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Abstract—A statistical network service which allows a cer-
tain fraction of traffic to not meet its QoS guarantees can ex-
tract additional capacity from a network by exploiting sta-
tistical properties of traffic. Here we consider a statistical
service which assumes statistical independence of flows, but
does not make any assumptions on the statistics of traffic
sources, other than that they are regulated, e.g., by a leaky
bucket. Under these conditions, we present functions, so-
called local effective envelopesand global effective envelopes,
which are, with high certainty, upper bounds of multiplexed
traffic. We show that these envelopes can be used to obtain
bounds on the amount of traffic on a link that can be provi-
sioned with statistical QoS. A key advantage of our bounds
is that they can be applied with a variety of scheduling algo-
rithms. In fact, we show that one can reuse existing admis-
sion control functions that are available for scheduling algo-
rithms with a deterministic service. We present numerical
examples which compare the number of flows with statisti-
cal QoS guarantees that can be admitted with our empirical
envelope approach to those achieved with existing methods.

Key Words: Statistical Multiplexing, Statistical Service,
Scheduling, Quality-of-Service.

I. INTRODUCTION

Performance guarantees in QoS networks are either de-
terministic or statistical. Adeterministic serviceguaran-
tees that all packets from a flow satisfy given worst-case
end-to-end delay bounds and no packets are dropped in
the network [2], [4], [8], [15]. A deterministic service
provides the highest level of QoS guarantees, however, it
leaves a significant portion of network resources on the av-
erage unused [22].

A statistical servicemakes probabilistic service guaran-
tees, for example, of the form:

Pr[Delay > X] < " or Pr[Loss] < " :

By allowing a fraction of traffic to violate its QoS guaran-
tees, one can improve the statistical multiplexing gain at
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network links and increase the achievable link utilization.
The key assumption that leads to the definition of statis-
tical services is that traffic arrivals are viewed as random
processes. With this assumption a statistical service can
improve upon a deterministic service by (1) taking advan-
tage of knowledge about the statistics of traffic sources,
and (2) by taking advantage of the statistical independence
of flows.

Since it is often not feasible to obtain a reliable statis-
tical characterization of traffic sources, recent research on
statistical QoS has attempted to exploit statistical multi-
plexing without assuming a specific source model. Start-
ing with the seminal work in [8], researchers have inves-
tigated the statistical multiplexing gain by only assum-
ing that flows are statistically independent, and that traffic
from each flow is constrained by a deterministic regulator,
e.g., by a leaky bucket [5], [8], [7], [9], [10], [12], [16],
[17], [19], [20], [21]. Henceforth, we will refer to traffic
which satisfies these assumptions asregulated adversarial
traffic.

In this paper we attempt to provide new insights into
the problem of determining the multiplexing gain of sta-
tistically independent, regulated, but otherwise arbitrary
traffic flows at a network link. We introduce the notion
of effective envelopes, which are, with high certainty, up-
per bounds on the aggregate traffic of regulated flows. We
use effective envelopes to devise admission control tests
for a statistical service for a large class of scheduling algo-
rithms. We show that with effective envelopes, admission
control for a statistical service can be done in a similar
fashion as with deterministic envelopes for a deterministic
service [2], [4] . In fact, we show that one can reuse admis-
sion control conditions derived for various packet schedul-
ing algorithms in the context of a deterministic service,
e.g., [4], [15], [23]. Note that only few results are available
on statistical multiplexing of adversarial traffic, which can
consider scheduling algorithms other than a simple multi-
plexer [7], [12].

Related work, which, due to space constraints, cannot
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be fully discussed, are all attempts to consolidate the de-
terministic network calculus [4] with statistical multiplex-
ing (e.g., [2], [6], [10], [11], [12], [14]). In addition, of
particular relevance to this paper are all previous results
on statistical multiplexing gain with adversarial regulated
traffic, as cited above.

The results derived in this paper only apply to a single
node. Since traffic from multiple flows passing through
the same sequence of congested nodes may become corre-
lated, the assumption of statistical independence of flows
may not hold in such a setting. Only few results are cur-
rently available on end-to-end QoS guarantees for adver-
sarial regulated traffic [7], [20], [21].

The remaining sections of this paper are structured as
follows. In Section II we specify our assumptions on the
traffic and define the effective envelopes. In Section III
we derive sufficient schedulability conditions for a general
class of packet schedulers, which can be used for a de-
terministic and (two types of) statistical QoS guarantees.
In Section IV, we use large deviations results to derive
bounds for effective envelopes. In Section V we compare
the statistical multiplexing gain attainable with the effec-
tive envelopes approach to those obtained with other meth-
ods ([8], [12], [19]). In Section VI we present conclusions
of our work.

II. T RAFFIC ARRIVALS AND ENVELOPE FUNCTIONS

We consider traffic arrivals to a single link with trans-
mission rateC. As shown in Figure 1, the arrivals from
each flow are policed by a regulator, and then inserted into
a buffer. A scheduler determines the order in which traf-
fic in the buffer is transmitted. In the following, we view
traffic mainly as continuous-time fluid-flow traffic. Note,
however, that our discussion applies, without restrictions,
to discrete-time or discrete-size (packetized) views of traf-
fic arrivals.

QoS guarantees for a flowj are specified in terms of
a delay bounddj . A QoS violation occurs if traffic from
flow j experiences a delay exceedingdj. (We assume that
delays consist only of waiting time in the buffer and trans-
mission time.)

A. Traffic Arrivals

Traffic arrivals to the link come from a set of flows
which is partitioned intoQ classesCq, each containingNq

flows. (Each flow may itself be an aggregate of the traffic
from multiple sessions.)

The traffic arrivals from flowj in an interval[t1; t2) are
denoted asAj(t1; t2). We assume that a traffic flow is char-
acterized by a family of random variablesAj(t1; t2) which
is characterized as follows:
(A1) Additivity. For any t1 < t2 < t3, we have
Aj(t1; t2) +Aj(t2; t3) = Aj(t1; t3).
(A2) Subadditive Bounds. Traffic Aj is regulated by a
deterministic subadditive envelopeA�j as

Aj(t; t+ �) � A�j(�) 8t � 0;8� � 0 : (1)

(A3) Stationarity. The Aj are stationary random vari-
ables, i.e.,8t; t0 > 0

Pr[Aj(t; t+ �) � x] = Pr[Aj(t
0; t0 + �) � x] : (2)

In other words, all time shifts ofAj are equally probable.
(A4) Independence.TheAi andAj are stochastically in-
dependent for alli 6= j.
(A5) Homogeneity within a Class. Flows in the same
class have identical deterministic envelopes and identical
delay bounds. So,A�i = A�j anddi = dj if i and j are
in the same class. Henceforth, we denote bydq the delay
bound associated with traffic from classq. By ACq we
denote the arrivals from classq, that is,ACq (t; t + �) =P

j2Cq
Aj(t; t+ �).

Remarks:
� We want to point out that the above assumptions are
quite general. The class of subadditive deterministic traf-
fic envelopes is the most general class of traffic regulators
[4], [2]. The assumptions on the randomness of flows are
also quite general. Note that, different from [9], [10], we
do not require ergodicity.
� The traffic regulators most commonly used in practice
are leaky bucketswith a peak rate enforcer. Here, traffic
on flow j is characterized by three parameters(Pj ; �j ; �j)
with a deterministic envelope given by

A�j(�) = min fPj�; �j + �j�g 8� � 0 ; (3)

wherePj � �j is the peak traffic rate,�j is the average
traffic rate, and�j is a burst size parameter. We will use
this type of regulators in our numerical examples in Sec-
tion V.
� A consequence of subadditivity of theA�j is that the limit
�j := lim�!1A�j(�)=� exists, and that it provides an up-
per bound for the longterm arrival rate forAj . We will
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assume without loss of generality, that for allt,

lim
�!1

Aj(t; t+ �)

�
= �j : (4)

B. Definition of Effective Envelopes

We next definelocal effective envelopesandglobal ef-
fective envelopeswhich are, with high certainty, upper
bounds on aggregate traffic from a given classq. The
envelopes will be defined for a set of flowsC with ar-
rival functionsAj and aggregate trafficAC(t; t + �) =P

j2C Aj(t; t+ �).
Definition 1: A local effective envelopefor AC(t; t+�)

is a functionGC( � ; ") that satisfies for all� � 0 and allt

P r

�
AC(t; t+ �) � GC(� ; ")

�
� 1� " : (5)

In other words, alocal effective envelopeprovides a bound
for the aggregate arrivalsAC(t; t+ �) for any specific(‘lo-
cal’) time interval of length� . Under the stationarity as-
sumption (A3), Eqn. (5) holds for all timest, provided that
it only holds for one valuet = to.

It is easy to see that there exists a smallest local effec-
tive envelope, since the minimum of two local effective
envelopes is again such an envelope. Note, however, that
local effective envelopes are in general not subadditive in
� , but satisfy the weaker property

GC(�1 + �2; "1 + "2) � GC(�1; "1) + GC(�2; "2) : (6)

A local effective envelopeGC(� ; ") is a bound for the
traffic arrivals in an arbitrary, but fixed interval of length� .
Global effective envelopes, to be defined next, are bounds
for the arrivals in all subintervals[t; t + �) of a larger in-
terval.

For the definition of global effective envelopes, we take
advantage of the notion of empirical envelopes, as used in
[2], [22]. Consider a time intervalI� of length�. The
empirical envelopeEC( � ;�) of a collectionC of flows is
the maximum traffic in subintervals ofI� as follows:

EC(� ;�) = sup
[t ;t+�)�I�

AC(t; t+ �) : (7)

Definition 2: A global effective envelopefor an inter-
val I� of length � is a subadditive functionHC( � ;�)
which satisfies

Pr

�
EC(� ;�) � HC(� ;�; "); 80 � � � �

�
� 1� " :

(8)
The attribute ‘global’ is justified sinceHC( � ;�; ") is a
bound for traffic for all intervals of length� � � in I�.
Now, due to stationarity of theAj, Eqn. (8) holds forall

intervals of length�, if it holds for one specific intervalI�.
When applied to scheduling, we will select� such that it
has at least the length of the longest busy period.1

Assuming that one has obtained local or global effec-
tive envelopes separately for each traffic class, the follow-
ing lemma helps to obtain bounds for the traffic from all
classes.

Lemma 1: Given a set of flows that is partitioned into
Q classesCq, with arrival functionsACq . LetGCq andHCq

be local and global effective envelopes for classq. Then
the following inequalities hold. Correction:

7-20-99
(a) If

P
q GCq (�; ") � x, then, for allt,

Pr
hP

q ACq (t; t+ �) > x
i
< Q � ".

(b) If
P

pHCq(�; �; ") � x(�) for all � , then

Pr
h
9� :

P
p ECq(�; �) > x(�)

i
< Q � ".

The rather simple proof of the lemma can be found in
[1]. Our derivations in Section IV will make it clear that
for " small enough, neitherGCq norHCq are very sensitive
with respect to", so that the bounds for" andQ � " are
comparable.

III. D ETERMINISTIC AND STATISTICAL

SCHEDULABILITY CONDITIONS

In this section, we present three schedulability condi-
tions for a general class of work-conserving scheduling al-
gorithms. The first condition, expressed in terms of deter-
ministic envelopes, ensures deterministic guarantees. The
second and third conditions, which use the local and global
effective envelopes, respectively, yield statistical guaran-
tees. All three schedulability conditions will be derived
from the same expression for the delay of a traffic arrival in
an arbitrary work-conserving scheduler (Eqn. (14) in Sec-
tion III-A).

In our discussions, we will not take into considera-
tion that packet transmissions on a link cannot be pre-
empted. This assumption is reasonable when packet trans-
mission times are short. For the specific scheduling al-
gorithms considered in this paper, accounting for non-
preemptiveness of packets does not introduce principal
difficulties, however, it requires additional notation (see
[15]). Also, to keep notation minimal, we assume that the
transmission rate of the link is normalized, that isC = 1.

A. Schedulability

Suppose a (tagged) arrival from a flowj in class q
(j 2 Cq) arrives to a work-conserving scheduler at timet.

1For arrival functionsAj and regulators with deterministic envelopes
A
�
j , the longest busy period in a work-conserving scheduler is given by:

inff� > 0 ;
P

j2C A
�
j (�) � �g.
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Without loss of generality we assume that the scheduler is
empty at time0. We will derive a condition that must hold
so that the arrival does not violate its delay bounddq.

Let us useAq;t(t1; t2) to denote the traffic arrivals in the
time interval[t1; t2) which will be served before a classq
arrival at timet. LetAq;t

Cp
(t1; t2) denote the traffic arrivals

from flows inCp which contribute toAq;t(t1; t2).
Suppose thatt � �̂ is the last time beforet when the

scheduler does not contain traffic that will be transmitted
before the tagged arrival from classq. That is,

�̂ = inffx � 0 j Aq;t(t� x; t) � xg : (9)

So, in the time interval[t � �̂ ; t) the scheduler is contin-
uously transmitting traffic which will be served before the
tagged arrival. (Note that̂� is a function oft andq. To keep
notation simple, we do not make the dependence explicit.)

Given �̂ , the tagged class-q arrival at timet will leave
the scheduler at timet+ � if � > 0 is such that

� = inf
�
�out j Aq;t(t� �̂ ; t+ �out) � �̂ + �out

	
: (10)

Hence, the tagged class-q arrival does not violate its delay
bounddq if and only if

8�̂ 9�out � dq :
�
Aq;t(t� �̂ ; t+ �out) � �̂ + �out

	
:

(11)

Then, the traffic arrival does not have a deadline violation
if dq is selected such that

sup
�̂

�
Aq;t(t� �̂ ; t+ dq)� �̂

	 � dq : (12)

In general, Eqn. (12) is a sufficient condition for meeting a
delay bound. For FIFO and EDF schedulers, the condition
is also necessary [15].2

For a specific work-conserving scheduling algorithm,
let ��p (with ��̂ � ��p � dq ) denote the smallest values
for which

ACp(t� �̂ ; t+ ��p) � Aq;t
Cp
(t� �̂ ; t+ dq) : (13)

Remark: For most work-conserving schedulers one can
easily find��p such that equality holds in Eqn. (13). For
example, for FIFO, SP,3 and EDF schedulers, we have:

2A FIFO scheduler transmits traffic in the order of arrival times.
An EDF (Earliest-Deadline-First) scheduler tags traffic with a deadline
which is set to the arrival time plus the delay bounddq, and transmits
traffic in the order of deadlines.

3An SP (Static Priority) scheduler assigns each class a priority level
(we assume that a lower class index indicates a higher priority), and has
one FIFO queue for traffic arrivals from each class. SP always transmits
traffic from the highest priority FIFO queue which has a backlog.

FIFO: ��p = 0

SP: ��p =

8<
:

��̂ ; p > q
0 ; p = q
dq ; p < q

EDF: ��p = maxf��̂ ; dq � dpg

With Eqn. (13), the arrival from classq at timet does
not have a violation ifdq is selected such that

sup
�̂

(X
p

ACp(t� �̂ ; t+ ��p)� �̂

)
� dq : (14)

Next, we show how Eqn. (14) can be used to derive
schedulability conditions for deterministic and statistical
services, using deterministic envelopes, local effective en-
velopes, and global effective envelopes. For a determinis-
tic service, the delay bounddq must be chosen such that
Eqn. (14) is never violated. For a statistical service,dq is
chosen such that a violation of Eqn. (14) is a rare event.

B. Schedulability with Deterministic Envelopes

Exploiting the property of deterministic envelopes in
Eqn. (1), we can relax Eqn. (14) to

sup
�̂

8<
:X

p

X
j2Cp

A�j (��p + �̂)� �̂

9=
; � dq : (15)

Since,��p + �̂ is not dependent ont, we have obtained a
sufficient schedulability condition for an arbitrary traffic
arrival. We refer the reader [15] to verify that for FIFO
and EDF scheduling algorithms the condition in Eqn. (15)
is also necessary, in the sense that if it is violated, then
there exist arrival patterns conforming withA�j leading to
deadline violations for classq. For SP scheduling, the con-
dition is necessary only if the deterministic envelopes are
concave functions.

Next we present bounds on the likelihood of a violation
of Eqn. (14), using local and global effective envelopes.

C. Schedulability with Local Effective Envelopes

With Eqn. (14), the probability that the tagged arrival
from time t experiences a deadline violation is less than"
if dq is selected such that

Pr

"
sup
�̂

(X
p

ACp(t� �̂ ; t+ ��p)� �̂

)
� dq

#
� 1� " :

(16)
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Let us, for the moment, make the convenient assumption
that

Pr

"
sup
�̂

(X
p

ACp(t� �̂ ; t+ ��p)� �̂

)
� dq

#
�

sup
�̂

Pr

"X
p

ACp(t� �̂ ; t+ ��p)� �̂ � dq

#
:(17)

Assuming that equality holds in Eqn. (17), we can re-write
Eqn. (16) as

sup
�̂

Pr

"X
p

ACp(t� �̂ ; t+ ��p)� �̂ � dq

#
� 1� " :

(18)

Remark:The assumption in Eqn. (17) requires further jus-
tification, since, in general, the right hand side is larger
than the left hand side. On the other hand, several works
on statistical QoS have used Eqn. (17) with equality [3],
[11], [12], [13], [14], and, in several cases, have supported
the assumption with numerical examples.

Recall from the definition of the local effective envelope
that GCp(�; ") � x impliesPr

�
ACp(t; t+ �) > x

�
< ".

Then, with Lemma 1(a) and assuming that Eqn. (17) holds
with equality, we have that a class-q arrival has a deadline
violation with probability< " if dq is selected such that

sup
�̂

(X
p

GCp(��p + �̂ ; "=Q) � �̂

)
� dq : (19)

With Eqn. (19) we have found an expression for the proba-
bility that an arbitrary traffic arrival results in a violation of
delay bounds. This condition can be viewed as a general
formulation of the schedulability conditions for statistical
QoS from [11], [12], [14].

The drawback of the condition in Eqn. (19) is its depen-
dence on the assumption in Eqn. (17). Empirical evidence
from numerical examples, including those presented in this
paper, as well as numerical evidence from previous work
which employed this assumption [3], [12], suggests that
Eqn. (19) is not overly optimistic. However, it should be
noted that the bound in Eqn. (19) is not a rigorous one.

D. Schedulability with Global Effective Envelopes

We next use global effective envelopes to express the
probability of a deadline violation in a time interval. We
will see that this bound, while more pessimistic, can be
made rigorous.

Consider again the traffic arrival from classq which oc-
curs at timet. The arrival timet lies in a busy period of

the schedulerI� of length at most�, which starts at time
� t � �̂ and which ends at a time after the tagged arrival
has departed.

Using the properties of the empirical envelopeECp , as
defined in Section II, we have that, for allt and��p+ �̂ � 0, Correction:
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ECp(��p + �̂ ;�) � ACp(t� �̂ ; t+ ��p): (20)

Thus, we can only have a deadline violation if

9�̂ :

(X
p

ECp(��p + �̂ ;�)� �̂

)
� dq : (21)

With Lemma 1(b), the probability that an arrival from
classq experiences a deadline violation in the intervalI�
is< ", if dq is selected such that

sup
�̂

(X
p

HCp(��p + �̂ ;�; "=Q) � �̂

)
� dq : (22)

Note that the nature of the statistical guarantees derived
with local effective envelopes (in Subsection III-C) and
with global effective envelopes (in Subsection III-D) are
quite different. Local effective envelopes are (under the
assumption in Eqn. (17)) concerned with the probability
that a particular traffic arrival results in a deadline viola-
tion. Global effective envelopes address the probability
that a deadline violation occurs for some arrival in a cer-
tain time interval. Clearly, a service which guarantees the
latter is more stringent, and will lead to more conservative
admission control.

Lastly, we want to point to the structural similarities of
the conditions in Eqs. (15), (19), and (22). Thus, schedu-
lability conditions which have been derived for a deter-
ministic service can be reused, without modification, for a
statistical service if effective envelopes are available.

IV. CONSTRUCTION OFEFFECTIVE ENVELOPES

In this section we will construct the local and global ef-
fective envelopesGC andHC for the aggregate traffic from
a set of flows as described in (A1)-(A5). Throughout this
section, we will work only with flows from a single class.
So, we will drop the index ‘q’; andC andN , respectively,
will denote the set of flows and the number of flows. We
denote byA�(�) the common deterministic envelope for
the flows inC, and byAC(t; t+ �) the aggregate traffic.

Our derivations proceed in the following steps:
Step 1. We compute bounds for the moments of the in-
dividual flows Aj(t; t + �). Since the flows are inde-
pendent, this directly leads to bounds for the moments of
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AC(t; t+ �).4

Step 2. We use the Chernoff bound to determine a local
effective envelopeGC directly from our bounds on the mo-
ments.
Step 3. We use a geometric argument to constructHC

from any local effective envelopeGC . Specifically, we will
provide bounds of the following nature:

GC(� ; ") � HC(� ;�; ") � GC(� 0; "0) : (23)

where� 0=� > 1 and"0=" < 1 depend on�. We claim that
for " sufficiently small and� not too large,� 0=� � 1, and
resulting global effective envelope is reasonably close to
the local effective envelope.

A. Moment bounds

The moment generating functions of the distributions of
AC and theAj are defined as follows:

MC(s; �) := E[eAC(t;t+�)s] ; (24)

Mj(s; �) := E[eAj (t;t+�)s] : (25)

Due to the stochastic independence of the flows, we can
write:

MC(s; �) =
NY
j=1

Mj(s; �) : (26)

Thus, to obtain a bound onMC(s; �), it is sufficient to
bound the moment-generating function of a single flow
Aj(t; t+ �). The following lemma provides such a bound.
We refer to [1] for a proof.

Lemma 2: Assume thatA(t; t + �) satisfies Conditions
(A1), (A2), and (A3). Then,

M(s; �) � 1 +
��

A�(�)

�
esA

�(�) � 1
�
: (27)

Combining Eqn. (26) with (27) of Lemma 2 yields the
bound

MC(s; �) �
�
1 +

� �

A�(�)

�
esA

�(�) � 1
��N

: (28)

B. Local Effective Envelopes

B.1 Using the Central Limit Theorem
The bound in Eqn (28) can be strengthened to bounds

for individual moments. A case of particular interest is the
bound for the variance

V ar [AC(t; t+ �)]| {z }
=:~s2

� N ��(A�(�)� ��)| {z }
=:ŝ2

; (29)

4Note that the moment generating function for arrival functionsAj is
also computed in [2]. However, different from [2], our arrivalsAj are
regulated by deterministic functionsA�

j .

where we have used the bound on the second moment to-
gether with the assumption thatE [AC(t; t+ �)] = �� .

An application of the Central Limit Theorem, will now
yield a bound which is equivalent to Knightly’s bound on
therate variancein [12].

Using first the Central Limit Theorem and then the
bound on the variance in Eqn.(29), we see that forx > �� Correction:

7-20-99

Pr [AC(t; t+ �) � Nx]

� 1� �

�
Nx�N��

~s

�
(30)

� 1� �

�p
N

x� ��

ŝ

�
; (31)

where� is the cumulative normal distribution. Here,~s
and ŝ, respectively, are the square roots of the left hand
and right hand sides of Eqn. (29).

To findGC so that

Pr[AC(0; �) � GC(� ; ")] � " ; (32)

we setPr [AC(t; t+ �) � Nx] � " in Eqn. (31) and solve
for Nx. This gives us an (approximate) local effective en-
velope as

GC(� ; ") � N�� + z
p
N��

s
A�(�)

��
� 1 ; (33)

wherez �
p
j log (2�")j is defined by1� �(z) = ".

B.2 Using the Chernoff Bound
While the estimate in Eqn. (33) is asymptotically cor-

rect, for finite values ofN it is only an approximation. To
obtain a rigorous upper bound onPr [AC(0; �) � Nx], re-
call the Chernoff bound for a random variableY [18]:

Pr[Y � y] � e�sy E[esY ] 8s � 0 : (34)

In particular, forAC , this gives

Pr[AC(0; �) � Nx] � e�NxsMC(s; �) (35)

�
�
e�xs

�
1 +

� �

A�(�)

�
esA

�(�) � 1
���N

:(36)

Here, Eqn. (35) simply used the Chernoff bound, and
Eqn. (36) used Eqn. (28). Since we have a choice for se-
lectings in Eqn. (36), we want to make the bound as small
as possible. Forx < A�(�), the right hand side is minimal
whens is chosen so that

esA
�(�) =

x

��

A�(�)� ��

A�(�)� x
: (37)
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Substituting this value ofs into Eqn. (36) yields

Pr
�
AC(0; �) � Nx

�
�
����

x

� x
A�(�)

�
A�(�)� ��

A�(�)� x

�1� x
A�(�)

�N
:(38)

Again, our goal is to findGC satisfying Eqn. (32). Using
the bound in Eqn. (38) and enforcing thatGC(� ; ") is never
larger thanNA�(�) we may set

GC(� ; ") = N min(x;A�(�)) ; (39)

wherex is set to be the smallest number satisfying the in-
equality

���
x

� x
A�(�)

�
A�(�)� ��

A�(�)� x

�1� x
A�(�)

� "1=N : (40)

It can be verified that forN sufficiently large, this bound
matches closely the CLT bound of Eqn. (33).

Remark: For deterministic envelopes with a peak-
rate constraintA�(�) � P� , both expressions forGC in
Eqn. (39) and Eqn. (33) describe lines, with slopes which
depend on�, P , N , and". In other words, the arrivals
AC(t; t + �) satisfy, with probability at least1 � ", again
a rate constraint. The new rate differs from the mean rate
N� by an error of order

p
N (for fixed values of�, P , and

").

C. From Local to Global Effective Envelopes

We use the results from the previous subsection to con-
struct a global effective envelopeHC for AC . The first step
is a geometric estimate forEC for a particular value of� in
terms of the local effective envelope. The second step fixes
the value of the global effective envelope for a finite col-
lection of values�i. Finally, we obtain the entire envelope
by extrapolation.

Let us define two events:

B(x; t; �) = fAC(t; t+ �) � Nxg : (41)

B�(x; �) = fEC(� ;�) � Nxg : (42)

for an arbitrary intervalI� of length �. The event
B(x; t; �) occurs if the arrivals in the specific time inter-
val [t; t + � ] exceedNx, while B�(x; �) occurs if there
is some interval of length� in the intervalI� where the
arrivals exceedNx.

With Eqn. (38), we have a bound for the probability of
eventsB(x; t; �). The following bound forB�(x; �) in
terms ofB(x; t; �) will be used to constructHC(�;�; ")
from GC(�; ").

  τ
τ / k

τ'

Interval of length   Ιβ

Fig. 2. Embedding Intervals.

Lemma 3: Letk � 2 be a positive integer,I� an interval
of length�, t 2 I�, and0 � � � �. Then

Pr[B(x; t; �)] � Pr[B�(x; �)] �
� �k

�
Pr[B(x; t; � 0)] ; (43)

with � 0=� = (k + 1)=k.

Proof: By stationarity, we may assume thatI� = [0; �]
and t = 0. The left inequality holds by definition, since
B(x; 0; �) � B�(x; �). To see the inequality on the
right, let ti = i�=k (i = 0; : : : ; d�k=�e), and con-
sider the intervals[ti; ti+k+1] of length � 0 = k+1

k � for
i = 1; : : : ; d(� � �)k=�e (all but possibly the last are
subintervals of[0; �].) See Figure 2 for an illustration of
this construction. Clearly, every subinterval of length� in
I� is contained in at least one of the intervals of length� 0.
The claim now follows with stationarity. 2

Lemma 3 provides a bound on arrivals in all subintervals
of length� in I�. One of its implications is that for every
value of� ,

Pr

�
EC(� ;�) � GC

�k + 1

k
� ; "
�� � �k

�
" ; (44)

whereEC is the empirical envelope, andGC is any local
effective envelope.

We next assign a finite number of values for
HC( � ;�; "): Pick a collection of values�i andki (i =
1; : : : ; n) and define

HC(�i;�; ") = GC(� 0i ; "0) ; (45)

where

� 0i =
k + 1

k
�i and "0 = "

 
nX

i=1

�ki
�i

!�1

: (46)

To justify this construction, note that by Eqn. (44) we have

Pr
h
9i : EC(�i;�) � GC(� 0i ; "0)

i
�

nX
i=1

�ki
�i

"0 (47)

� " : (48)
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To get values for the global effective envelope on inter-
vals (�i�1; �i) and [0; �1), we first extrapolate, using the
boundA� and monotonicity, and then enforce subadditiv-
ity. More precisely, we set

HC(� ;�; ") = infP
�i=�

X
i

f(�i) : (49)

wheref is an auxiliary function defined by

f(�) =

8<
:

min fHC(�i�1;�; ") +A�(���i�1);
HC(�i;�; ")g � 2 [�i�1; �i); i = 2; : : : ; n

min fA�(�); HC(�1;�; ")g � 2 [0; �1)
:

(50)

In other words,HC is the largest subadditive function
which does not exceedf .

Since there exists no universal “best” global effective
envelope, it is clearly impossible to make an optimal
choice for the values of�i andki. It is, however, possi-
ble to make good choices, which lead to global effective
envelopes that approximate the given local effective enve-
lope well, at least when" is sufficiently small.

In our numerical results, we use

ki = k ; �i = i�o (i = 1; : : : ; n) ; (51)

where�o is a small number, and we choose

 = 1 +
1

k + 1
; k � z

�
z +

p
N

��

ŝ

�
; (52)

wherez is defined by1 � �(z) = " and ŝ by Eqn. (29).
The choice of the�i in Eqn. (51) guarantees that

HC(� ;�; ") � GC
�k + 1

k
 �; "0

�
; (53)

for all � 2 [�o; �], where, by Eqn. (46),

"0 =
�o( � 1)

�k
� " : (54)

In [1] we provide a justification for the choice ofk and
 in Eqn. (52) for peak-rate constrained traffic with large
burst sizes. This is done with a heuristic optimization
which applies the CLT approximation from Eqn. (33).

V. EVALUATION

In this section, we evaluate the effective envelope ap-
proach, using the schedulability conditions from Sec-
tion III and the bounds derived in Section IV. The key cri-
teria for evaluation is the amount of traffic on a link which
can be provisioned with QoS guarantees.

As benchmarks for statistical QoS provisioning we con-
sider the following non-statistical methods:

� Peak Rate:Peak rate allocation, provides deterministic
QoS guarantees, but, is an inefficient method for achieving
QoS.
� Deterministic: We use admission control tests for deter-
ministic QoS from Eqn. (15). The admissible traffic varies
with the scheduling algorithm.
� Average Rate: Average rate allocation only guarantees
finiteness of delays and average throughput.

We will evaluate the two methods for provisioning sta-
tistical QoS which are presented in this paper.
� Local Effective Envelope: Here we use Eqn. (18) to
determine admissibility. We will evaluate the quality of
the following two bounds, derived in Section IV:
– Local Effective Envelope (CB): Uses the bound from

Eqn. (40), obtained with the Chernoff bound.
– Local Effective Envelope (CLT): Uses the bound

from Eqn. (33), obtained with the Central Limit Theorem.
Recall from our discussion in Section IV that thelocal ef-
fective envelope (CLT)results are equivalent to the rate-
variance envelope method described in [12].
� Global Effective Envelope:We use Eqn. (22) to deter-
mine admissibility. The global effective envelope is con-
structed by first finding� (see Footnote 1), and choosing
a number�o which is small compared to the delay bounds.
We determine the parameters, k, and�i according to (51)
and (52). We then apply Eqn. (45) for each of the�i, and
complete the process by the extrapolation in Eqs. (49) and
(50). (In Eqn. (45), we use the local effective envelope
(CB) rather than the corresponding CLT bound, since the
latter would yield only approximate bounds.)

We compare our results with the effective bandwidth ap-
proach for regulated adversarial traffic from the literature:
� Effective Bandwidth [8], [16], [19]:5 The effective
bandwidth approach assigns to each flow a fixed capac-
ity, the effective bandwidth, and assumes that each flow is
serviced at a rate which corresponds to the effective band-
width.
The delay bounds will be indirectly derived from the buffer
size. We set the delay boundd to d = B=C, whereB is
the buffer size at the scheduler andC is the transmission
rate of the link.
In our examples, we include the following results on effec-
tive bandwidth:
– EB-EMW : This is the result from the classical paper

by Elwalid/Mitra/Wentworth (Eqn. (39) in [8]).
– EB-RRR: We use Eqn. (9) from [19] by Ra-

jagopal/Reisslein/Ross which presents an improvement to
the EB-EMW result.

5The cited works calculate effective bandwidth for regulated adver-
sarial sources. The complete literature on effective bandwidth is much
more extensive.
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In all our experiments, we consider traffic regulators
which are obtained from peak rate controlled leaky buck-
ets with deterministic envelopes as given in Eqn. (3).6 In
all experiments, we consider a link withC = 45 Mbps, and
we consider two traffic classes. The traffic parameters of a
flow in one of the classes are as follows:

Class Peak Rate Mean Rate Burst Size
P (Mbps) � (Mbps) � (bits)

1 1.5 0.15 95400
2 6.0 0.15 10345

To parameters are selected so as to match, at least approx-
imately, the examples presented in [8], [19].

We will present three sets of examples. In the first ex-
ample, we compare the deterministic envelopes with our
bounds for the local and global effective envelopes for sets
of homogeneous sources. In the second example, we com-
pare the maximum number of admissible flows in a FIFO
scheduler for a given delay boundd and delay-violation
probability ". In the third example, we investigate the
case of heterogeneous traffic with different QoS require-
ments, and we compare the admissible regions for differ-
ent scheduling algorithms (SP, EDF).

A. Example 1: Comparison of Envelope Functions

In the first example, we study the shape of local and
global effective envelopes for homogeneous sets of flows,
as functions of the lengths of time intervals. The envelopes
are compared to the deterministic envelopeA�j (�) =
minfPj�; �j + �j; �g, to the peak rate functionPj � , and
to the average rate function�j � . In our graphs, we plot the
amount of traffic per flow for the various envelopes (e.g.,
we present

P
j2C Gj(� ; ")=N ).

Figures 3(a) and 3(b) show the results for multiplexed
flows from Class 1 and Class 2, respectively. We set" =
10�6 for all envelopes. By depicting the amount of traf-
fic per flow for different numbers of flows (N denotes the
number of flows), we can observe how the statistical mul-
tiplexing gain increases with the number of flows.

The first observation to be made is that the local and
global effective envelopes are much smaller than the de-
terministic envelope or the peak rate. Another observation
is that, for a fixed number of flowsN , the global effective
envelope is larger than the local effective envelopes, and
the local effective envelope bound is smaller when using
CLT (central limit theorem), as compared to CB (Chernoff
bound). Note, however, that bounds for the envelopes with

6Most of the methods listed here can work with more complex reg-
ulators. However, since peak-rate enforced leaky buckets are widely
used in practice, they serve as good benchmarks.

CLT are only approximate, and may be too optimistic, es-
pecially for small number of flows. Figure 3 also shows
that local and global effective envelopes converge as the
number of flowsN is increased.

B. Example 2: Admissible Region for Homogeneous
Flows

In this example, we investigate the number of flows ad-
mitted by various admission control methods for guaran-
teeing QoS at a link with a FIFO scheduler. We assume
that flows are homogeneous, that is, all flows belong to a
single class. Again, the probability of a violation of QoS
guarantees is set to" = 10�6.

We compare the admissible regions of the local and
global effective envelopes, to those of the effective band-
width techniques (both EB-EMW and EB-RRR), and to a
deterministic QoS guarantees.

We compare these results with those obtained from a
discrete event simulation. For the simulation, we assume
that the arrivals from a source have a pattern which is said
to have adversarial patterns for peak-rate controlled leaky
buckets [19]. If the parameters of a flow are given by
(P; �; �), the adversarial pattern transmits at the peak rate
P for a duration�=(P � �), and then continues sending
traffic at rate� for a durationdC=((C � �) � 2). Then, the
source shuts off, waits for a duration�=� and then repeats
the pattern. The starting time of a pattern of the flows are
uniformly and independently chosen over the length of its
period. We refer to [1] for a detailed discussion of the sim-
ulations.

Figures 4(a) and (b) depict the number of admitted flows
as a function of the delay bound. The figures show that
all methods for statistical QoS admit many more connec-
tions than a deterministic admission control test. In both
Figures, the effective envelopes (both CLT and CB) are
closest to the simulation results. (Once again, we point
out that the results using the local effective (CLT) bounds
are identical to the rate-variance results presented in [12].)
Note, however, that results obtained with local effective
envelopes are approximate and are not guaranteed to be
upper bounds on the admissible regions.

Comparing the results from effective envelopes to the
effective bandwidth results, we observe that the effective
envelope methods admits more connections than the effec-
tive bandwidth methods if delay bounds are large.

The difference of the admissible regions in Figure 4(a)
to those in Figure 4(b) illustrate the high degree to which
the size of the admissible region is dependent on the traffic
parameters. The lower burst sizes of flows in Class 2 lead
to larger admissible regions for all methods. Specifically,
notice that deterministic QoS in Figure 4(b) yields similar
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Fig. 3. Example 1: Comparison of Envelope Functions for� � 100 ms, " = 10
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Fig. 4. Example 2: Admissible Number of Connections at a FIFO Scheduler for Homogeneous Flows as a Function of Delay
Bounds (" = 10

�6, 0 < d � 100 ms).

results to the statistical methods, if the delay bounds are
large.

C. Example 3: Admissible Region for Heterogeneous
Traffic

Here we investigate an example with different schedul-
ing algorithms and with heterogeneous traffic arrivals.

As scheduling algorithms, we consider Static Priority
(SP) and Earliest-Deadline-First (EDF). For a determinis-
tic service, EDF is optimal, in the sense that the admissi-
ble regions with EDF scheduling is maximal [15]. To our
knowledge, results for a statistical service (with adversar-
ial traffic), have not been reported for EDF.

In this example, we multiplex a number of flows from
Class 1 and from Class 2 on 45 Mbps. We fix the delay
bounds, such that the delay bound for Class-1 flows is rela-
tively long,d1 = 100ms, and the delay bound for Class-2
flows is relatively short,d2 = 10 ms. For any particular
method, we determine the maximum number of Class-1

and Class-2 flows that can be supported simultaneously on
the 45 Mbps link.

The result are shown in Figure 5. The plot depicts the
admissible region for SP and EDF scheduling, using the
results for the (two types of) local effective envelopes, ef-
fective envelopes, and deterministic envelopes. We also
include the admissible regions for the effective bandwidth
approaches (EB-EMW and EB-RRR). Note, however, that
the shown effective bandwidth methods assume a simple
multiplexer (with virtual buffer partitioning) and do not ac-
count for different scheduling algorithms.

The results in Figure 5 show that the difference between
SP and EDF schedulers is small in all cases. The effective
envelope is, again, more conservative than the local effec-
tive envelope method. Finally, Figure 5 illustrates that with
heterogeneous flows and the effective bandwidth methods
(EB-EMW, EB-RRR) may not perform as well as methods
which consider scheduling algorithms.

We also performed a simulation for the EDF scheduling
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algorithm. For the simulations, we used a source model
which was shown to be adversarial for a simple multiplexer
with buffer and bandwidth partitioning [19]. We do not
know or claim that this source model is also adversarial
for EDF scheduling. However, with this choice, the simu-
lations give the same results as an average rate allocation.

VI. CONCLUSIONS

We have presented new results on evaluating the statis-
tical multiplexing gain for packet scheduling algorithms.
A useful property of our approach is that it separates the
consideration of the service definition (deterministic, sta-
tistical), the scheduling algorithm (FIFO, SP, EDF), and
the mathematical methodology (Central Limit Theorem,
Chernoff Bound). Thus, our work may be useful to re-
searchers who want to determine the statistical multiplex-
ing gain for other traffic regulators, scheduling algorithms,
or large deviation results. As direction for future work,
the admission control methodology presented in this paper
needs to be extended to a network environment.
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