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Example 4: Comparison to SBB calculus.

The next example compares network calculus results from this paper with the stochastic bounded
burstiness analysis developed in [S00], referred to as SBB calculus. In the SBB calculus, arrival
bounds take the form

Pr
{
A(t + τ) − A(t) ≥ ρτ + σ

}
≤ f(σ)

where f(σ) is a function such that the n-fold integration of f , denoted by (
∫ ∞

σ
du)nf(u), is finite.

Arrival models in this class include the FBM traffic model. In the network calculus, the effective
envelope for SBB arrivals of a flow are given by Gε

i (t) = t + σ(ε), where σ(ε) is obtained by
solving f(σ) = ε.

The analysis in [S00] considers a single-node work-conserving system, and derives bounds on
backlog and output burstiness. The following example uses parameters from an example in ([S00],
Sec. IV.C). As in [S00], we consider a single-node system with service rate C, where all flows
have a rate ρ = 1 and a burstiness bound of fi(σ) = e−2.197σ + 10−4 · e−0.543σ . We modify the
example from [S00] in that we consider a node with capacity C = 6 and with five flows, indexed
i = 1, · · · , 5. For any work-conserving service discipline, the backlog bound is computed with
Theorem 3 in [S00].

Table 1: Comparison of bounds for the aggregate backlog.

ε = 10−3 ε = 10−6 ε = 10−9

THIS PAPER SBB THIS PAPER SBB THIS PAPER SBB

30.2 20.5 100.4 66.8 168.5 130.4

We first consider the aggregate backlog. In Table 1, we compare the aggregate backlog from all
flows, as obtained from Theorem 2 in [S00] with those obtained with our Theorem 1 and Lemma 1
for various values of the violation probability ε. The table shows that the SBB calculus provides
tighter backlog bounds for the aggregate. The reason is that the derivation for the total backlog in
the SBB calculus are done in a single estimate, whereas the network calculus makes one estimate
for the busy period and another estimate for the backlog bound in Theorem 1.

The advantages of the network calculus approach become evident when we investigate the
backlog of individual flows. Here, we obtain an effective service curve for a flow using the
leftover service curves from Section 4. The resulting service curves are functions of the form

Sε
i (t) =

[
R · t − X(ε)

]
+

, where R and X(ε) are obtained from the SBB characteristics of the

other flows. The backlog bound for a flow leaving the system is given by b(ε) = G ε � Sε
i (0)

following our Theorem 1.2. We analyze backlog bounds for all scheduling algorithms considered
in this paper. For the SP service discipline, we assign flow i a priority index i. For GPS, we set the
weight parameter equal at each node. For EDF, we set the flow-i delay index equal to i.
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Table 2: Backlog bounds for individual flows.
ε = 10−3 ε = 10−6 ε = 10−9

FLOW ID SP GPS EDF SP GPS EDF SP GPS EDF

1 3.72 6.06 8.19 12.97 20.06 50.2 27.21 33.7 91.1
2 5.09 6.06 12.19 18.24 20.06 54.2 34.91 33.7 95.1
3 7.07 6.06 15.19 25.09 20.06 57.2 45.75 33.7 98.1
4 10.37 6.06 17.19 36.38 20.06 59.2 63.84 33.7 100.1
5 18.19 6.06 18.19 60.2 20.06 60.2 101.1 33.7 101.1

Table 2 shows the results of the backlog analysis. A comparison of the per-flow backlog bounds
in Table 2 with the backlog bounds for the total traffic indicate that the per-flow bounds are much
improved. In particular, note that with SP scheduling the backlog bounds all flows, including
that for the lowest priority flow (Flow 5), are below the aggregate backlog bounds from Table 1.
This demonstrates that the service description in Lemma 3 captures properties of the particular
scheduling algorithm.

Remarks: The SBB calculus in [S00] does not offer delay bounds or multi-node results, and
has not been developed for non-FIFO scheduling algorithms. While it may be feasible to extend
the SBB calculus framework to consider per-flow bounds in various scheduling algorithms, and
derive delay bounds, such derivations will require a similar effort as the derivations in a min-plus
algebra as done in this paper. It remains open whether the statistical calculus can be strengthened
to a degree that it yields backlog bounds that are identical to those of the SBB calculus (from Ta-
ble 1). For a subclass of so-called exponentially bounded burstiness (EBB) [Y93] the question has
recently been answered in [Ciucu05], which showed that a statistical network calculus can faith-
fully reproduce single node results of the EBB calculus. For a multi-node setting, a comparison of
end-to-end performance bounds computed with the techniques from [Y93] to those obtained with
the statistical network calculus showed that delay bounds from [Y93] scale with O (H 3), where H
is the number of nodes, whereas the corresponding results in the statistical network calculus are
bounded by O (H log H).
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