information on ac-
cepted inputs, generated outputs, and the finite-state machine
representing the behaviour of the service. For executable
specifications of services considered here, the accepted inputs
consist of message arrivals, timer expirations, and combina-
tions of such events. The generated outputs are invocations
of tasks, such as the transmission of a message, setting a
timer, and passing a message to the application. We group
all inputs into basic events and composite events. A basic
event is either the arrival of a message or the expiration of
a timer. Composite events are constructed as first-order logic
expressions involving past and current basic events. They are
built by querying a database of past basic events. By adding
timestamps to basic events, the database can supply the system
with the concept of time. This is useful when the database

Done

All ACKs received
or

maxACK ACK
Request sent

Reset

after maxRST
Reset Timeouts

Init

Don' t
have

payload

ACK Request or NACK
(not source)
Send NACK

Payload (not leaf)
Send Payload to child nodes

Send ACK (not source)

ACK Timeout
Send ACK Request

Payload (not leaf)
Send Payload to

child nodes
Send ACK

Wait for
ACK

ACK Request
or NACK Timeout

Send NACK

Message Timeout
Delete all state

Reset Timeout
Send Reset

NACK
Send Payload

Payload (leaf node)
Send ACK (not source)

ACK Request
(not source)
Send ACK

ACK Request
(not source)
Send ACK

Reset or
maxNACK NACKs sent

Send Reset
Goto Reset

NACK (source)
Send Reset

NACK
Send Payload

Reset
Send Reset
Goto Reset

Reset
Send Reset
Goto Reset

Payload (leaf node)
Send ACK (not source)

(a) Hop-to-hop acknowledgement.

ACK Request
or NACK Timeout

Send NACK

Payload (leaf node)
Send Full ACK (if not source)
Indicate Full ACK to application
(if source)

ACK Request
or ACK Timeout

(not source)
Send Partial ACK

Done

All ACKs received
Send Full ACK (if not source)

Indicate Full ACK to
application (if source)

Reset

after maxRST
Reset Timeouts

Init

Don' t
have

payload

ACK Request or NACK
(not source)
Send NACK

Payload (not leaf)
Send Payload to child nodes

ACK Timeout
(not all partial

ACKs received)
Send ACK

Request

Payload (not leaf)
Send Payload to

child nodes

Wait for
ACK

Message Timeout
Delete all state

Reset Timeout
Send Reset

NACK
Send Payload

ACK Request
(not source)
Send ACK

Reset or
maxNACK NACKs sent

Send Reset
Goto Reset

NACK (source)
Send Reset

NACK
Send Payload

Reset
Send Reset
Goto Reset

Reset
Send Reset
Goto Reset

Payload (leaf node)
Send Full ACK (if not source)

Indicate Full ACK to
application (if source)

(b) End-to-end acknowledgement.

Fig. 19. Finite-state machines. Each state transition lists a condition (above
the horizontal line) and the required actions (below the horizontal line). A
discussion of the state machines can be found in the appendix.

15

needs to be queried for events that occur over a time interval,
for example, whether a message arrived within the last five
seconds.

As an example of a composite event, consider a scenario
from the services described in the previous subsection, where
a node, which has sent a payload message to its child nodes,
waits for an acknowledgement message from each child node.
At any time after the message is sent, the following outcomes
are possible:

1) Acknowledgements have been received from all child
nodes;

2) Acknowledgements have been received from some but
not all child nodes;

3) No acknowledgement has been received.
These events can be expressed as first-order logic expres-

sions consisting of the basic event EACK describing the arrival
of an acknowledgement message. Note that there is a separate
event EACK for each child node from which an acknowl-
edgement has been received. The relation from(n,EACK)
expresses that an acknowledgement has been received from a
child node n. For the first-order logic expressions, we denote
negation by ¬, a conjunction by ∧, and the universal and
existential quantifiers by ∀ and ∃, respectively. Then, the three
outcomes can be described by:

1) ∀n : (∃EACK : from(n,EACK));
2) ∃n : (∃EACK : from(n,EACK))

∧ ∃n : ¬(∃EACK : from(n,EACK));
3) ¬(∃n : (∃EACK : from(n,EACK))).

Restricting composite events to first-order logic expressions
introduces limitations, since first-order logic cannot make
statements associated with sets of sets or quantifications over
predicates. We believe that the need for such expressions is
rare in a communication context. For example, the expressions
that “two messages have at least one property in common” or
“if message A has the correct sequence number, then message
A has a property in common with message B” are not typical.
There is, however, a need to order events, as in “message
A arrived before message B”. Even though first-order logic
cannot express such a relation, the database of timestamped
basic events provides the necessary information.

The finite-state machine for a service creates output sym-
bols, which we refer to as actions. Each action triggers a
function call. The actions related to a service can be reduced to
a small number of network primitives for creating a message,
setting the content of a message, sending a message, passing a
message to the local application, setting a timer, and updating
information stored at a node (e.g., modifying the set of
neighbors).

The services considered in this section are limited to data
delivery services with special semantics. However, it should
be apparent that state machines using first order logic can be
extended to functions for traffic control (e.g., traffic shaping),
topology management, and network discovery, since they are
all based on sending and receiving messages, and operations
triggered by timers. Services that the above design cannot
express are those that require operations on a synchronized
clock.

Finite-state machine

Node

Event
Handler

Action
Dispatcher

Basic Events:
messages,

timers

History of
Basic Events

Finite-state
Machine

Execution
Engine

Executable
Specification

Actions:
network

primitives

First-order logic
Processor

store
Ebasic

queries

create

if composite
events

based on
Ebasic

Ebasic A (p1,p2,..pn)

Ecomposite

Fig. 20. Architecture of the finite-state machine execution.

D. Service Creation and Deployment

A service is created when a node supplies a new executable
specification and associates a unique identifier with the service.
Other nodes obtain the executable specification by querying
their neighbors in the network topology. For each service, a
node only requires one executable specification, which is used
for all finite-state machines instantiated for this service.

An application invokes a service by transmitting a message
that is labeled with the service identifier. When a node receives
a message with a service identifier from an application or from
another node, it first checks if it has the executable speci-
fication for this service. If the specification is not available,
the node sends a service request message to all its neighbors
to retrieve the executable specification. If the specification is
available, the node instantiates a finite-state machine for the
message. The finite-state machine is labeled with a payload
identifier, which is carried by all control messages associated
with the same payload message. If a finite-state machine with
the payload identifier already exists, it is updated based on the
incoming message.

Fig. 20 provides an overview of the service architecture with
finite-state machines. At the heart of the system, indicated
in the figure by a rhombus, is an execution engine that
manages all finite-state machines instantiated at a node. A
node communicates with finite-state machines via an event
handler and an action dispatcher. Basic events are delivered
from the node to the event handler, which checks them against
the executable specification and produces an input Ebasic for
the finite-state machine. The event Ebasic is also stored in
the history of basic events. The event handler also verifies
if any composite events can be built with Ebasic by using the
first-order logic expressions defined for composite events and
by querying the database with the history of basic events.
Then, the finite-state machine execution engine tests if the

16

(a) Sender (S). (b) Receiver (R).

Fig. 21. Processing times for messages in H2HACK service [91].

(a) Sender (S). (b) Receiver (R).

Fig. 22. Detailed processing times of payload messages for H2HACK service [91].

event Ebasic and newly built composite events lead to state
transitions, which, in turn, trigger the action dispatcher to make
function calls that execute network primitives.

E. Experimental Evaluation
We next present empirical measurements of an implemen-

tation of the design from Subsec. V-C and V-D. The imple-
mentation uses the State Chart XML (SCXML) [10] markup
language to express executable specifications. The SCXML
documents are executed on an unmodified Apache Com-
mons SCXML execution environment [7]. Apache Commons
SCXML parses SCXML specifications and creates finite-state
machine instances, which are executed by a single-threaded
execution engine.

The experiments are conducted on a cluster of networked
servers, where each server runs one node of an application.
Nodes are arranged in a line topology as shown in Fig. 16.
The substrate network between any pair of nodes is a TCP con-
nection running over a dedicated Ethernet link. Experiments
of broadcast transmission with the H2HACK and E2EACK
service with one sender and up to five receivers showed that
the Apache Commons SCXML implementation cannot support
a data rate of more than 1 Mbps [91]. We next present detailed
measurements that provide insight into the system bottleneck.

The measurements only consider two nodes, where the first
node (sender) transmits 10 000 messages with a payload of
1 024 Bytes to the second node (receiver) using the H2HACK
service. Fig. 21 presents semi-log graphs of the processing
times for each message at the sender and the receiver. Assum-
ing a message does not need to be retransmitted, the sender
invokes the finite-state machine of a message exactly twice:
First, when it transmits the payload message and second,
when it receives the acknowledgement for the message. The
two graphs in Fig. 21(a) show the processing time of each
invocation. The receiver invokes the finite-state machine only
once for each message to process an incoming payload mes-
sage, yielding the graph in Fig. 21(b). Due to an initialization
of Java classes in the run-time system, processing times are
initially higher. After the initial phase, the total processing at
the sender for most payload messages and acknowledgments
settle at a steady state, with a small numbers of outliers. The
measurements indicate that the processing times at the sender
limit the throughput of payload transmissions to a rate of
around 1 Mbps.

Fig. 22 shows a repetition of the same experiment with a
detailed breakup of the processing times of a payload message,
measuring the latencies of four stages of the execution of a
message:

17

1) Access specification: Extraction of the service identifier
from a message and retrieval of the executable specifi-
cation;

2) Access finite-state machine: Retrieval of the finite-state
machine for a message;

3) Message conversion to XML: Creation of an XML
formatted event for the execution engine;

4) SCXML execution: Execution of the event by the Apache
Commons SCXML engine.

The graphs in Fig. 22 show that the processing times are
dominated by the finite-state machine execution engine. (Note
that the sum of processing times is larger than the payload
processing time in Fig. 21(a). This is due to the frequent
accesses to the system clock, which has an impact on the
processing of messages.)

While the above experiments show the feasibility of pro-
viding network services using execution environments for
generic finite-state machine, they also illustrate limitations
in terms throughput and delay performance. The breakup of
the processing times suggests that a faster execution engine
may boost the achievable throughput by almost an order of
magnitude.

VI. CONCLUSIONS

As the Internet continues to evolve to serve the world’s
communication needs, the emergence of proprietary network
infrastructures for content delivery, low-power low-bandwidth
data services, and mobile services indicates that it does not
meet the needs of all applications and services. The Internet
also does not exploit the ability of devices – especially,
mobile devices equipped with multiple network modalities –
to establish networks through self-organization without access
to any infrastructure. If special-purpose networks continue to
proliferate, the question arises if and how networked applica-
tions can take advantage of the presented plurality of substrate
networks. We have suggested that the internetworking needs
in such a setting can be addressed through self-organizing
application networks, where devices use their communication
modalities and accessible network infrastructures to form a
network. Each instantiation of a networked application leads
to the creation of a separate application network, and each
application network only involves the devices that participate
in the same application. We surveyed problem areas and
solution approaches in such networks, and evaluated their
scalability properties, their ability to adapt after failures and to
support different types of substrate networks. We discussed the
importance of disseminating address information in support
of network formation and we studied distributed security ap-
proaches. We also discussed a design that enables application
networks to adapt the set of offered services on the fly, without
requiring software updates. For each of the problem areas we
presented measurements of implemented solution approaches.
The measurements indicated the capabilities as well as the lim-
itations of the evaluated designs. All measurement experiments
involved the same software system, which may serve as proof
of concept that the presented solutions are complementary
to each other and suitable for an integration into a single
architecture.

ACKNOWLEDGEMENTS

The research in this paper has been supported in part by the
US National Science Foundation, the US Department of De-
fense, the Natural Sciences and Engineering Research Council
(Canada), Defence Research and Development Canada, Solana
Networks, and Thales Canada Transportation Systems. We
acknowledge the collection of measurements included in this
paper by Mei Ya Chan, Jiyu Chen, Zian Hu, Michael Nahas,
Yongbo Tang, Haizhou Wang, and Jianping Wang. The authors
thank Mostafa Ammar for feedback on this manuscript.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. IEEE Communications Magazine, 40(8):102–
114, Aug. 2002.

[2] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D.
Keromytis, J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith.
The switchware active network architecture. IEEE Network, 12(3):29–
36, May 1998.

[3] M. Ammar. Ex Uno Pluria: The service-infrastructure cycle, ossification,
and the fragmentation of the internet. SIGCOMM Computer Communi-
cation Review, 48(1):56–63, Apr. 2018.

[4] AMS-IX. Statistics (Ether type), 2018. https://ams-ix.net/technical/
statistics/sflow-stats/ether-type/ (Accessed: 2018-06-30).

[5] D. G. Andersen, H. Balakrishnan, F. M. Kaashoek, and R. Morris.
Resilient overlay networks. In Proc. Symposium on Operating Systems
Principles, pages 131–145, Oct. 2001.

[6] D. P. Anderson. Automated protocol implementation with RTAG. IEEE
Transactions on Software Engineering, 14(3):291– 300, Mar. 1988.

[7] Apache Software Foundation. Commons SCXML, 2018. ”https://
commons.apache.org/proper/commons-scxml/ (Accessed: 2018-06-30).

[8] A. P. Athreya and P. Tague. Network self-organization in the Internet
of Things. In Proc. IEEE SECON, pages 25–33, June 2013.

[9] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey.
Computer Networks, 54(15):2787–2805, Oct. 2010.

[10] J. Barnett, R. Akolkar, R. J. Auburn, M. Bodell, D. C. Burnett, J. Carter,
S. McGlashan, T. Lager, M. Helbing, and R. Hosn. State Chart XML
(SCXML): state machine notation for control abstraction. W3C working
draft, 2007.

[11] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In vini
veritas: realistic and controlled network experimentation. In Proc. ACM
Sigcomm, pages 3–14, Sept. 2006.

[12] M. Behringer. End-to-end security. The Internet Protocol Journal,
12(3):20–26, Sept. 2009.

[13] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and
M. Tofte, editors, Proof, Language, and Interaction, pages 425–454.
MIT Press, 2000.

[14] T. Bolognesi and E. Brinksma. Introduction to the ISO specification
language LOTOS. Computer Networks and ISDN Systems, 14(1):25–
59, 1987.

[15] G. Bouabene, C. Jelger, C. Tschudin, S. Schmid, A. Keller, and M. May.
The autonomic network architecture (ANA). IEEE Journal on Selected
Areas in Communications, 28(1):4–14, Jan. 2010.

[16] P. G. Bridges, G. T. Wong, M. Hiltunen, R. D. Schlichting, and M. J.
Barrick. A configurable and extensible transport protocol. IEEE/ACM
Transactions on Networking, 15(6):1254–1265, Dec. 2007.

[17] S. Budkowski and P. Dembinski. An introduction to Estelle: a specifi-
cation language for distributed systems. Computer Networks and ISDN
Systems, 14(1):3–23, Mar. 1987.

[18] R. Bush and D. Meyer. Some Internet architectural guidelines and
philosophy. RFC 3439, Internet Engineering Task Force (IETF), Dec.
2002.

[19] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron.
Virtual ring routing: network routing inspired by DHTs. SIGCOMM
Computer Communication Review, 36(4):351–362, Aug. 2006.

[20] K. L. Calvert, J. Griffioen, and S. Wen. Lightweight network support
for scalable end-to-end services. SIGCOMM Computer Communication
Review, 32(4):265–278, Aug. 2002.

[21] C. Castelluccia, W. Dabbous, and S. O’Malley. Generating efficient
protocol code from an abstract specification. IEEE/ACM Transactions
on Networking, 5(4):514–524, Aug. 1997.

18

[22] M. Castro, M. B. Jones, A.-M. Kermarrec, A. R. M. Theimer, H. Wang,
and A. A. Wolman. An evaluation of scalable application-level multicast
built using peer-to-peer overlays. In Proc. IEEE Infocom, pages 1510–
1520, Apr. 2003.

[23] M. Y. Chan, S. Baroudi, J. Siu, and J. Liebeherr. Application-
layer overlay networks for communication-based train control systems.
In Proc. IEEE Wireless Communications and Networking Conference
(WCNC), pages 1–6, Apr. 2018.

[24] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key
management for secure internet multicast using boolean function min-
imization techniques. In Proc. IEEE Infocom, pages 68–79, Mar./Apr.
1998.

[25] J.-H. Cho, A. Swami, and R. Chen. A survey on trust management for
mobile ad hoc networks. IEEE Communications Surveys & Tutorials,
13(4):562–583, Fourth quarter 2011.

[26] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system
multicast. In Proc. ACM Sigmetrics, pages 1–12, June 2000.

[27] D. Clark, R. Braden, A. Falk, and V. Pingali. FARA: reorganizing the
addressing architecture. In Proc. ACM Sigcomm Workshop on Future
Directions in Network Architecture (FDNA), pages 313–321, Aug. 2003.

[28] G. Constable and B. Somerville, editors. A Century of Innovation:
Twenty Engineering Achievements that Transformed our Lives. The
National Academies Press, Washington, DC, 2003.

[29] J. Crowcroft. Net neutrality: the technical side of the debate: a white
paper. SIGCOMM Computer Communication Review, 37(1):49–56, Jan.
2007.

[30] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield. Plutarch:
An argument for network pluralism. In Proc. ACM Sigcomm Workshop
on Future Directions in Network Architecture (FDNA), pages 258–266,
Aug. 2003.

[31] R. B. Cruise, M. C. Hockenheimer, T. H. Mishler, P. L. Schmidt, T. H.
Busch, L. A. Kittinger, K. E. Turpin, and M. A. Tokarsky. Finite state
machine architecture for software development, June 2011. US Patent
8,429,605.

[32] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer,
2002.

[33] A. Datta, M. Hauswirth, and K. Aberer. Beyond the ‘web of trust’:
Enabling P2P E-commerce. In IEEE International Conference on E-
Commerce, pages 303–312, June 2003.

[34] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specifi-
cation. RFC 1883, IETF, Dec. 1995.

[35] P. M. Eittenberge, M. Herbst, and U. R. Krieger. Rapidstream: P2P
streaming on android. In Proc. IEEE 19th Packet Video Workshop, pages
37–42, May 2012.

[36] D. C. Feldmeier, A. J. McAuley, J. M. Smith, D. S. Bakin, W. S. Marcus,
and T. Raleigh. Protocol boosters. IEEE Journal on Selected Areas in
Communications, 16(3):437–444, Apr. 1998.

[37] B. Ford. Scalable internet routing on topology-independent node
identities. Technical report, Massachusetts Institute of Technology, Oct.
2003.

[38] B. Ford. Unmanaged internet protocol: taming the edge network
management crisis. SIGCOMM Computer Communication Review,
34(1):93–98, Jan. 2004.

[39] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A network programming language.
ACM Sigplan Notices, 46(9):279–291, 2011.

[40] P. Gardner-Stephen and S. Palaniswamy. Serval mesh software-WiFi
multi model management. In Proc. 1st International Conference on
Wireless Technologies for Humanitarian Relief (ACWR), pages 71–77,
Dec. 2011.

[41] M. Gerla. Ad hoc networks: Emerging applications, design challenges
and future opportunities. In Ad Hoc Networks, pages 1–22. Springer,
Boston, 2005.

[42] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. The flattening Internet topology:
Natural evolution, unsightly barnacles or contrived collapse? In Proc. 9th
International Conference on Passive and Active Network Measurement
(PAM), pages 1–10. Springer, Apr. 2008.

[43] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet routing.
In Proc. ACM Sigcomm, pages 111–122, Aug. 2009.

[44] B. S. I. Group. RFCOMM with TS 07.10 serial port emulation. Version
1.2, Nov. 2012.

[45] S. M. Hedetniemi and A. L. Liestman. A survey of gossiping and
broadcasting in communication networks. Networks, 18(4):319–349,
Winter 1988.

[46] S. Higginbotham. Wi-Fi vs. Internet of Things (Internet of Everything).
IEEE Spectrum, 55(4):22, Apr. 2018.

[47] G. J. Holzmann. The SPIN model checker: Primer and reference manual,
volume 1003. Addison-Wesley Reading, 2004.

[48] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture
for implementing network protocols. IEEE Transactions on Software
Engineering, 17(1):64–76, Jan. 1991.

[49] IHS. Internet of Things (IoT) connected devices installed base
worldwide from 2015 to 2025 (in billions), 2018. https://www.statista.
com/statistics/471264/iot-number-of-connected-devices-worldwide/
(Accessed: 2018-06-25).

[50] T. Koponen et al. Architecting for innovation. SIGCOMM Computer
Communication Review, 41(3):24–36, July 2011.

[51] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for
message authentication. RFC 2104, IETF, Feb. 1997.

[52] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-defined networking: A com-
prehensive survey. Proceedings of the IEEE, 103(1):14–76, Jan. 2015.

[53] B. M. Leiner, V. G. Cerf, D. D. Clark, R. W. Kahn, L. Kleinrock, D. C.
Lynch, J. Postel, L. G. Roberts, and S. Wolff. A brief history of the
Internet. SIGCOMM Computer Communication Review, 39(5):22–31,
Oct. 2009.

[54] J. Liebeherr. Security architecture (HyperCast 3.0), 2005. http://www.
comm.utoronto.ca/hypercast/design/SecArchv6.pdf (Accessed: 2018-06-
15).

[55] J. Liebeherr. Hypercast (Version 3). https://sourceforge.net/projects/
hypercast, 2005. Accessed: 2019-1-15.

[56] J. Liebeherr. Hypercast (Version 4). https://github.com/hypercast, 2018.
Accessed: 2019-1-15.

[57] J. Liebeherr and G. Dong. An overlay approach to data security in ad-
hoc networks. Ad Hoc Networks Journal, 5(7):1055–1072, Sept. 2007.

[58] J. Liebeherr, M. Nahas, and W. Si. Application-layer multicast with
Delaunay triangulations. IEEE Journal on Selected Areas in Communi-
cations, 40(8):1472–1488, Oct. 2002.

[59] J. Liebeherr and M. Valipour. Dissemination of address bindings in
multi-substrate overlay networks. In Proc. 23rd International Teletraffic
Congress, pages 270–277, Sept. 2011.

[60] B. T. Loo. The design and implementation of declarative networks. PhD
thesis, University of California Berkeley, 2006.

[61] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking. Communications of the ACM, 52(11):87–95, 2009.

[62] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A
survey and comparison of peer-to-peer overlay network schemes. IEEE
Communications Surveys & Tutorials, 7(2):72–93, Second Quarter 2005.

[63] J. Luciani, D. Katz, D. Piscitello, B. Cole, and N. Doraswamy. NBMA
next hop resolution protocol (NHRP). RFC 2332, IETF, Apr. 1998.

[64] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang. URSA: ubiquitous
and robust access control for mobile ad hoc networks. IEEE/ACM
Transactions on Networking, 12(6):1049–1063, Dec. 2004.

[65] H. Ma, L. Liu, A. Zhou, and D. Zhao. On networking of Internet of
Things: Explorations and challenges. IEEE Internet of Things Journal,
3(4):441–452, Aug. 2016.

[66] D. Malkhi, S. Sen, K. Talwar, R. F. Werneck, and U. Wieder. Virtual
ring routing trends. In Distributed Computing (DISC 2009), Lecture
Notes in Computer Science, Vol. 5805, pages 392–402. Springer, Berlin,
Heidelberg, 2009.

[67] S. Mies, O. P. Waldhorst, and H. Wippel. Towards end-to-end connec-
tivity for overlays across heterogeneous networks. In Proc. IEEE ICC
(Workshops), pages 1–6, June 2009.

[68] P. Meroni et.al. An opportunistic platform for Android-based mobile
devices. In Proc. ACM MobiOpp, pages 191–193, Sept. 2010.

[69] D. A. Patterson, D. D. Clark, A. Karlin, J. Kurose, E. D. Lazowska,
D. Liddle, D. McAuley, V. Paxson, S. Savage, and E. W. Zegura.
Looking over the fence at networks: A neighbors view of networking
research. Computer Science and Telecommunications Board, National
Academy of Sciences, Washington, DC, 2001.

[70] R. Perlman. An algorithm for distributed computation of spanning trees
in an extended LAN. In Proc. of 9th Data Communications Symposium,
pages 44–53, Sept. 1985.

[71] D. C. Plummer. An Ethernet address resolution protocol. RFC 826,
Internet Engineering Task Force (IETF), Nov. 1982.

[72] S. Rafaeli and D. Hutchison. A survey of key management for secure
group communication. ACM Computing Surveys, 35(3):309–329, Sept.
2003.

[73] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, Feb. 1978.

19

[74] A. Rodriguez, C. Killian, S. Bhat, D. Kostić, and A. Vahdat. Macedon:
methodology for automatically creating, evaluating, and designing over-
lay networks. In Proc. Symposium on Networked Systems Design and
Implementation (NSDI), pages 267–280, Mar. 2004.

[75] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems, 2(4):277–288,
1984.

[76] A. Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, Nov. 1979.

[77] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. McCann, and K. Leung.
A survey on the IETF protocol suite for the internet of things: Stan-
dards, challenges, and opportunities. IEEE Wireless Communications,
20(6):91–98, Dec. 2013.

[78] R. Sibson. Locally equiangular triangulations. The Computer Journal,
21(3):243–245, Jan. 1977.

[79] R. Stackowiak, A. Licht, V. Mantha, and L. Nagode. Internet of things
standards. In Big Data and the Internet of Things, pages 185–190.
Apress, Berkeley, 2015.

[80] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applications.
In Proc. ACM Sigcomm, pages 149–160, Aug. 2001.

[81] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, and D. J. W.
amd G. J. Minden. A survey of active network research. IEEE
Communications Magazine, 35(1):80–86, Jan. 1997.

[82] D. L. Tennenhouse and D. J. Wetherall. Towards an active network
architecture. SIGCOMM Computer Communication Review, 37(5):81–
94, Oct. 2007.

[83] J. Thomas, J. Robble, and N. Modly. Off grid communications with
Android meshing the mobile world. In Proc. IEEE Conference on
Technologies for Homeland Security (HST), pages 401–405, Nov. 2012.

[84] J. S. Turner and D. E. Taylor. Diversifying the Internet. In Proc. IEEE
Globecom, pages 755–760, Nov./Dec. 2005.

[85] N. Vun and Y. H. Ooi. Implementation of an android phone based video
streamer. In Proc. GreenCom (IEEE/ACM CPSCom), pages 912–915,
Dec. 2010.

[86] S. T. Vuong, A. C. Lau, and R. I. Chan. Semiautomatic implementation
of protocols using an estelle-c compiler. IEEE Transactions on Software
Engineering, 14(3):384–393, Mar. 1988.

[87] Y. Wang and J. Touch. Application deployment in virtual networks using
the X-Bone. In Proc. DANCE: DARPA Active Networks Conference &
Exposition, pages 484–493, May 2002.

[88] D. J. Wetherall and D. L. Tennenhouse. The active IP option. In Proc.
7th Workshop on ACM SIGOPS European workshop: Systems support
for worldwide applications, pages 33–40, Sept. 1996.

[89] C. K. Wong, M. G. Gouda, and S. S. Lam. Secure group communications
using key graphs. IEEE/ACM Transactions on Networking, 8(1):16–30,
Feb. 2000.

[90] X. B. Zhang, S. S. Lam, D.-Y. Lee, and Y. R. Yang. Protocol design
for scalable and reliable group rekeying. IEEE/ACM Transactions on
Networking, 11(6):90–922, Dec. 2003.

[91] T. Y. Zhao. Customizable services for application-layer overlay net-
works. Master’s thesis, University of Toronto, Canada, Apr. 2013.

[92] J. C. Zuniga and B. Ponsard. Sigfox system description. LP-
WAN@IETF97, Nov. 14th, 2016.

APPENDIX

This appendix provides additional details on the finite-state
machines illustrations in Figs. 19(a) and 19(b).

A. Hop-to-Hop Acknowledgements

Hop-to-Hop Acknowledgement is a broadcast service for the
reliable transfer of payload messages across a single hop in
the topology of the application network. An acknowledgment
from a child node indicates that the child node has received
the message.

A sender that has transmitted a payload message expects
to receive an acknowledgement from its child nodes. When
a node receives a payload message, it immediately sends an
acknowledgment (ACK) to its parent node. If the node is not
a leaf node, it also forwards the payload message to its child
nodes. If a sender has not received an acknowledgment from
a child after a time limit (TimeoutAck), it sends the child a
request for an acknowledgment (ACK Request). If a child
node receives an ACK Request, but does not have the payload
message, it replies with a negative acknowledgment (NACK).

A retransmission by a node is triggered by a NACK that
arrives from a child node. If the payload message cannot be
recovered by the child node, it will eventually give up. Parent
nodes are responsible for requesting acknowledgments from
their child nodes using ACK Request messages. If multiple
ACK Requests are not followed up by an ACK or a NACK
from a child node, the parent node will eventually give up.

The Hop-to-Hop Acknowledgement service uses four types
of control messages shown in Table II.

TABLE II
MESSAGES FOR THE HOP-TO-HOP ACKNOWLEDGMENT SERVICE

Message type Description
ACK Acknowledges the receipt of a payload message. Sent

to the parent node after receiving a payload message
or an ACK Request.

ACK Request Requests the transmission of an ACK or NACK from
a child node.

NACK Confirmation that a payload message has not been
received. Sent to the parent node after receiving an
ACK Request from the parent or an ACK or NACK
from a child node.

Reset A message sent to child nodes to reset the finite-state
machine.

Table III provides the states of the finite-state machine in
Fig. 19(a), and Table IV explains the timers of the service.

TABLE III
STATES OF THE HOP-TO-HOP ACKNOWLEDGMENT SERVICE.

State Description
Init Initial state.
Wait for ACK Node has received the payload message and is waiting

for ACKs from children.
Don’t have
payload

Node has received an ACK or NACK for a payload
message, but did not receive the payload.

Done Node has performed all required operations for a
payload message.

Reset Node deletes all state information about a message.

20

TABLE IV
TIMERS IN THE HOP-TO-HOP ACKNOWLEDGMENT SERVICE.

Timer Description
ACK Timer
(TimeoutACK,
maxACK)

Started when a payload message is transmitted and
cancelled when an ACK is received from every child
node. Upon timeout (after TimeoutACK seconds), an
ACK Request is sent to child nodes with missing
ACKs and the timer is re-started. If some ACK
messages are missing after transmitting maxACK
ACK Requests, the node enters the Reset state and
sends Reset messages to each child node.

NACK Timer
(TimeoutNACK,
maxNACK)

Started when a NACK is transmitted and cancelled
when the corresponding payload message is re-
ceived from the parent node. Upon timeout (after
TimeoutNACK seconds), another NACK message is
sent and the timer is re-started. If the payload
message is not received after sending maxNACK
NACKs, the node enters the Reset state and sends
Reset messages to each child node.

Reset Timer
(TimeoutRST,
maxRST)

Started when a node enters the Reset state. Upon
timeout, the node sends Reset messages to its child
nodes. After maxRST timeouts, all state information
about the message is deleted.

Message Timer
(TimeoutMsg)

Started when all required operations for a payload
message have been performed and the Done state is
entered. Upon timeout, all state information about the
message is deleted.

B. End-to-End Acknowledgement

The End-to-End Acknowledgement broadcast service tries
to achieve a reliable transfer of a payload message to all
nodes in the network. The transmission of acknowledgments
proceeds in a recursive fashion. A leaf node sends a full
acknowledgment message (Full ACK) to its parent as soon
as it receives the payload message. A node that is not a leaf
node transmits a Full ACK to its parent only after it has
received a Full ACK from all child nodes. If the sending node
receives a Full ACK from each child node, then all nodes in
the application network have acknowledged the receipt of the
payload message, as long as the network topology has not
changed since the first transmission of the payload message.

If a non-leaf node has received some acknowledgments, but
has not received a Full ACK from all of its child nodes, it
sends a partial acknowledgment message (Partial ACK) to its
parent node. This ensures that some kind of acknowledgement
is transmitted upstream, even though not all nodes have ac-
knowledged the receipt of the payload message. The time until
the transmission of Partial ACKs is enforced by a timer. After
a time limit, if a node has not received an acknowledgment
from a child node, it sends to the child node a message to
request an acknowledgment (ACK Request). If the child node
does not have the payload message, it replies with a negative
acknowlegdment (NACK). The message types of this service
are as shown in Table II, with exception of the ACK message,
which is replaced by the messages in Table V.

In addition to the timers of the hop-to-hop acknowledge-
ment service given in Table IV, the end-to-end acknowledge-
ment service has one additional timer as given in Table VI.

TABLE V
ADDITIONAL MESSAGES FOR THE END-TO-END ACKNOWLEDGMENT

SERVICE.

Message type Description
Full ACK Sent by a leaf node to its parent node after it receives

a payload message. A non-leaf node sends a Full ACK
to its parent node after it receives Full ACKs from all
of its child nodes.

Partial ACK Sent by a node that has received some acknowledge-
ments (Partial and/or Full ACKs), but has not received
Full ACKs from all child nodes. A non-leaf node sends
Partial ACKs periodically to its parent node.

TABLE VI
ADDITIONAL TIMERS IN THE END-TO-END ACKNOWLEDGMENT SERVICE.

Timer Description
Partial ACK Timer
(TimeoutPACK)

Started upon receiving a payload message
for the first time. Upon timeout (after
TimeoutPACK seconds) a non-leaf node sends
a Partial ACK to its parent node and restarts
the timer.

C. Other Dynamic Services

Table VII lists additional services for which executable
specifications have been developed.

TABLE VII
OTHER SERVICES.

Network Service Description
Duplicate Elimination This service discards received payload mes-

sages at a receiver if it is a duplicate of an
earlier received payload message.

Synchronization Each node permanently stores each transmitted
and received payload message and periodically
synchronizes the stored payload messages with
its neighbors in the network topology.

InCast This service merges the payload of unicast
payload messages with identical destination
addresses and message identifiers.

Best Effort Ordering This service attempts to pass received payload
messages to the application program in the
order of sequence numbers. Payload messages
that do not arrive in sequence must be passed
to the application program when a buffer time
is exceeded. This service has one finite-state
machine for each sequence of messages.

Jörg Liebeherr (S88–M92–SM03–F08) received
the Ph.D. degree in computer science from the
Georgia Institute of Technology, Atlanta, in 1991.
He was on the faculty of the Department o Computer
Science at the University of Virginia, Charlottesville,
from 1992 to 2005. Since Fall 2005, he has been
with the University of Toronto, as Professor of elec-
trical and computer engineering and Nortel Chair of
Network Architecture and Services.

21

Tony Yu Zhao received his M.A.Sc. in Electrical
and Computer Engineering from the University of
Toronto in 2013, with a focus on application-layer
networks. He is currently working on stream pro-
cessing, distributed state stores, and machine learn-
ing enabled real-time anomaly detection for big data
systems.

Majid Valipour received the M.A.Sc degree in Elec-
trical and Computer Engineering from the University
of Toronto in 2010 where his research focused on
self-organizing overlay networks. He is currently at
Google working to improve the Web Platform.

