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Analysis of a Queueing Model for Energy Storage Systems 1

with Self-discharge 2

MAJID RAEIS, ALMUT BURCHARD, and JÖRG LIEBEHERR, University of Toronto, Canada

3
This article presents an analysis of a recently proposed queueing system model for energy storage with 4
discharge. Even without a load, energy storage systems experience a reduction of the stored energy through 5
self-discharge. In some storage technologies, the rate of self-discharge can exceed 50% of the stored energy 6
per day. We consider a queueing model, referred to as leakage queue, where, in addition to an arrival and a 7
service process, there is a leakage process that reduces the buffer content by a factor γ (0 < γ < 1) in each 8
time slot. When the average drift is positive, we discover that the leakage queue operates in one of two 9
regimes, each with distinct characteristics. In one of the regimes, the stored energy always stabilizes at a 10
point that lies below the storage capacity, and the stored energy closely follows a Gaussian distribution. 11
In the other regime, the storage system behaves similar to a conventional finite capacity system. For both 12
regimes, we derive expressions for the probabilities of underflow and overflow. In particular, we develop a 13
new martingale argument to estimate the probability of underflow in the second regime. The methods are 14
validated in a numerical example where the energy supply resembles a wind energy source.
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1 INTRODUCTION 24

With their ability to absorb the intermittency and uncertainty in renewable energy generation, 25
energy storage systems facilitate the integration of renewable energy sources into the grid. There 26
exists a wide variety of energy storage technologies, each offering a tradeoff with regards to storage 27
capacity per unit of volume (energy density), delivered power per unit of volume (power density), 28
scalability, and other considerations [15]. For instance, compressed air energy storage systems 29
have a high capacity but a low power density, which makes them suitable for long-term storage 30
applications that do not need a fast response time. Due to the generally high cost of energy stor- 31
age technologies—the price of energy storage can be thousands of dollars per kilowatt hour—the 32
economic viability of an energy storage system crucially depends on properly dimensioning the 33
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storage size.1 Over-provisioning of the storage system unnecessarily increases costs, while under-34
provisioning may render it ineffective. The need for tools to dimension energy storage systems35
has motivated the development of analytical methods. By modelling energy storage systems as36
finite capacity queueing systems with stochastic arrivals (energy supply) and departures (energy37
demand), the vast queueing theory literature becomes available to the problem of storage sizing.38
However, a closer inspection reveals that queueing analysis is not automatically a good fit for en-39
ergy storage systems. For one, arrivals and departures in queueing theory are often expressed as40
point processes that track arrival and departure events. Energy supply and demand, however, are41
better characterized by fluid-flow processes. Also, many queueing theory methods were developed42
for job shop manufacturing and communication networks, where buffer provisioning is primar-43
ily concerned with preventing overflows. There, it is generally required that the average service44
rate exceeds the average arrival rate. Differently, in energy storage the overriding concern is the45
prevention of buffer underflows (“empty batteries”). Here, it is generally required that the average46
arrival rate exceeds the average service rate.47

Different from systems usually analyzed by queueing theoretic methods, the stored energy may48
shrink over time even when the system is inactive. The rate of leakage of the stored energy, re-49
ferred to as self-discharge, may be the result of chemical reactions, loss of thermal or kinetic energy,50
and other factors. It can be as low as 1% of the total charge per month for lithium-ion batteries51
[16] and may exceed 50% per day for flywheels [27]. Interestingly, there is no queueing analysis52
in the literature that accounts for the impact of self-discharge. The lack of analytical models was53
made evident in recent performance studies of energy storage [20, 21, 24, 25, 55, 60], which re-54
sorted to optimization methods when accounting for self-discharge. The main complication of the55
performance analysis is that self-discharge adds another process that runs concurrently with the56
conventional arrival (load) and service (demand) processes. Since the quantity of self-discharge57
depends on the amount of stored energy, the self-discharge rate is not an independent process, but58
is coupled to the arrival and service processes.59

This article presents the first analytical study of the dynamics of queueing systems that model60
energy storage systems with self-discharge. The analysis enables us to address pertinent questions61
in energy storage. For example, how does the self-discharge process interact with the processes62
for energy supply and demand? Are there parameter regions where undesirable events such as63
overflows and underflows rarely occur? We address these questions by considering a queueing64
model, referred to as queue with leakage or leakage queue, where supply and demand are governed65
by stochastic processes and, additionally, in each time slot, the content of the queue is reduced by66
a factor γ , with 0 < γ < 1. Since we want to study scenarios where storage underflows are rare, we67
assume that the average supply exceeds the average demand, resulting in a drift that is on average68
positive.69

Under these assumptions, we make several contributions towards a queuing theoretic analysis70
of the leakage queue. We provide a closed-form expression for the backlog at the leakage queue. It71
turns out that a leakage queue with finite capacity has parameter regimes with distinct behaviors.72
In one of the regimes, the backlog stabilizes at a level well below its capacity, with the result73
that both underflows and overflows are rare events. We find that the distribution of the stored74
energy in this regime is close to (and in the limit exactly) Gaussian. For the general case, we75
derive bounds on overflow and underflow probabilities using a novel analysis based on exponential76
martingales.77

1In addition to the price of acquisition, the cost of energy storage also takes into account other factors such as the number

of recharge cycles over the lifetime of a unit, the amount of energy that can be withdrawn in a single recharge cycle (depth

of discharge), and ancillary costs.
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As a queueing model, the leakage queue does not serve as a high-fidelity model for particular 78
storage technologies. It considers a minimalist system model that only leaves the input, output, 79
and leakage processes in place to isolate the self-discharge effects to a maximum degree. The model 80
does not account for the potentially complex interactions between users and utilities in demand- 81
side management. The queueing analysis is further simplified by assuming independent arrival 82
and service processes. This puts the focus of the analysis on the dependencies introduced by the 83
leakage process. A relaxation of the independence assumption appears feasible, but will require 84
substantial additional effort. 85

The analysis and findings in this article may be useful in other application areas. For example, 86
in data networks, buffers with leakage have appeared as a mechanism to prevent network conges- 87
tion. A group of techniques, referred to as active queue management [3, 19], intentionally drops 88
traffic in output buffers at packet with a given probability switches to mitigate network conges- 89
tion. If probabilistic dropping of traffic arrivals is viewed as a form of leakage, there is a striking 90
resemblance to the leakage queue. Note that the amount of leakage in energy storage systems is a 91
system parameter that depends on the storage technology and environmental factors. Differently, 92
leakage that is enforced by a network control algorithm is a design parameter that is set to achieve 93
a certain behavior. In fact, the observed self-stabilization in the leakage queue may be related to 94
the stabilizing effect of Additive Increase–Multiplicative Decrease (AIMD) methods [28] and Ran- 95
dom Early Detection [19] in network congestion control. Generalizing the leakage queue analysis 96
to other application areas awaits future investigation. 97

The remainder of the article is structured as follows: In Section 2, we discuss the literature on 98
the analysis of energy storage systems. In Section 3, we explore the dynamics of queueing systems 99
with leakage. In Section 4, we establish the stability of the leakage queue under a broad set of 100
assumptions. In Section 5, we present two analytical approaches, each applicable to a specified 101
regime of parameters, for deriving overflow and underflow probabilities. In Section 6, we evaluate 102
the analysis for an example with random processes that mimic the behavior of a renewable energy 103
source. We present conclusions in Section 7. 104

2 RELATED WORK 105

Energy storage plays a major role in many aspects of the smart grid, and there is an extensive 106
literature on the analysis of energy storage systems. The electrical grid requires that power gener- 107
ation and demand load are continuously balanced. This becomes more involved with time-variable 108
renewable energy sources and storage systems absorbing the variations from such sources. Smart 109
grid approaches that take the perspective of a utility operator are concerned with placement, sizing, 110
and control of energy storage systems, with the goal to optimally balance power [50–52], reduce 111
power generation costs [54], or control operational costs [34]. Works in this area are frequently 112
formulated as optimal control or optimization problems, with the objective to devise distributed 113
algorithms that achieve a desired operating point. 114

Demand-side management [22] takes the perspective of an energy user and broadly refers to 115
measures that encourage users to become more energy-efficient. As one form of demand-side man- 116
agement, demand response refers to methods for short-term reductions in energy consumption. By 117
creating incentives to users, demand response seeks to match elastic demands with fluctuating re- 118
newable energy sources. In References [37, 47], demand response is posed as a utility maximization 119
problem where dynamic pricing incentivizes individual users to benefit the overall system. Studies 120
on demand response apply a wide range of methods, from coordination between appliances [42], 121
bounds on prediction errors [38], and game-theoretic approaches [39]. 122

Performance analysis of energy storage systems intends to support the dimensioning of storage 123
by providing metrics such as overflow and underflow probabilities and the amount of stored energy 124
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Fig. 1. Queueing model of energy storage system.

in the steady state. Since detailed models of the circuit or electrochemical processes in an energy125
storage system, as given in References [11, 30, 46], are not analytically tractable, energy storage126
systems are generally described by abstract models. Differential or difference equations have been127
used for detailed descriptions of the evolution in lithium-ion batteries [30] and flywheels [20, 21].128
The suitability of queueing theory for analyzing the dynamics of energy storage has been pointed129
out in Reference [2]. Interestingly, queueing theory was applied in the 1960s for analyzing storage130
properties of water reservoirs [13, Chapter 3.5], and the fluid-flow analysis of queueing systems131
was known as dam theory [43]. More recently, a fluid-flow queueing analysis for rechargeable132
batteries was presented in Reference [29]. A concise presentation of the state-of-the-art of fluid-133
flow queueing analysis is found in Reference [9].134

More recently, a fluid-flow interpretation of queueing theory, known as network calculus [35],135
has been applied to energy storage systems. A deterministic analysis has been used in Refer-136
ence [36] to devise battery charging schedules that prevent batteries from running empty. Stochas-137
tic extensions of the network calculus have been applied to analyze energy storage in the presence138
of random, generally Markovian, energy sources [49, 56, 59]. In these works, the evolution of the139
stored energy is expressed as the time-dependent backlog in the finite capacity queueing system140
from Reference [14]. Recent studies [21, 24, 25, 55, 60] have improved the fidelity of energy storage141
models by considering factors such as limited charging and discharging rates, charging and dis-142
charging inefficiencies, as well as self-discharge. In Reference [24], the self-discharge is modeled143
by a constant rate function, whereas the other works [21, 25, 55, 60] use a proportional leakage144
ratio as described in Section 1. Since queueing systems for energy storage systems with propor-145
tional self-discharge could not be solved analytically, the existing analyses resort to simulation146
and optimization methods. These provide numerical solutions, but do not easily give insight into147
parameter regimes and basic tradeoffs.148

3 A QUEUEING MODEL FOR ENERGY STORAGE WITH SELF-DISCHARGE149

We model an energy storage system as a finite queueing system, as shown in Figure 1. The arrivals150
to the system consist of a time-varying energy supply from energy sources, the service process151
consists of the time-varying energy demand from customers, and the departures are the serviced152
demand. The stored energy and capacity, which correspond to the backlog and capacity in a153
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conventional queueing system, are measured in watt hours (Wh). In the following, we will use 154
the terms supply and arrivals, as well as demand and service, synonymously. As a convention, we 155
will employ queueing theory terminology when making comparisons to other queueing systems. 156

3.1 Dynamics of the Leakage Queue 157

For the purpose of the analysis, we assume that the energy processes are discrete-time, fluid flow 158
random processes, where we consider deterministic processes as a special case. The energy sup- 159
plied when the storage is at capacity is considered wasted, and demand to an empty storage is 160
considered lost. We use a(n), s (n), and d (n) to denote the energy supply, energy demand, and ser- 161
viced demand, respectively, in time slot n, measured in Wh. We define the drift or net charge of the 162
system in slot n, denoted by δ (n), as the difference 163

δ (n) = a(n) − s (n).

The amount of energy stored at time slot n, denoted by B (n) and referred to as stored energy, 164
corresponds to the backlog in the usual terminology of queueing theory. Alternative terms in 165
the energy storage literature are energy content, state of charge, or battery load. The maximum 166
amount of stored energy, referred to as storage capacity, is denoted by C . 167

We assume that the queue has a fixed self-discharge ratioγ with 0 < γ < 1, which we will refer to 168
as leakage ratio. The interpretation is that the stored energy at time n, B (n), shrinks to (1 − γ )B (n) 169
by time slot n + 1. The amount of leaked storage in time slot n is given by the leakage process 170
L(n) = γB (n). The case γ = 0 refers to a system without self-discharge. Since the leakage ratio 171
frequently appears in the form 1 − γ , we define the complementary leakage ratio γ̄ as γ̄ = 1 − γ . 172
The energy evolution of the storage system can be described in terms of a recursive equation [25, 173
55] by 174

B (n) = min{[γ̄ B (n − 1) + δ (n)]+,C}, (1)

where we use the notation [x]+ = max{x , 0}. We refer to a queueing system with this dynamics 175
as a queue with leakage or leakage queue. Descriptions of energy storage systems generally use 176
a fixed self-discharge ratio, even though the self-discharge may depend on the amount of stored 177
energy, temperature, or other factors. Here, the fixed self-discharge ratio represents a long-term 178
average [27]. 179

The leakage queue described above is distinct from other queueing systems where admittance, 180
service, or sojourn time are functions of the system state, in particular, the extensively studied 181
reneging and balking queues [1, 6]. In a balking queue, an arrival refuses to enter the queue with 182
a probability that depends on the current backlog. In a reneging queue, a customer leaves the 183
queue if its waiting time exceeds a (generally randomly determined) threshold. In the special case 184
where the threshold of a customer follows an exponential distribution, the reneging queue has 185
a superficial resemblance with the leakage queue, in that customers leave the system at a fixed 186
exponential rate. However, the leakage queue is not simply a fluid-flow limit of the reneging queue. 187
In a naive fluid-flow limit, where the service times of arrivals are taken to zero so the random 188
reneging process becomes a non-random constant-rate leakage process, the arrival and service 189
processes also converge to constant-rate functions. Non-trivial fluid-flow limits of reneging queues 190
are known only in the heavy-traffic regime where the reneging rate goes to zero and the backlog 191
becomes very large [57]. Such limits are not relevant for a leakage queue of finite capacity. It is also 192
feasible to relate the leakage queue to a queueing system that admits negative customers [23, 26]. 193
The difference between the leakage queue and a queue with negative customers is that the leakage 194
process in the former has a multiplicative (proportional) impact on the backlog, whereas the arrival 195
process of negative customers in the latter has an additive (subtracting) impact. In principle, it is 196
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feasible to express the leakage process in terms of an arrival process of (fluid) negative customers;197
however, this arrival process is quite complex, as it depends on the queue occupancy.198

When time units are expressed in hours, a self-discharge of 5% per day for a full battery corre-199
sponds to a leakage ratio of γ = 0.0021. This holds, since the leakage in a day is 1 − γ̄ 24. Likewise,200
we have the correspondences201

10% discharge per day ∼ γ = 0.0044,

20% discharge per day ∼ γ = 0.0093,

50% discharge per day ∼ γ = 0.0285.

Note that the leakage ratio depends on the length of the time slot.202
We use lu (n) and lo (n) to denote the underflow and overflow processes, respectively, at the203

storage system. In the context of energy storage, lu (n) is often referred to as the loss of power and204
lo (n) is referred to as the waste of power. The processes are given by205

lu (n) = [−γ̄ B (n − 1) − δ (n)]+,

lo (n) = [γ̄ B (n − 1) + δ (n) −C]+.
(2)

The recursion relation in Equation (1) can be refined to incorporate other pertinent features of an206
energy storage system [24]. We define the bivariate process Δγ (m,n) as207

Δγ (m,n) =
n∑

k=m+1

γ̄n−kδ (k ).

Our first result, presented in the next theorem, is an explicit non-recursive expression for the stored208
energy in a queue with leakage. The theorem extends the backlog equation by Cruz and Liu for209
finite capacity queues [14] to leakage queues.210

Theorem 3.1. Let B (n) be the stored energy in a leakage queue with finite capacityC and leakage211
ratio γ , as in Equation (1). Then212

B (n) = min
0≤m≤n

{
max

m≤j≤n
{γ̄n−mCm1j=m + Δγ (j,n)}

}
, (3)

where 1j=m is the indicator function that evaluates to 1 if j =m, and to 0 otherwise, andCm is defined213
as214

Cm =

{
B (0) ifm = 0,
C ifm > 0.

Equation (3) implies that the effect of the initial charge B (0) vanishes as time increases. By taking215
C → ∞, we immediately get for a leakage queue with infinite capacity that216

B (n) = max
0≤j≤n

{γ̄nC01j=0 + Δγ (j,n)}.

Proof. We first argue that217

B (n) ≤ min
0≤m≤n

{
max

m≤j≤n
{γ̄n−mCm1j=m + Δγ (j,n)}

}
. (4)

Letm be an arbitrary time slot with 0 ≤ m ≤ n. If B (j ) > 0 for all j withm < j ≤ n, then218

B (j ) ≤ γ̄ B (j − 1) + δ (j ), form < j ≤ n,

which implies219
B (n) ≤ γ̄n−mB (m) + Δγ (m,n).

Otherwise, let j be the last time slot withm < j ≤ n such that B (j ) = 0. Then220

B (n) ≤ Δγ (j,n).
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Fig. 2. Model of the dual system.

In either case, since B (m) ≤ Cm , it follows that 221

B (n) ≤ max
m≤j≤n

{γ̄n−mCm1j=m + Δγ (j,n)}. (5)

Sincem was arbitrary, this establishes Equation (4). 222
For the reverse inequality, it suffices to find one value ofm that produces equality in Equation (5). 223

Choose m = 0 if B (j ) < C for all j = 1, . . . ,n. Otherwise, choose m to be the index of the last time 224
slot up to n with B (m) = C . Since no overflow occurs in time slots j =m + 1, . . . ,n, the recursion 225
in Equation (1) yields 226

B (j ) = [γ̄ B (j − 1) + δ (j )]+, form < j ≤ n.

Since B (m) = Cm by the choice ofm, it follows that Equation (5) holds with equality. � 227

3.2 The Dual System 228

Numerous analytical methods are available for estimating the overflow probability at a buffered 229
link. These methods were developed for applications of queueing theory in telecommunications 230
and manufacturing, e.g., Reference [31]. In some application areas, however, such as multimedia 231
streaming and energy storage, underflow is a more serious concern than overflow. By developing 232
dual models where the roles of underflow and overflow events are switched, the existing know- 233
how for computing overflow probabilities can be leveraged for the computation of underflow prob- 234
abilities [2, 8]. We follow this approach by deriving a dual system for a leakage queue. Since the 235
dual system is not a physical system, we resort to conventional queueing terminology and talk 236
about arrivals, service, and backlog. 237

We refer to the leakage queue in Figure 1 as the original system. The dual system is a leak- 238
age queue with the same capacity C and leakage ratio γ . Arrivals and service at the dual sys- 239
tem, denoted by a′(n) and s ′(n), are defined as a′(n) = γC + s (n) and s ′(n) = a(n), with δ ′(n) = 240
a′(n) − s ′(n). We denote by B′(n) the backlog process of the dual system. The overflow and un- 241
derflow processes of the dual system, denoted by l ′o (n) and l ′u (n), are as in Equation (2), where we 242
replace δ (n) by δ ′(n) and B (n) by B′(n). Figure 2 illustrates the queueing model of the dual system. 243
With this definition, the backlog B′(n) of the dual system satisfies the recursion 244

B′(n) = min
{
[γ̄ B′(n − 1) + δ ′(n)]+,C

}
. (6)

Duality of the original and the dual system is established by the following lemma. 245

Lemma 3.2. Given a queue with leakage as shown in Figure 1 and the dual system shown in Figure 2. 246
If B (0) + B′(0) = C , then the backlog in the original system and the dual system satisfy 247

B (n) + B′(n) = C

for all n > 0. 248
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From the lemma it follows immediately that l ′o (n) = lu (n) and l ′u (n) = lo (n), as long as the dual249
system is properly initialized. Hence, we can obtain the underflow probability in the original sys-250
tem by computing the overflow probability in the dual system.251

Proof. We proceed by induction. The base case is covered by the assumption that B (0) +252
B′(0) = C . For the inductive step, suppose that B (n − 1) + B′(n − 1) = C for some n > 0. In par-253
ticular, 0 ≤ B′(n − 1) ≤ C . We rewrite Equation (6) in terms of C − B′(n) and apply the identity254

C −min
{
[x]+,C

}
= min

{
[C − x]+,C

}
to obtain255

C − B′(n) = C −min
{
[γ̄ B′(n − 1) + δ ′(n)]+,C

}
= min

{
[C − γ̄ B′(n − 1) − δ ′(n)]+,C

}
= min

{
[γ̄ (C − B′(n − 1)) + γC − δ ′(n)]+,C

}
.

Since C − B′(n − 1) = B (n − 1) by the inductive hypothesis, and γC − δ ′(n) = δ (n), it follows that256

C − B′(n) = min
{
[γ̄ B (n − 1) + δ (n)]+,C

}
.

We conclude with Equation (1) that C − B′(n) = B (n). �257

We exploit the dual system to obtain an alternative expression for the backlog.258

Corollary 3.3. The backlog in a leakage queue with capacity C and leakage ratio γ is given by259

B (n) = max
0≤m≤n

{
min

m≤j≤n
{γ̄nB (0)1j=m=0 + γ̄

n−jC1j>m + Δγ (j,n)}
}
.

Proof. Write B (n) = C − B′(n) and apply Theorem 3.1 to the dual system. �260

3.3 The Two Regimes of the Leakage Queue261

In this subsection, we make observations that will prove crucial for the analysis of leakage queues.262
Throughout, we will work with a drift δ (n) that is positive on average, since the system will be263
frequently empty otherwise. We find that the leakage queue operates in two regimes with funda-264
mentally different behaviors. In one regime, the stored energy is stable at a point below the storage265
capacity. Here, the leakage queue behaves similarly to a reference system with simpler properties266
that admits an exact solution. In the other regime, the stored energy is generally close to the capac-267
ity. Here, the leakage queue behaves similarly to a conventional finite capacity queueing system268
in overload.269

We illustrate the different regimes with the aid of a numerical example drawn from an energy270
storage system with a photo-voltaic (PV) energy source and constant demand. We use the PV271
energy generation for a residential rooftop system, which is based on an hourly dataset of the272
typical solar irradiance in Los Angeles for the month of July [40]. The resulting solar energy is273
calculated with the System Advisor Model (SAM) software [41], where solar panels are scaled so274
the average energy supply per hour is 1 kWh. The demand per hour is assumed to be constant275
and set to 0.8 kWh, which is 80% of the supply. This is approximately the average hourly power276
consumption per household in New Zealand [58].277

For calibration, we first consider a system without leakage, that is, γ = 0. In Figure 3, we depict278
the energy content for systems with storage capacity C = 10 kWh and C = 40 kWh, where we279
assume that the storage is initially empty. Observe that the data captures the diurnal pattern of280
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Fig. 3. Stored energy without self-discharge with solar power supply. Since the supply (arrivals) on average
exceed the demand (service), the filling level always stays close to the capacity C .

solar energy. As expected, once the storage fills up, the stored energy stays always close to the 281
storage capacity. 282

Before we discuss how the outcome changes in the presence of self-discharge, we introduce a 283
reference system that differs from the leakage queue in two ways. First, the reference system has 284
infinite storage capacity (C = ∞). Second, the stored energy is allowed to take negative values, 285
where a negative occupancy can be thought of as an energy deficit. The dynamics of the stored 286
energy in the reference system, denoted by Br , simplify to 287

Br (n) = γ̄ Br (n − 1) + δ (n). (7)

The solution of this recursion is Br (n) = γ̄nB (0) + Δγ (m,n). If δ (n) describes a stationary process 288
with δ (n) =D δ for all n, where “=D” indicates equality in distribution, then the expected value is 289

E[Br (n)] = γ̄E[Br (n − 1)] + E[δ].

If there exists a steady state for Br , then, for n → ∞, the expected stored energy, denoted by 290
E[Br ], is given by 291

E[Br ] = lim
n→∞

E[Br (n)] =
E[δ]

γ
. (8)

In the next section, we will prove that Br (n) converges to a steady state, with expected value E[Br ]. 292
We now re-compute the numerical example from Figure 3 with a leakage ratio ofγ = 0.0093 (20% 293

leakage daily). With the given supply and demand, we obtain that E[Br ] = 21.5 kWh, where, for the 294
dataset, E[Br ] is the average drift divided by γ . Figure 4 shows the stored energy for the reference 295
system and the finite capacity leakage queue. Note that the reference system initially takes negative 296
values for Br (n). In Figure 4(a), whereC > E[Br ], the stored energy in the reference system tracks 297
the energy in the finite capacity leakage queue with a high degree of accuracy. In Figure 4(b), we 298
show the results forC < E[Br ]. Here, the stored energy in the finite capacity leakage queue is very 299
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Fig. 4. Stored energy with 20% self-discharge per day with solar power supply. In (a), whenC > E[Br ], the
stored energy B (n) (blue line) remains well below the capacity. In (b), where C < E[Br ], the stored energy
stays close to the capacity. The stored energy Br (n) of the reference system (red line) tracks the actual stored
energy well in (a), but not in (b).

different from that of the reference system. In fact, the dynamics of the leakage queue resemble300
that of the finite capacity queue without leakage (shown in Figure 3(b)).301

In the next sections, we will establish that our observations in the numerical example extend302
to other supply and demand distributions. It turns out that all leakage queues with γ > 0 operate303
in one of two modes, which we will refer to as capacity-dominated regime and leakage-dominated304
regime, with very different characteristics.305

• Leakage-dominated regime (C > E[Br ]): This regime, illustrated in Figure 4(a), is char-306
acterized by an average stored energy below the storage capacity. This is unlike a conven-307
tional finite capacity queueing system (with γ = 0), where the storage is full or close to full308
for E[δ] > 0.309

• Capacity-dominated regime (C < E[Br ]): In this regime, illustrated in Figure 4(b), the310
stored energy is generally close to the capacityC , which necessarily results in a high prob-311
ability of overflow. The system behaves similarly to a conventional finite capacity queueing312
system without leakage.313

We will study the regimes in detail in Section 5, where we find that we must use different analysis314
methods for each regime.315

An interesting property of leakage queues is that increasing the storage capacity much beyond316
E[Br ] does not result in significant benefits. To emphasize this, we consider the same dataset as317
used for Figures 3 and 4 and compute the average stored energy as a function of the storage capac-318
ity. In Figure 5, we show the results for a daily self-discharge of 0%, 20%, and 50%. Without self-319
discharge, the average stored energy is always close to the capacity. With positive self-discharge,320
however, the average storage approaches a constant even as the capacity goes to infinity. The321
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Fig. 5. Average stored energy with self-discharge per day of 0%, 20%, or 50% with solar power supply.

value of this constant is close to the stored energy in the reference system. To our knowledge, this 322
feature of energy storage systems with self-discharge has not been reported previously. 323

So far, our observations of the stability of the leakage queue and the characterization of the 324
leakage-dominated regime by the reference system are limited to the depicted dataset. In the next 325
sections, we will corroborate our empirical findings for general random processes. 326

4 STABILITY AND CONVERGENCE 327

In this section, we prove that the leakage queue defined by Equation (1) converges for 0 < γ < 1 to 328
a unique steady state as n → ∞. The drift δ (n) for n = 0, 1, . . . is assumed to be an i.i.d. sequence of 329
random variables of finite expectation E[δ]. Assuming that E[δ] > 0, we characterize the steady- 330
state distribution of the stored energy, B, in terms of the steady state of the reference system Br 331
and the capacity C . In the leakage-dominated regime, where C > E[Br ], we prove that the steady 332
state is close to that of the reference system. In the capacity-dominated regime, whereC < E[Br ], 333
the expected drift in the dual system is negative. The steady state resembles that of a stable queue 334
without leakage. 335

4.1 Stability 336

A leakage queue of finite capacity C is stable by definition, since 0 ≤ B (n) ≤ C for all n ≥ 0. We 337
will derive another bound on the distribution of B (n) that does not depend on the capacity C . 338
This bound explains the stability of the buffer content that we observed in the leakage-dominated 339
regime in Figures 4(a) and 5. 340

By the recursive definition from Equation (1), we have that B (n) ≤ γ̄ B (n − 1) + [δ (n)]+. Solving 341
the recursion, and then using the i.i.d. assumption on the drift, we obtain 342

B (n) ≤ γ̄nB (0) +
n∑

m=1

γ̄n−m[δ (m)]+

=D γ̄nB (0) +
n−1∑
m=0

γ̄m[δ (m)]+ =: Y (n).
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In particular,343

E[B (n)] ≤ E[Y (n)] = γ̄nB (0) +
1 − γ̄n

γ
E
[
[δ]+

]
.

As n → ∞, the random variables converge to344

Y :=

∞∑
m=0

γ̄m[δ (m)]+ .

By monotone convergence, Y has finite mean, and is almost surely finite. By construction,345
Pr (B (n) > x ) ≤ Pr (Y > x ) holds for all n ≥ 0. Thus, Y provides a bound that does not depend346
onC . The bound improves uponC whenC � E[Br ]. For the reference system, a similar argument,347
using dominated convergence, shows that Br (n) converges in distribution to348

Br :=

∞∑
m=0

γ̄mδ (m). (9)

Since this series converges absolutely almost surely, the reference system is stable as well. We will349
refer to Br as the steady-state distribution of the reference system. Note that the expected value350
of Equation (9) agrees with Equation (8), justifying our earlier use of the notation E[Br ].351

4.2 Convergence to Steady State352

We next show that the stored energy in a leakage queue converges in distribution to a steady state.353

Theorem 4.1. Let δ (n) be an i.i.d. sequence of finite mean, C > 0, and 0 < γ < 1. Then the stored354
energyB (n) in a queue with leakage ratioγ , storage capacityC , and driftδ (n) converges in distribution355
to a steady state that does not depend on the initial condition.356

The key observation is that Equation (1) defines a contraction in a suitable metric on the space of357
probability distributions. Given two random variables X1, X2, with cumulative distribution func-358
tions (CDF) F1 (x ) = Pr (X1 ≤ x ) and F2 (x ) = Pr (X2 ≤ x ). Their Kantorovich-Rubinstein distance359
is defined by360

d (F1, F2) =

∫ ∞

−∞
|F1 (x ) − F2 (x ) | dx .

With a slight abuse of notation, we write d (X1,X2) in place of d (F1, F2) for the Kantorovich-361
Rubinstein distance between the distributions of X1 and X2. The following technical lemma pro-362
vides the necessary estimates. The proof is given in the Appendix.363

Lemma 4.2. Let X1 and X2 be random variables of finite mean. Then364

(1) d (αX1,αX2) = αd (X1,X2) for every α > 0.365
(2) d ([X1]+, [X2]+) ≤ d (X1,X2).366
(3) d (min{X1,C}),min{X2,C}) ≤ d (X1,X2) for every C ∈ R.367
(4) d (X1 + Y ,X2 + Y ) ≤ d (X1,X2) for every random variable Y of finite mean that is indepen-368

dent of X1 and X2.369

Proof of Theorem 4.1. Let Ψ be the transformation that maps the distribution of B (n − 1) to370
the distribution of B (n) according to Equation (1). Explicitly,371

Ψ(X ) =D min
{
[γ̄X + δ]+,C

}
, (10)

where δ is independent of X . By Lemma 4.2,372

d (Ψ(X1),Ψ(X2)) ≤ d (γ̄X1, γ̄X2)

= γ̄d (X1,X2).
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By Banach’s contraction mapping theorem, Ψ has a unique fixed point, which we denote by B. 373
Moreover, by induction, 374

d (B (n),B) ≤ γ̄nd (B (0),B),

proving convergence to the steady state. � 375

The last step of the proof allows us to strengthen Theorem 4.1. 376

Corollary 4.3. The convergence of B (n) to the steady state in Theorem 4.1 occurs exponentially 377
fast. 378

The same argument as in Theorem 4.1 shows the convergence of a leakage queue of infinite 379
capacity to its steady state. The only change is that Equation (10) should be replaced by Ψ(X ) =D 380
[γ̄X + δ]+. 381

The proof of the theorem also yields an estimate for the distance of the steady state in the leakage 382
queue from the steady state of the reference system (see Equation (9)). The estimate, given in the 383
next corollary, is proved in the Appendix. 384

Corollary 4.4. The steady-state distributions of the stored energy in the leakage queue and the 385
reference system satisfy 386

d (B,Br ) ≤ 1

γ

(∫ 0

−∞
Pr (Br ≤ x ) dx +

∫ ∞

C

Pr (Br > x ) dx

)
.

5 PROBABILISTIC BOUNDS 387

In this section, we quantify the underflow and overflow probabilities Pr (lu > 0) and Pr (lo > 0) at 388
the leakage queue. Based on Section 3, we expect the reference system to provide a good approxi- 389
mation for the leakage queue in the leakage-dominated regime where the storage capacity is large 390
enough to absorb random variations of power supply and demand. For the capacity-dominated 391
regime, we offer a separate martingale analysis. As in Section 4, we assume that the drift δ (n) is 392
an i.i.d. process with finite mean. We now additionally assume that δ (n) has finite variance. 393

5.1 Gaussian Analysis 394

In Section 4, we showed that the stored energy in the reference system Br (n) has a unique steady 395
state, given by Equation (9). In the special case where δ (k ) follows a Gaussian distribution, the 396
reference system Br is also Gaussian, with mean and variance in the steady state given by 397

E[Br ] =
E[δ]

γ
, Var[Br ] =

Var[δ]

1 − γ̄ 2
. (11)

Let B be the steady state of the stored energy in the corresponding leakage queue. If C > E[Br ], 398
we expect the stored energy B to be well-approximated by Br (see Corollary 4.4). In particular, 399
underflow and overflow probabilities should be small, and satisfy 400

Pr (lu > 0) ≈ Pr (Br < 0) = Φ �
�

E[Br ]√
Var[Br ]

�
	 , (12)

401

Pr (lo > 0) ≈ Pr (Br > C ) = Φ �
�
C − E[Br ]√

Var[Br ]
�
	 , (13)

where Φ is the standard normal CDF. 402
We evaluate the accuracy of this approximation for a leakage queue with a Gaussian drift by 403

comparing Equations (12) and (13) with simulations of the leakage queue. For the simulations, 404
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Fig. 6. Underflow and overflow of the leakage queue with Gaussian drift (E[a] = 1 kWh, E[s] = 0.8 kWh,
σa = 0.8 kWh, σs = 0.05 kWh. The self-discharge per day is 0%, 20%, or 50%).

we compute averages over multiple repetitions of long simulation runs. We consider a storage405
system with a size up to 50 kWh, which covers a reasonable range for residential energy storage406
systems [53]. We assume a self-discharge of 20% per day (γ = 0.0093) or 50% per day (γ = 0.0285),407
and also consider a system without self-discharge (γ = 0). The energy supply and demand in a408
time slot of one hour are both Gaussian with expected values E[a] = 1 kWh and E[s] = 0.8 kWh,409
and standard deviations σa = 0.8 kWh and σs = 0.05 kWh. The resulting drift is Gaussian with410
E[δ] = E[a] + E[s] and variance Var[δ] = Var[a] + Var[s].411

Figure 6(a) depicts the underflow probability computed from Equation (12) as a function of the412
storage capacity and compares it with simulations. Since the expression for Pr (Br < 0) in Equa-413
tion (12) does not depend on C , the analysis yields a straight line. The simulations of a system414
without leakage show that the underflow probability decreases exponentially in C . For systems415
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with leakage, however, the underflow probability becomes eventually constant in the leakage- 416
dominated region (C > E[Br ]). Increasing the storage capacity further does not reduce the under- 417
flow probability. 418

In Figure 6(b), we consider the energy wasted due to overflows. For the system without leakage, 419
the overflow probability quickly settles at a value that does not depend on the storage capacity. 420
Here, the storage is mostly full and the overflow compensates for the excess supply compared to 421
the demand. With non-zero leakage, we observe a dramatically different behavior. The analytical 422
estimate for Pr (lo > 0) from Equation (13) decreases faster than exponentially in C , which is also 423
reflected in the simulations. We conclude that in leakage queues the overflow probability can be 424
reduced arbitrarily by increasing the storage capacity. 425

Both plots in Figure 6 show that the Gaussian analysis can provide good estimates of the under- 426
flow and overflow probabilities when the system is in the leakage-dominated regime (C > E[Br ]). 427
Even if δ (n) does not follow a Gaussian distribution, the Gaussian analysis provides good estimates 428
(see Section 6.1). 429

To understand why this is the case, let us consider general supply and demand processes that 430
are i.i.d. with arbitrary distributions. By Equation (9), the stored energy Br in the steady state of 431
the reference system is the sum of independent random variables γ̄mδ (m). In the limitγ → 0, these 432
random variables become i.i.d. In analogy with the Central Limit Theorem, one should expect that 433
the distribution of Br approaches a Gaussian. The following result states that a suitably normalized 434
version of Br does converge to the standard normal distribution. 435

Theorem 5.1. Let δ (n) be a sequence of i.i.d. random variables with finite mean and variance. For 436
0 < γ < 1, let Br be given by Equation (9). Then, as γ → 0, 437

Z :=
Br − E[Br ]√

Var[Br ]

converges in distribution to a standard normal random variable. 438

Proof. It suffices to show that the characteristic function E[eiθ Z ] converges to e−θ 2/2, the 439
characteristic function of the standard normal distribution, for every θ ∈ R [18, Theorem 3.3.6]. 440

Let X (θ ) be the characteristic function of the normalized random variable δ−E[δ ]√
Var[δ ]

. By the i.i.d. 441

assumption, 442

E[eiθ Z ] =

∞∏
k=0

X
(
γ̄ k (1 − γ̄ 2)

1
2θ

)
.

Since δ has finite variance,X is twice differentiable at zero, withX (0) = 1,X′(0) = 0, andX′′(0) = 443
1. Using the Taylor expansion ofX about zero, a routine estimate for the product (see, for example, 444

Reference [18, Exercise 3.1.1]) shows that E[eiθ Z ]→ e−θ 2/2 as γ → 0. � 445

If γ is not close to zero, additional moments of Br may be used to approximate its distribution. 446
Since Br is a sum of independent random variables, each of its cumulants can be computed directly 447
from the corresponding cumulant of δ , using Equation (9). In particular, the skewness of Br is given 448
by 449

Skew[Br ] =
(1 − γ̄ 2)

3
2

1 − γ̄ 3
Skew[δ]. (14)

For non-zero skewness, a skew-normal distribution fitted to the mean, variance, and skewness 450
of Br provides a better approximation to Pr (Br > C ) and Pr (Br < 0) than a Gaussian [4]. This 451
approximation can be inserted in place of the Gaussian on the right-hand sides of Equation (12) 452
and Equation (13). We will take advantage of the skew-normal approximation in Section 6.1. 453
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5.2 Martingale Analysis454

We have seen that the Gaussian analysis from the previous subsection provides a good level of455
accuracy in the leakage-dominated regime, but much less so in the capacity-dominated regime. A456
leakage queue in this regime is analogous to a finite capacity queueing system in overload. In this457
subsection, we prove bounds on the probability of underflow in the capacity-dominated regime.458
(The overflow probability is of less interest in this regime, since the stored energy is typically near459
capacity.)460

There is extensive work in the literature on bounding the probability of buffer overflow in sta-461
ble queueing systems [33]. An important tool is the exponential martingale technique, originally462
developed for studying hitting times of random walks and Brownian motion with drift [18, Exer-463
cises 5.7.4–5.7.9]. It has been used in the proof of the Kingman–Ross delay bounds [32, 45], as well464
as more complex situations including multiple queues [5], Markov-modulated processes [17, Sec-465
tion 3], and fork-join networks [44]. In those applications, the exponential martingale is applied466
to processes with stationary increments.467

In our analysis, we use that underflows in the leakage queue correspond to overflows in theQ3
468

dual system presented in Section 3.2. The dual system is analogous to a stable queueing system in469
underload. We apply the exponential martingale associated with the random variable

∑n
k=0 γ̄

kδ (k )470
to bound the overflow probability in the dual system. Different from the classical applications471
described above, the increments γ̄ kδ (k ) are not stationary for 0 < γ < 1, requiring new ideas in472
the analysis that result in stronger bounds. When γ = 0, our bounds reduce to the classical ones.473

Following is the main result of this subsection:474

Theorem 5.2. Consider a leakage queue with leakage ratio 0 < γ < 1 and a drift given by an i.i.d.475
process δ (n). Assume that the moment-generating function M (θ ) = E[eθ δ ] is finite for at least some476
θ < 0, and let477

θ ′0 := sup{θ ≥ 0 | γθC + logM (−θ ) ≤ 0},
θ ′1 := sup{θ ≥ 0 | logM (−θ ) ≤ 0}.

In the capacity-dominated regime where γC < E[δ], we have θ ′0 > 0, and the underflow probability478
in the steady-state is bounded by479

log Pr (lu > 0) ≤ 1

| log γ̄ |
⎧⎪⎨⎪⎩−γθ

′
0C +

∫ θ ′1

θ ′0

logM (−τ )

τ
dτ

⎫⎪⎬⎪⎭ . (15)

The proof of the theorem proceeds by bounding the overflow probability of the dual leakage480
queue introduced in Section 3.2, using the following two lemmas. The first lemma provides a basic481
bound on the probability of overflow.482

Lemma 5.3. Consider a leakage queue with leakage ratio 0 < γ < 1 and a drift given by an i.i.d. pro-483
cess δ (n), whose expectation may be positive, negative, or zero. Assume that the moment-generating484
function M (θ ) = E[eθ δ ] is finite for some θ > 0, and let485

θ0 = sup{θ ≥ 0 : logM (θ ) ≤ 0}. (16)

Then for every θ > 0, the overflow probability in the steady state is bounded by486

Pr (lo > 0) ≤ e−θC
∏

k≥0: γ̄ k θ>θ0

M (γ̄ kθ ). (17)

Proof. By Theorem 4.1, the steady-state of a leakage queue does not depend on the choice of487
the initial condition. Suppose the leakage queue is started with B (0) = 0. By Theorem 3.1, we have488
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for every n > 0, 489

B (n) = min
0≤m≤n

{
max

m≤j≤n
{γ̄n−mC1j=m>0 + Δγ (j,n)}

}
≤ max

0≤j≤n
{Δγ (j,n)}

=D max
0≤m≤n

⎧⎪⎨⎪⎩
m−1∑
k=0

γ̄ kδ (k )
⎫⎪⎬⎪⎭ .

In the second line, we have set m = 0, and in the third line, we have used the i.i.d. assumption. 490
Taking n → ∞ yields for the steady state 491

Pr (lo > 0) ≤ Pr ��max
m≥0

m∑
k=0

γ̄ kδ (k ) > C�	 .
To derive a bound on the right-hand side, fix θ > 0 and define the exponential martingale by the 492

recursion 493

Z (0) =
eθ δ (0)

M (θ )
, Z (m) =

eγ̄ mθ δ (m)

M (γ̄mθ )
Z (m − 1), (m > 0).

Since δ (m) is independent of Z (m − 1), the martingale property E[Z (m) |Z (m − 1)] = Z (m − 1) 494
holds by construction. Solving the recursion yields 495

Z (m) =
e
∑m

k=0
γ̄ k θ δ (k )∏m

k=0 M (γ̄ kθ )
.

For n ≥ 0, let tn be the minimum of n and the first time slot when
∑m

k=0 γ̄
kδ (k ) exceeds C . By 496

definition, lo > 0 if and only if tn < n for some n. By the optional stopping theorem, 497

1 = E[Z (0)] =
n∑

m=0

E[Z (tn ) |tn =m] Pr (tn =m). (18)

Clearly,
∑m

k=0 γ̄
kδ (k ) > C whenever tn =m < n, and therefore, 498

E[tn |tn =m] ≥ eθC∏m
k=0 M (γ̄ kθ )

, (m < n).

Since the last summand in Equation (18) is nonnegative, it follows that 499

1 ≥
n−1∑
m=0

E[Z (tn ) |tn =m] Pr (tn =m)

≥ eθC∏∞
k=0 max{M (γ̄ kθ ), 1}

Pr (tn < n).

We solve for Pr (tn < n) and take n → ∞ to obtain 500

Pr (lo ≥ C ) ≤ lim
n→∞

Pr (tn < n)

≤ e−θC
∞∏

k=0

max{M (γ̄ kθ ), 1}.

The proof is completed by noting that M (γ̄ kθ ) ≤ 1 for γ̄ kθ < θ0, and M (γ̄ kθ ) ≥ 1 otherwise. � 501
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In Theorem 5.2, if E[δ] < 0, then we have θ0 > 0. Setting θ = θ0 in Equation (17) then yields the502
bound503

Pr (lo > 0) ≤ e−θ0C .

Note that this bound does not depend on γ , while the actual overflow probability decreases with γ .504
To capture this decrease, we next replace the bound on the overflow probability in Equation (17)505
by an expression that can be more easily computed in practice and then optimize over the choice506
of θ . The result is given by the following lemma.507

Lemma 5.4. Under the assumptions of Lemma 5.3, let508

θ1 = sup{θ ≥ 0 | logM (θ ) ≤ γθC}. (19)

Then509

log Pr (lo > 0) ≤ 1

| log γ̄ |

{
−γθ1C +

∫ θ1

θ0

logM (τ )

τ
dτ

}
.

Proof. Taking logarithms in Equation (17) yields for any θ > 0510

log Pr (lo ≥ C ) ≤ −θC +
∞∑

k=0

[logM (θγ̄ k )]+. (20)

We next use the convexity of the function [logM (θ )]+ to replace the sum by an integral. For any511
θ > 0, the density ρ (τ ) = (τ | log γ̄ |)−1 defines a probability measure with mean θ on the interval512

I (θ ) :=
{
τ ���γ̄ | log γ̄ |θ ≤ γτ < | log γ̄ |θ

}
.

Indeed, one easily checks that513 ∫
I (θ )

1

τ | log γ̄ | dτ = 1,

∫
I (θ )

τ

τ | log γ̄ | dτ = θ .

By Jensen’s inequality,514

[logM (θ )]+ ≤
∫

I (θ )

[logM (τ )]+

τ | log γ̄ | dτ ,

and correspondingly for γ̄ kθ in place of θ . Since the intervals I (γ̄ kθ ) are disjoint for k ≥ 0, and515
their union is given by516 ⋃

k≥0

I (γ̄ kθ ) = {τ | 0 < γτ < | log γ̄ |θ },

it follows that517
∞∑

k=0

[logM (γ̄ kθ )]+ ≤ 1

| log γ̄ |

∫ γ −1 | log γ̄ |θ

0

[logM (τ )]+

τ
dτ .

We then insert this estimate into Equation (20), replace θ with γ ( | log γ̄ |)−1θ , and use that518
logM (τ ) ≤ 0 for 0 ≤ τ ≤ θ0 and positive otherwise to obtain519

log Pr (lo > 0) ≤ 1

| log γ̄ |

{
−γθC +

∫ θ

θ0

logM (τ )

τ
dτ

}
.

The right-hand side achieves its minimum at θ = θ1. �520
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Fig. 7. Underflow of the leakage queue in the capacity-dominated regime. (E[a] = 1 kWh, E[s] = 0.8 kWh,
σa = 0.8 kWh, σs = 0.05 kWh. The self-discharge per day is 0%, 20%, or 50%).

Proof of Theorem 5.2. Consider the dual leakage queue defined in Section 3.2, with drift pro- 521
cess δ ′(n) = γC − δ (n). By assumption, its moment-generating function M ′(θ ) = eγ θCM (−θ ) is 522
finite for some θ > 0. Therefore, we can apply Lemma 5.4 to the dual leakage queue. By definition, 523

θ ′0 = sup{θ ≥ 0 : logM ′(θ ) ≤ 0},
θ ′1 = sup{θ ≥ 0 : logM ′(θ ) ≤ γθC}

(see Equations (16) and (19)). It follows from Lemma 5.4 that 524

log Pr (lu > 0) = log Pr (l ′o > 0)

≤ 1

| log γ̄ |
⎧⎪⎨⎪⎩−γθ

′
1C +

∫ θ ′1

θ ′0

logM ′(τ )

τ
dτ

⎫⎪⎬⎪⎭ .
Since logM ′(θ ) = γθC + logM (−θ ), this proves the claim. � 525

We note that Theorem 5.2, Lemma 5.3, and Lemma 5.4 remain valid in the leakage-dominated 526
regime. In that regime, θ0 = θ

′
0 = 0, but θ1 and θ ′1 are positive, resulting in non-trivial bounds on 527

the probabilities of overflow and underflow. 528

Example. If δ is Gaussian, the bounds on the overflow and underflow probabilities can be evalu- 529
ated in closed form, as follows: Suppose δ has mean E[δ] = μ > 0 and variance Var[δ] = σ 2. Using 530

that logM (θ ) = μθ + σ 2

2 θ
2, we compute θ0 = 0, θ1 =

2
σ 2 [γC − μ]+, θ ′0 =

2
σ 2 [μ − γC]+, and θ ′1 =

2μ

σ 2 . 531
The resulting bounds are: 532

• Capacity-dominated regime (γC ≤ μ): 533

Pr (lu > 0) ≤ e
− (γ C )(2μ−γ C )

| log γ̄ |σ 2 .

• Leakage-dominated regime (γC > μ): 534

Pr (lu > 0) ≤ e
− μ2

| log γ̄ |σ 2 , Pr (lo > 0) ≤ e
− (γ C−μ )2

| log γ̄ |σ 2 .

In Figure 7, we evaluate the underflow probabilities obtained with Theorem 5.2 for a leakage 535
queue with Gaussian supply and demand processes as in Section 5.1, with the same set of param- 536
eters. The martingale bounds provide good upper bounds on the underflow probabilities in the 537
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Table 1. Parameters of the Wind Turbine

Notation Definition value
Pr Rated power 1 kW
vci Cut-in wind speed 3 m/s
vco Cut-out wind speed 25 m/s
vr Rated wind speed 12 m/s
Aw Total swept area 10.8 m2

ηw Wind turbine efficiency 50%

capacity-dominated regime (to the left of the respective value of E[Br ]). In the leakage-dominated538
regime, the bounds are less accurate than the Gaussian analysis in Figure 6(a).539

6 EVALUATION WITH A WIND ENERGY MODEL540

We next consider a leakage queue with a supply process that resembles a wind energy source. Our541
objectives are twofold. First, we want to see if the reference system remains useful in the context542
of more complex random processes. Second, we want to evaluate the accuracy of our analysis. We543
use the wind speed process from Reference [48], which models wind speed as an i.i.d. process with544
a Weibull distribution with density function545

fV (v ) =
k

c

(v
c

)k−1

e−( v
c )k

,

where c and k , respectively, are the scale and shape parameters of the Weibull distribution. As in546
Reference [48], we set the shape parameter to k = 3. The scale parameter factor is set to c = 7 m/s,547
which results in an average wind speed of 6.25 m/s.548

We consider a wind turbine with a rated power of Pr = 1 kW, which is comparable to a micro549
wind turbine for a residential home [7]. The output power of wind turbines, denoted by Pw and550
expressed in kW /m2, is a function of the wind speed v . Wind turbines are activated only when551
the wind speed is above a lower threshold (cut-in speed) and below an upper threshold (cut-out552
speed). The rated speed is the wind speed at which the wind turbine generates its rated power Pr .553
Using the power model from Reference [10], we obtain554

Pw =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 v < vci ,
αv3 − βPr vci ≤ v ≤ vr ,
Pr vr ≤ v ≤ vco ,
0 vco ≤ v,

(21)

where vci , vr and vco , respectively, are the cut-in, rated, and cut-out wind speeds, and α and β are555

calculated such that Equation (21) is continuous at vci and vr , i.e., α = Pr

v3
r−v3

ci

and β =
v3

ci

v3
r−v3

ci

. The556

actual power from the wind turbine is given by [10]557

a(n) = Pw · Aw · ηw ,

where Aw and ηw are the total swept area and the efficiency of the wind turbine, respectively. The558
parameters of the wind turbine are summarized in Table 1. With these parameters, we obtain a559
supply process with E[a] = 1 kWh and σa = 1.05 kWh.560

The demand process is set as the sum of a constant demand of 0.75 kWh and an i.i.d. expo-561
nential random value with average 0.05 kWh, resulting in E[s] = 0.8 kWh and σs = 0.05 kWh. We562
consider energy storage systems with a significant self-discharge, with leakage ratios γ = 0.0093563

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 5, No. 3, Article 14. Publication date: October 2020.



TOMPECS0503-14 ACMJATS Trim: 6.75 X 10 in October 14, 2020 20:58

Analysis of a Queueing Model for Energy Storage Systems with Self-discharge 14:21

Fig. 8. Underflow and overflow probabilities of the leakage queue with wind energy source. (E[a] = 1 kWh,
E[s] = 0.8 kWh, σa = 1.05 kWh, σs = 0.05 kWh. The self-discharge per day is 0%, 20%, or 50%).

(20% per day) and γ = 0.0285 (50% per day), which is within the range of supercapacitors or fly- 564
wheels. As before, we use 1 hour for the length of a time slot. 565

6.1 Underflow and Overflow Probabilities 566

In Figure 8, we show the underflow and overflow probability as a function of the capacityC for dif- 567
ferent leakage ratios. We compare the results of the Gaussian analysis with simulations. Note that 568
the average drift E[δ] as well as the leakage ratios match the examples in Section 5. A comparison 569
of Figure 8 with Figure 6 validates the Gaussian analysis for supply and demand distributions that 570
are not Gaussian. 571

Figure 8 shows that the accuracy of the Gaussian analysis is high in the leakage-dominated 572
regime (C > E[Br ]). As seen in Figure 6 for Gaussian supply and demand, the underflow probability 573
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Fig. 9. Underflow probability of the leakage queue with wind energy source in the capacity-dominated
regime. (E[a] = 1 kWh, E[s] = 0.8 kWh, σa = 1.05 kWh, σs = 0.05 kWh. The self-discharge per day is 0%,
20%, or 50%).

(Figure 8(a)) approaches a constant when the capacity is increased. For the overflow probability574
(Figure 8(b)), we again observe a faster than exponential decay in C in the presence of leakage.575

In Figure 9, we present the underflow probabilities computed with the martingale analysis,576
which extends to the capacity-dominated regime. Here, the underflow probabilities decreases more577
slowly in the storage capacity, as compared to a conventional system without leakage. Once the578
system approaches the leakage-dominated regime, increasing the buffer size has a negligible im-579
pact on the underflow probability.580

6.2 Another Validation of the Reference System581

We return to the main finding of this article, which is the distinct behavior of the leakage queue in582
the leakage-dominated regime. In Section 3.3, we used empirical data to show that the reference583
system provides an accurate characterization of the leakage queue. Further, in Section 5.1, we584
proved for this regime that the reference system approaches a Gaussian distribution when γ is585
small. Next, we compare the distribution of the stored energy (backlog) in the leakage queue with586
a Gaussian distribution.587

We work with the same supply and demand processes as before. We consider energy storage588
systems withγ = 0.0093 (20% self-discharge per day), and, therefore, E[Br ] = 21.5 kWh. The queue589
is leakage-dominated for C = 40 kWh and capacity-dominated for C = 10 kWh and C = 20 kWh.590

The distributions of the stored energy are presented in a quantile-quantile (Q-Q) plot. We591
compare quantiles of simulations of a leakage queue with those of the Gaussian distribution. In592
Figure 10, we provide the quantiles of the Gaussian distribution on the horizontal axis. The diago-593
nal line, shown as a thin solid line, therefore, depicts the Gaussian distribution. The thick solid line594
(in gray) has the results for the skew-normal distribution, using the skewness for Br from Equa-595
tion (14). The quantiles obtained from the simulations are shown as colored data points in incre-596
ments of 5%. The closer the data points are to the diagonal, the better the match is with the Gauss-597
ian distribution. We observe that the stored energy in a leakage-dominated regime (C = 40 kWh)598
is very close to the diagonal. The match is further improved with the skew-normal distribution.599
The capacity-dominated regime (C = 10, 20 kWh) is obviously poorly matched with a Gaussian600
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Fig. 10. Distribution of the stored energy (backlog) for the leakage queue with wind energy source. (Self-
discharge per day is 20%;C = 10, 20, 40 kWh, E[a] = 1 kWh, E[s] = 0.8 kWh, σa = 1.05 kWh, σs = 0.05 kWh).

distribution. Even, forC = 20 kWh, when the storage capacity is close to E[Br ], the Q-Q plot is far 601
from the diagonal. 602

7 CONCLUSIONS 603

We presented an analysis of a queueing model for an energy storage system with self-discharge. 604
The model, referred to as leakage queue, has a self-discharge process that removes storage con- 605
tent proportionally to the filling level. We identified two distinct parameter regimes for the leak- 606
age queue, which we called leakage-dominated regime and capacity-dominated regime. In the 607
leakage-dominated regime, the queue settles in a steady state below the storage capacity. In the 608
capacity-dominated regime, the leakage queue resembles a conventional finite capacity queueing 609
system. We presented analytical methods for computing probabilities of underflow and overflow 610
and evaluated their accuracy. An extension of our work is a relaxation of the i.i.d. assumption to 611
general stationary arrival and service processes. For the leakage-dominated regime, a natural ap- 612
proach will be to establish a reference system using a Gaussian process with autocorrelations. For 613
the capacity-dominated regime, an extension could benefit from the recent martingale analysis of 614
a finite capacity queue with Markov-modulated arrivals by Ciucu, Poloczek, and Rizk. However, 615
that analysis can currently not account for a leakage process as considered in this article. 616

APPENDICES 617

A PROOF OF LEMMA 4.2 618

619Proof. For the first claim, we use that the CDF of αXi is 620

Pr (αXi ≤ x ) = Fi (α−1x ), i = 1, 2

and compute 621

d (γX1,γX2) =

∫ ∞

−∞
|F1 (α−1x ) − F2 (α−1x ) | dx

= α

∫ ∞

−∞
|F1 (y) − F2 (y) | dy

= α d (X1,X2).
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The next two claims are immediate from the facts that the CDF of [Xi ]
+ is Fi1x>0, and the CDF of622

min{Xi ,C} is Fi1x ≤C . For the final claim, let μ be the probability distribution of Y . Then the CDF623

of Xi + Y is Fi ∗ μ (x ) =
∫
Fi (x − y) dμ (y) for i = 1, 2. Therefore,624

d (X1 + Y ,X2 + Y ) =

∫ ∞

−∞

�����
∫ ∞

−∞
F1 (x − y) − F2 (x − y) dμ (y)

����� dx
≤

∫ ∞

−∞

∫ ∞

−∞

���F1 (x − y) − F2 (x − y)���dμ (y) dx

= d (X1,X2).

We have used Minkowski’s inequality and then applied Fubini’s theorem. �625

B PROOF OF COROLLARY 4.4626

627 Proof. By Theorem 4.1, the distribution of the stored energy B (n) in the leakage queue con-628
verges to the steady state regardless of the choice of the initial condition B (0). Let us use the steady629
state of the reference system as an initial condition for B (n), that is, B (0) =D Br . It is a consequence630
of the contraction mapping theorem that the distance to the steady state is bounded by631

d (B,B (n)) ≤ γ̄n

γ
d (B (1),B (0)).

We set n = 0 and proceed to estimate d (B (1),B (0)). Due to our choice of the initial state, Equa-632
tion (1) yields633

B (1) =D Ψ(B) = min
{
[B]+,C

}
,

because γ̄ Br + δ =D Br by the definition of the reference system. Therefore,634

d (B (1),B (0)) =

∫ 0

−∞
Pr (Br ≤ x ) dx +

∫ ∞

C

Pr (Br > x ) dx ,

completing the proof. �635

REFERENCES

[1] C. J. Ancker Jr. and A. V. Gafarian. 1963. Some queuing problems with balking and reneging, I. Oper. Res. 11, 1 (Jan./Feb.636
1963), 88–100.637

[2] O. Ardakanian, S. Keshav, and C. Rosenberg. 2012. On the use of teletraffic theory in power distribution systems.638
In Proceedings of the 3rd International Conference on Energy-efficient Computing and Networking (ACM e-Energy’12).639
1–10.640

[3] S. Athuraliya, S. H. Low, V. Li, and Q. Yin. 2001. REM: Active queue management. IEEE Netw. 15, 3 (2001), 48–53.641
[4] A. Azzalini. 2013. The Skew-normal and Related Families. Cambridge University Press.642
[5] F. Baccelli. 1986. Exponential martingales and Wald’s formulas for two-queue networks. J. Appl. Probab. 23, 3 (1986),643

812–819.644
[6] F. Baccelli, P. Boyer, and G. Hebuterne. 1984. Single-server queues with impatient customers. Adv. Appl. Probab. 16,645

4 (1984), 887–905.646
[7] A. . Bahaj, L. Myers, and P. A. B. James. 2007. Urban energy generation: Influence of micro-wind turbine output on647

electricity consumption in buildings. Energy Build. 39, 2 (2007), 154–165.648
[8] N. Barjesteh. 2013. Duality Relations in Finite Queueing Models. Master’s Thesis. University of Waterloo, Canada.649

Retrieved from http://hdl.handle.net/10012/7715.650
[9] O. Boxma and B. Zwart. 2018. Fluid flow models in performance analysis. Comput. Commun. 131 (2018), 22–25.651

[10] R. Chedid, H. Akiki, and S. Rahman. 1998. A decision support technique for the design of hybrid solar-wind power652
systems. IEEE Trans. Energy Convers. 13, 1 (1998), 76–83.653

[11] M. Chen and G. A. Rincon-Mora. 2006. Accurate electrical battery model capable of predicting runtime and IV per-654
formance. IEEE Trans. Energy Convers. 21, 2 (2006), 504–511.655

[12] F. Ciucu, F. Poloczek, and A. Rizk. 2019. Queue and loss distributions in finite-buffer queues. Proc. ACM Meas. Anal.656
Comput. Syst. 3, 2 (June 2019), 31:1–31:29.657

[13] J. W. Cohen. 1969. The Single Server Queue. North-Holland.658

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 5, No. 3, Article 14. Publication date: October 2020.

http://hdl.handle.net/10012/7715


TOMPECS0503-14 ACMJATS Trim: 6.75 X 10 in October 14, 2020 20:58

Analysis of a Queueing Model for Energy Storage Systems with Self-discharge 14:25

[14] R. L. Cruz and H. N. Liu. 1993. Single server queues with loss: A formulation. In Proceedings of the Conference on 659
Information Sciences and Systems (CISS’93). John Hopkins University. 660

[15] A. Dekka, R. Ghaffari, B. Venkatesh, and B. Wu. 2015. A survey on energy storage technologies in power systems. In 661
Proceedings of the IEEE Electrical Power and Energy Conference (EPEC’15). 105–111. 662

[16] K. C. Divya and J. Østergaard. 2009. Battery energy storage technology for power systems—An overview. Electr. Pow. 663
Syst. Res. 79, 4 (2009), 511–520. 664

[17] N. Duffield. 1994. Exponential bounds for queues with Markovian arrivals. Queue. Syst. 17, 3–4 (1994), 413–430. 665
[18] R. Durrett. 2010. Probability: Theory and Examples (4th Edition). Cambridge University Press. 666
[19] S. Floyd and V. Jacobson. 1993. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 667

1, 4 (1993), 397–413. 668
[20] D. Fooladivanda, G. Mancini, S. Garg, and C. Rosenberg. 2014. State of charge evolution equations for flywheels. CoRR 669

abs/1411.1680 (Nov. 2014). 670
[21] D. Fooladivanda, C. Rosenberg, and S. Garg. 2016. Energy storage and regulation: An analysis. IEEE Trans. Smart Grid 671

7, 4 (2016), 1813–1823. 672
[22] L. Gelazanskas and K. Gamage. 2014. Demand side management in smart grid: A review and proposals for future 673

direction. Sustain. Cities Society 11 (2014), 22–30. 674
[23] E. Gelenbe, P. Glynn, and K. Sigman. 1991. Queues with negative arrivals. J. Appl. Probab. 28, 1 (1991), 245–250. 675
[24] Y. Ghiassi-Farrokhfal, S. Keshav, and C. Rosenberg. 2015. Toward a realistic performance analysis of storage systems 676

in smart grids. IEEE Trans. Smart Grid1 (2015), 402–410. 677
[25] Y. Ghiassi-Farrokhfal, C. Rosenberg, S. Keshav, and M. B. Adjaho. 2016. Joint optimal design and operation of hybrid 678

energy storage systems. IEEE J. Select. Areas Commun. 34, 3 (Mar. 2016), 639–650. 679
[26] P. G. Harrison and E. Pitel. 1996. The M/G/1 queue with negative customers. Adv. Appl. Probab. 28, 2 (June 1996), 680

540–566. 681
[27] H. Ibrahim, A. Ilinca, and J. Perron. 2008. Energy storage systems–characteristics and comparisons. Renew. Sustain. 682

Energy Rev. 12, 5 (2008), 1221–1250. 683
[28] D.-M. Chiu, R. Jain. 1989. Analysis of the increase and decrease algorithms for congestion avoidance in computer 684

networks. Comput. Netw.orks and ISDN Syst. 17, 1 (1989), 1–14. 685
[29] G. L. Jones, P. G. Harrison, U. Harder, and T. Field. 2011. Fluid queue models of battery life. In Proceedings of the IEEE 686

19th Annual International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication 687
Systems (MASCOTS’11). 278–285. 688

[30] F. Kazhamiaka, C. Rosenberg, S. Keshav, and K.-H. Pettinger. 2016. Li-ion storage models for energy system optimiza- 689
tion: The accuracy-tractability tradeoff. In Proceedings of the 7th International Conference on Future Energy Systems 690
(ACM e-Energy’16). 17:1–17:12. 691

[31] F. P. Kelly. 1991. Effective bandwidths at multi-class queues. Queue. Syst.ems 9, 1–2 (1991), 5–15. 692
[32] J. F. C. Kingman. 1964. A martingale inequality in the theory of queues. Math. Proc. Cambr. Philos. Society 60, 2 (1964), 693

359–361. 694
[33] H. Kobayashi and A. Konheim. 1977. Queueing models for computer communications system analysis. IEEE Trans. 695

Commun. 25, 1 (1977), 2–29. 696
[34] I. Koutsopoulos, V. Hatzi, and L. Tassiulas. 2011. Optimal energy storage control policies for the smart power grid. In 697

Proceedings of the International Conference on Communications, Control, and Computing Technologies for Smart Grids 698
(IEEE SmartGridComm’11). 475–480. 699

[35] J. Y. Le Boudec and P. Thiran. 2001. Network Calculus (Lecture Notes in Computer Science, Vol. 2050). Springer Verlag. 700
[36] J.-Y. Le Boudec and D.-C. Tomozei. 2012. A demand-response calculus with perfect batteries. In Proceedings of the 16th 701

International GI/ITG Conference (MMB & DFT), Workshop on Network Calculus (WoNeCa). Springer Berlin, 273–287. 702
[37] N. Li, L. Chen, and S. H. Low. 2011. Optimal demand response based on utility maximization in power networks. In 703

Proceedings of the IEEE Power and Energy Society General Meeting. 1–8. 704
[38] Z. Liu, I. Liu, S. Low, and A. Wierman. 2014. Pricing data center demand response. In Proceedings of the ACM SIG- 705

METRICS International Conference on Measurement and Modeling of Computer Systems. 111–123. 706
[39] A.-H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia. 2010. Autonomous demand-side 707

management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart 708
Grid 1, 3 (2010), 320–331. 709

[40] National Renewable Energy Laboratory. 1992. National Solar Radiation Data Base, 1961–1990: Typical Meteorological 710
Year 2. Retrieved from http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/tmy2/. 711

[41] National Renewable Energy Laboratory. 2017. System Advisor Model Version 2017.9.5 (SAM 2017.9.5). Retrieved from 712
https://sam.nrel.gov/downloads. 713

[42] M. A. Pedrasa, T. D. Spooner, and I. F. MacGill. 2010. Coordinated scheduling of residential distributed energy re- 714
sources to optimize smart home energy services. IEEE Trans. Smart Grid 1, 2 (2010), 134–143. 715

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 5, No. 3, Article 14. Publication date: October 2020.

http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/tmy2/
https://sam.nrel.gov/downloads


TOMPECS0503-14 ACMJATS Trim: 6.75 X 10 in October 14, 2020 20:58

14:26 M. Raeis et al.

[43] R. M. Phatarfod. 1963. Application of methods in sequential analysis to dam theory. Ann. Math. Statist. 34, 4 (1963),716
1588–1592.717

[44] A. Rizk, F. Poloczek, and F. Ciucu. 2015. Computable bounds in fork-join queueing systems. In Proceedings of the ACM718
SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. 335–346.719

[45] S. M. Ross. 1974. Bounds on the delay distribution in GI/G/1 queues. J. Appl. Probab. 11, 2 (June 1974), 417–421.720
[46] Z. M. Salameh, M. A. Casacca, and W. A. Lynch. 1992. A mathematical model for lead-acid batteries. IEEE Trans.721

Energy Convers. 7, 1 (1992), 93–98.722
[47] P. Samadi, A.-H. Mohsenian-Rad, R. Schober, V. W. S. Wong, and J. Jatskevich. 2010. Optimal real-time pricing algo-723

rithm based on utility maximization for smart grid. In Proceedings of the 1st IEEE International Conference on Com-724
munications, Control, and Computing Technologies for Smart Grids (SmartGridComm’10). 415–420.725

[48] J. V. Seguro and T. W. Lambert. 2000. Modern estimation of the parameters of the Weibull wind speed distribution726
for wind energy analysis. J. Wind Eng. Industr. Aerody. 85, 1 (2000), 75–84.727

[49] S. Singla, Y. Ghiassi-Farrokhfal, and S. Keshav. 2014. Using storage to minimize carbon footprint of diesel generators728
for unreliable grids. IEEE Trans. Sustain. Energy 5, 4 (2014), 1270–1277.729

[50] H. I. Su and A. E. Gamal. 2013. Modeling and analysis of the role of energy storage for renewable integration: Power730
balancing. IEEE Trans. Power Syst. 28, 4 (2013), 4109–4117.731

[51] S. Sun, M. Dong, and B. Liang. 2014. Real-time power balancing in electric grids with distributed storage. IEEE J.732
Select. Topics Sig. Proc. 8, 6 (2014), 1167–1181.733

[52] S. Sun, B. Liang, M. Dong, and J. A. Taylor. 2016. Phase balancing using energy storage in power grids under uncer-734
tainty. IEEE Trans. Power Syst. 31, 5 (2016), 3891–3903.735

[53] Tesla Inc. 2019. Tesla Powerwall. Retrieved from https://www.tesla.com/powerwall.736
[54] C. Thrampoulidis, S. Bose, and B. Hassibi. 2016. Optimal placement of distributed energy storage in power networks.737

IEEE Trans. Automat. Contr. 61, 2 (2016), 416–429.738
[55] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. Fathy. 2012. Energy storage in datacenters: What, where,739

and how much? In Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of740
Computer Systems. 187–198.741

[56] K. Wang, F. Ciucu, C. Lin, and S. H. Low. 2012. A stochastic power network calculus for integrating renewable energy742
sources into the power grid. IEEE J. Select. Areas Commun. 30, 6 (2012), 1037–1048.743

[57] A. R. Ward. 2012. Asymptotic analysis of queueing systems with reneging: A survey of results for FIFO, single class744
models. Surv. Oper. Res. Manag. Sci. 17, 1 (2012), 1–14.745

[58] World Energy Council. 2016. Energy Efficiency Indicators. Retrieved from https://wec-indicators.enerdata.net/746
household-electricity-use.html.747

[59] K. Wu, Y. Jiang, and D. Marinakis. 2012. A stochastic calculus for network systems with renewable energy sources.748
In Proceedings of the IEEE INFOCOM Workshops. 109–114.749

[60] P. Yang and A. Nehorai. 2014. Joint optimization of hybrid energy storage and generation capacity with renewable750
energy. IEEE Trans. Smart Grid 5, 4 (2014), 1566–1574.751

Received November 2019; revised July 2020; accepted September 2020752

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 5, No. 3, Article 14. Publication date: October 2020.

https://www.tesla.com/powerwall
https://wec-indicators.enerdata.net/household-electricity-use.html
https://wec-indicators.enerdata.net/household-electricity-use.html


TOMPECS0503-14 ACMJATS Trim: 6.75 X 10 in October 14, 2020 20:58

Author Queries

Q1: AU: Please supply the CCS Concepts 2012 codes per the ACM style indicated on the ACM
website. Please include the CCS Concepts XML coding as well.

Q2: AU: Please provide complete mailing addresses for all authors.

Q3: AU: “we use that underflows in the leakage queue correspond to overflows in the dual system
presented in Section 3.2.” written as meant?


