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Abstract— The deterministic network calculus of-
fers an elegant framework for determining delays and
backlog in a network with deterministic service guar-
antees to individual traffic flows. A drawback of the
deterministic network calculus is that it only provides
worst-case bounds. Here we present a network calcu-
lus for statistical service guarantees, which can exploit
the statistical multiplexing gain of sources. We intro-
duce the notion of aneffective service curve as a proba-
bilistic bound on the service received by an individual
flow, and construct an effective service curve for a net-
work where capacities are provisioned exclusively to
aggregates of flows. Numerical examples demonstrate
that the calculus is able to extract a significant amount
of multiplexing gain in networks with a large number
of flows.

I. I NTRODUCTION

The deterministic network calculus recently
evolved as a new theory for deterministic queueing
systems, and has provided powerful tools for rea-
soning about delay and backlog in a network with
service guarantees to individual traffic flows. Us-
ing the notion of arrival envelopes and service curves
[12], several recent works have shown that delay and
backlog bounds can be concisely expressed in a min-
plus algebra [1], [6], [10].

However, the deterministic view of traffic only
provides worst-case bounds and does not to take ad-
vantage of statistical multiplexing gain. The prob-
lem of trying to exploit the resource savings of sta-
tistical multiplexing while preserving the elegant for-
malism of the network calculus has been the subject
of several studies. Kurose [17] uses the concept of
stochastic ordering and obtains bounds on the distri-
bution of delay and buffer occupancy of a flow in a
network with FIFO scheduling. Chang [9] presents
probabilistic bounds on output burstiness, backlog
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and delays in a network where the moment generat-
ing functions of arrivals are exponentially bounded.
Different bounds for exponentially bounded arrivals
are derived by Yaron and Sidi [24] and Starobinski
and Sidi [23]. Results on statistical end-to-end delay
guarantees in a network have been obtained for spe-
cific scheduling algorithms, such as EDF [21], [22],
and GPS [14], and a class of coordinated scheduling
algorithms [2], [18]. Several researchers have con-
sidered probabilistic formulations of service curves.
Cruz defines a probabilistic service curve which vio-
lates a given deterministic service curve according to
a certain distribution [13]. Chang (see [11], Chp. 7)
presents a statistical network calculus for ‘dynamic
F-servers’. Finally, Knightly and Chiu [20] derive
‘statistical service envelopes’ as time-invariant lower
bounds on the service received by an aggregate of
flows.

This paper presents a network calculus for statis-
tically multiplexed traffic, expressed in the min-plus
algebra. Generally, we assume that network capac-
ities are allocated to aggregates of flows. This is
different from the per-flow capacity allocation gen-
erally applied in the deterministic network calcu-
lus. Within this context, we define aneffective ser-
vice curve, which is, with high certainty, a bound
on the service received by a single flow. So, we
will consider probabilistic per-flow service guaran-
tees for networks where resources are reserved for
aggregates. We will show that the main results of
the deterministic network calculus carry over to the
statistical framework we present.

The results in this paper are set in a continuous
time model with fluid left-continuous traffic arrival
functions, as is common for network delay analy-
sis in the deterministic network calculus. We refer
to [11] for the issues involved in relaxing these as-
sumptions for application of the analysis in packet
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networks. A node represents a router (or switch) in
a packet network. The transmission rate at a node
corresponds to the capacity of an output link of a
router. Packetization delays and other effects of dis-
crete sized packets, such as the non-preemption of
packet transmission, are ignored. When analyzing
delays in a network, all processing overhead and
propagation delays are ignored.

In the numerical examples, presented in this paper,
we assume a ‘regulated adversarial traffic’ model
where (1) arrivals from each flow into the network
are constrained by a deterministic regulator and (2)
traffic arrivals from different flows are statistically
independent. The regulated adversarial traffic model
has been used by several researchers, e.g., [15], [16],
for modeling aggregates of sources, which are po-
liced or shaped, but for which arrival distributions
are not readily available.

The remaining sections of this paper are structured
as follows. In Section II, we review the notation and
key results of the deterministic network calculus. In
Section III, we present the effective envelope from
[5], and we define our notion of effective service
curves. Next we present the results for a statistical
network calculus in terms of effective service curves
and effective envelopes. In Section IV we show how
to construct effective service curves for individual
flows at a node where service is allocated to an ag-
gregate of flows. We discuss how these results can
be used for end-to-end, per-flow service provision-
ing. In Section V, we show how to build ‘effective
envelopes’ [5], which are used in our construction
of effective service curves. In Section VI we dis-
cuss numerical examples for single node and multi-
node networks and evaluate the statistical multiplex-
ing gain achievable with effective service curves.

II. N ETWORK CALCULUS PRELIMINARIES

The deterministic network calculus provides con-
cise expressions for upper bounds on the backlog and
delay experienced by an individual flow at one or
more network nodes. An attractive feature of the net-
work calculus is that end-to-end bounds can often be
easily obtained from manipulations of the per-node
bounds.

In this section we review some notation and results
from the deterministic network calculus, as needed

later in the paper. However, this section is not a com-
prehensive summary of the network calculus. For a
complete discussion we refer to [1], [7], [11].

A. Operators

Much of the formal framework of the network cal-
culus can be elegantly expressed in a min-plus al-
gebra [3], complete with convolution and deconvo-
lution operators for functions. Generally, the func-
tions in this paper are non-negative, monotonically
increasing and left-continuous, defined over time in-
tervals[0; t]. We assume for a given functionf that
f(t) = 0 if t < 0.

Theconvolution f � g of two functionsf andg, is
defined as

f � g(t) = inf
0���t

ff(t� �) + g(�)g :

The deconvolution f � g of two functionsf and
g, is defined as

f � g(t) = sup
��0

ff(t+ �)� g(�)g :

We refer to [3], [7], [11] for a detailed discus-
sion of the properties of the min-plus algebra and
the properties of the convolution and deconvolution
operators.

B. Arrival functions and Service Curves

Let us consider the traffic arrivals to a single net-
work node. The arrivals of a flow in the time in-
terval [0; t) are given in terms of a functionA(t).
The departures of a flow from the node in the time
interval [0; t) are denoted byD(t), with D(t) �
A(t). The backlog of a flow at timet, denoted by
B(t), is given byB(t) = D(t) � A(t). The de-
lay at timet, denoted asW (t), is the delay expe-
rienced by an arrival which departs at timet, given
by W (t) = inffd � 0 j A(t � d) � D(t)g. If
arrival and departure functions are plotted as func-
tions of time, thenB(t) andW (t), respectively, are
the vertical and horizontal differences between ar-
rival and departure functions. We will useA(x; y)
andD(x; y) to denote the arrivals and departures in
the time interval[x; y), withA(x; y) = A(y)�A(x)
andD(x; y) = D(y)�D(x).

We have the following assumptions on the arrival
functions.
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Fig. 1. Traffic of a flow through a set of H nodes. Let Ah and
Dh denote the arrival and departures at the h-th node, with
Ai = A, DH = D, and Ah = Dh�1, for h = 2; : : : ; H .

(A1) Non-Negativity. The arrivals in any interval of
time are non-negative. That is, for any x < y, we
have A(y)�A(x) � 0.
(A2) Upper Bound. The arrivals A of a flow are
bounded by a deterministic subadditive function A�,
called the arrival envelope,1 such that A(t + �) �
A(t) � A�(�) for all t; � � 0. 2

The upper bound given by A� assumes that the traffic
of a flow is policed or shaped by a traffic condition-
ing function, such as a leaky bucket.

The service guaranteed to a flow is expressed
in terms of ‘service curves’ . A minimum service
curve for a flow is a function S which specifies a
lower bound on the service given to a flow such that
D(t) � A � S(t) for all t � 0. A maximum ser-
vice curve for a flow is a function S which specifies
an upper bound on the service given to a flow by
D(t) � A � S(t) for all t � 0.

The following theorem summarizes some key re-
sults of the deterministic network calculus. These
results have been derived in [1], [6], [10]. We will
follow the notation used in [1].

Theorem 1: Deterministic Network Calculus.
Given a flow with arrival envelope A� and with min-
imum and maximum service curves S and S, the fol-
lowing hold:
1. Output Envelope: The function D� = A� � S
is an envelope for the departures, in the sense that
D�(t) � D(t+ �)�D(�) for all t; � � 0.
2. Backlog Bound: An upper bound for the backlog,
denoted by bmax, is given by bmax = A� � S(0).
3. Delay Bound: An upper bound for the delay, de-
noted by dmax, is given by
dmax = inf fd � 0 ; 8t � 0 : A�(t� d) � S(t)g.
4. Network Service Curve: If a flow passes through
H nodes in series, as shown in Figure 1, and if

1A function E is called an envelope for a function f ifE(t) �
f(t + �) � f(�) for all t; � � 0, or, equivalently, f(t) � E �
f(t), for all t � 0.
2A function f is subadditive if f(x+ y) � f(x) + f(y), for

all x; y � 0:

the flow is offered minimum and maximum service
curves Sh and S

h
, respectively, at each node h =

1; : : : ;H . Then, the sequence of nodes provides
minimum and maximum service curves Snet and
S
net

, referred to as network service curves, which
are given by

Snet = S1 � S2 � : : : � SH ;

S
net

= S
1
� S

2
� : : : � S

H
:

Thus, with Theorem 1, network service curves can
be used to determine bounds on delay and backlog
in a network. There are many additional properties
and refinements that have been derived for the de-
terministic calculus. However, in this paper we will
concern ourselves only with the results above.

III. STATISTICAL NETWORK CALCULUS

A drawback of the deterministic network calculus
is that the deterministic view of traffic only yields
pessimistic worst-case bounds, which do not take
advantage of statistical multiplexing of flows when
multiple flows are carried over the same link. We
will now approach the network calculus in a proba-
bilistic framework.

The statistical network calculus we present has
two components. The first component, presented
in Subsection III-A, relates to probabilistic service
guarantees for aggregates of flows, where determin-
istic service is allocated to the aggregate. The sec-
ond component of the calculus, presented in Subsec-
tion III-B, relates to probabilistic service guarantees
for individual flows which are allocated probabilistic
service in the form of ‘effective service curves’ . In
Section IV, we show how to determine an effective
service curve for an individual flow when determin-
istic service is allocated to the aggregate.

A. A Statistical Calculus for Groups of Flows

Let C denote a set of flows. The arrival and depar-
ture functions for each flow j 2 C will be denoted by
Aj and Dj , respectively. We use AC and DC to de-
note the aggregate arrivals and departures from class
C at the network node, that is, AC(t) =

P
j2C Aj(t)

and DC(t) =
P

j2C Dj(t). A deterministic arrival
envelope for the aggregate is A�C(t) =

P
j2C A

�
j (t).

The backlog and delay for the set of flows are defined
by BC(t) = DC(t) � AC(t) and WC(t) = inffd �
0 j AC(t� d) � DC(t)g, respectively.
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If the above assumptions are satisfied, the follow-
ing definition from [5] specifies a bound on the ar-
rivals for an aggregate set of flows.

Definition 1: Given a set C of flows that satisfy
assumptions (A1)–(A2), an effective envelope for AC
is a function G"C such that for all t: 3

Pr
h
AC(t) � G"C(t)

i
� 1� " : (1)

Thus, an effective envelope provides a bound for
arrivals in the time interval [0; t), which is violated
with probability ".

With the effective envelope, we can state proba-
bilistic bounds on properties of aggregates of flows,
for example, bounds on the output from a node, the
backlog and the delay at a node. Further, we can
formulate deterministic network service curves for
aggregates of flows.

Theorem 2: Statistical Network Calculus for
Groups of Flows. Given a set C of flows, let G"C be
an effective envelope for the arrivals from C. Let SC
(SC) be a minimum (maximum) service curve which
gives a deterministic bound on the service allocated
to the aggregate of the flows in C. The following
hold:
1. Output Envelope: The function G"C � SC is an ef-
fective envelope for the departures, that is, for all
t; � � 0, we have Pr fDC(t; t+ �) � G"C � SC(�)g
� 1� ".
2. Backlog Bound: A probabilistic bound for the
backlog is given by bmax = G"C�SC(0), in the sense
that Pr fBC(t) � bmaxg � 1� " for all t � 0.
3. Delay Bound: A probabilistic bound for the delay
is given by
dmax = inf fd � 0 j 8t � 0 : G"C(t� d) � SC(t)g,
in the sense that Pr fWC(t) � dmaxg � 1�" for all
t � 0.
4. Network Service Curve: If the set of flows C
passes through H network nodes in series and is of-
fered minimum and maximum service curves SiC and

S
i
C , respectively, at each node i = 1; : : : ;H , then

minimum and maximum network service curves are
given by

SnetC = S1
C � S

2
C � : : : � S

H
C ;

S
net
C = S

1
C � S

2
C � : : : � S

H
C :

3This definition corresponds to the local effective envelope in
[5]. Since the global effective envelope defined in [5] will not
be used in this paper, we drop the attribute.

The proof of the theorem, given in [19], follows
the proof for the deterministic calculus (e.g., [1]),
with an appropriate probabilistic argument inserted.
Since service curves SC and SC are deterministic ser-
vice bounds for the aggregates of flows, but not for
individual flows in C, the service received by a given
single flow can be worse than the service given to
the set of flows as a whole. The calculus presented in
the next subsection allows us to express probabilistic
service guarantees to individual flows.

B. Statistical Network Calculus for Flows

We next introduce the notion of an effective ser-
vice curve as a probabilistic bound on the service
given to a single flow j 2 C. (To simplify notation,
we will drop the subscript in Aj , A�j , and S"j .)

Definition 2: Given a flow with arrival function
A, which satisfies assumptions (A1)–(A2), a (min-
imum) effective service curve is a function S" that
satisfies for all t � 0,

Pr
h
D(t) � A � S"(t)

i
� 1� " : (2)

A maximum effective service curve can be defined
analogous to Definition 2.

The following theorem phrases the main results
for the network calculus in terms of effective service
curves.

Theorem 3: Statistical Network Calculus for
Flows. Given the arrival function A of a flow with
arrival envelope A� and given an effective service
curve S", the following hold:
1. Output Envelope: The function A� � S" is
an effective envelope for the departures, that is,
Pr fD(t; t+ �) � A� � S"(�)g � 1 � " for all
t; � � 0.
2. Backlog Bound: A probabilistic bound for the
backlog is given by bmax = A��S"(0), in the sense
that Pr fB(t) � bmaxg � 1� " for all t � 0.
3. Delay Bound: A probabilistic bound for the delay
is given by
dmax = inf fd � 0 ; 8t � 0 : A�(t� d) � S"(t)g,
in the sense that Pr fW (t) � dmaxg � 1� " for all
t � 0.
4. Network Service Curve: If the flow passes
through H network nodes in series and is of-
fered minimum and maximum service curves Sh;"h

(S
h;"h), respectively, at each node h = 1; : : : ;H .
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Assuming that the events D1(t) < S1;"1 � A1(t),
D2(t) < S2;"2 � A2(t); : : : , and DH(t) < SH;"H �
AH(t) are independent for all t � 0, then minimum
and maximum effective network service curves are
given by

Snet;"1+"2+:::+"H = S1;"1 � S2;"2 � : : : � SH;"H ;

S
net;"1+"2+:::+"H = S

1;"1 � S
2;"2 � : : : � S

H;"H :
That is, for all t � 0,

Pr fD(t) �

A1 � (S1;"1 � S2;"2 � : : : � SH;"H )(t)
	

� 1� ("1 + "2 + : : :+ "H);

P r fD(t) �

A1 � (S
1;"1 � S

2;"2 � : : : � S
H;"H )(t)

o
� 1� ("1 + "2 + : : :+ "H) :

The proof of the theorem is given in [19]. We note
that the additional assumption stated in the last part
of the theorem may not hold, since service guarantee
violations, as given by the effective service curves,
at different nodes can be correlated. Assumptions,
such as ours, which assume independence of events
at different nodes are common in the analysis of net-
work properties. The assumption is justified by the
substantial effort that is otherwise required to keep
track of the dependencies between events in a net-
work. Such an effort is generally considered to be
not practical.

In the next section we show how effective ser-
vice curves can make probabilistic statements about
service guarantees for individual flows in a network
where deterministic service curves SC (and SC) are
provisioned to flow aggregates. Due to statistical
multiplexing, we expect the minimum effective ser-
vice curve of a single flow in a set with N flows to
be significantly greater than SC=N for large N .

IV. CONSTRUCTION OF EFFECTIVE SERVICE

CURVES

In this section, we present the construction of an
effective service curve for a single flow in a network
where bandwidth is allocated to aggregates of flows.
The effective service curve is determined from the
unused bandwidth that is allocated to the aggregate
of flows.

We consider a set C = f1; 2; : : : ; Ng of N flows
which satisfy assumptions (A1)–(A2). We will con-

struct an effective service curve for flow j with ar-
rival function Aj . We will use the following nota-
tion: AN =

P
k2C Ak, AN�j =

P
k2C;k 6=j Ak.

We do not require that the flows have the same ar-
rival envelopes. However, if flows are homogeneous,
one can interpret Aj and AN�j as “any single flow”
and “any subset of N � 1 flows” , respectively, from
the set C.

We assume that the aggregate set of N flows is al-
located a (deterministic) minimum service curve, de-
noted by SN , and the set C�fjg is allocated a maxi-
mum service curve of SN�j . We let G"N�j denote an
effective envelope for the arrivals from C�fjg, With
this notation, an effective service curve for flow i is
given by the next theorem.

Theorem 4: The function

S"j (t) = [SN � G"N�j � SN�j ]+(t)

is a (minimum) effective service curve for flow j 2
C.4

A proof of the theorem is given in the Appendix.
The above effective service curve does not assume
knowledge of the scheduling algorithm used to de-
termine the order of transmission of the aggregate
of N flows. Thus, the effective service curve is ex-
pected to be pessimistic for most scheduling algo-
rithms, including FIFO. The effective service curve
is least conservative if flows in the set C � fjg are
transmitted with higher priority than flow j.

The effective service curve in the theorem has a
corresponding version in the deterministic network
calculus, which is given by S1(t) = [SN � A�N�1 �

SN�1]+(t) with A�N�1 =
P

ik2C;ik 6=i1
A�k. How-

ever, this deterministic service curve will be positive
only for large values of t [7].

The following corollary states looser bounds on
the effective service to flow j.

Corollary 1: Using the same notation as in The-
orem 4, and assuming that SN (t) � SN�j(t), the
following are (minimum) effective service curves for
flow j 2 C.
1. S"j = [SN � G"N�j � SN ]+,

2. S"j = [SN � G"N � SN ]+,
3. S"j = [SN � G"N�j ]+,
4. S"j = [SN � G"N ]+.

4We use “ [f ]+(t) = maxff(t); 0g” .
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Proof. The first two service curves follow from
SN (t) � SN�j(t) and since G"N can always be used
instead of G"N�j . The last two service curves in addi-
tion exploit that f(t) � f � g(t), which follows from
the definition of the convolution operator. 2

Thus, effective service curves for single flows can
be determined even if only information about the ag-
gregate reservations to a set of N flows is available.
In our numerical examples, we will only work with
the last and most pessimistic effective service curve.
We will show that even with these very loose bounds,
we are able to extract a significant amount of the
multiplexing gain if the number of flows is large.

V. EFFECTIVE ENVELOPES FOR

HETEROGENEOUS TRAFFIC

The presentation of the effective envelopes G"C in
Subsection III-A and Section IV does not depend on
a specific arrival model, but also does not offer any
guidance for constructing G"C .

For our numerical examples, we construct G"C as
in [5], adopting an adversarial traffic model [15],
where flows can individually exhibit a worst-case ar-
rival pattern as allowed by (A2), but sources do not
conspire to construct a joint worst-case.

We take a probabilistic view of traffic, where the
arrivals of a flow in the time interval [0; t) are given
by a random process A(t). In addition to assump-
tions (A1) and (A2) from Section II, we assume that
the following hold for the arrival processes.
(A3) Stationarity. The arrival processes are station-
ary, i.e., 8�1; �2 � 0 we have Pr[A(�1; �1 + t) �
x] = Pr[A(�2; �2 + t) � x].
(A4) Independence. The arrivals from two flows
i; j 2 C, Ai and Aj , are stochastically independent.

The construction of effective envelopes G"C for
a set C of flows in [5] uses the moment gen-
erating function of Aj , denoted as Mj(s; t) =
E[eAj(�;�+t)s]. As shown in [5], if assumptions
(A1)–(A4) hold, we obtain Mj(s; t) � M j(s; t),
where

M j(s; t) = 1 +
�j t

A�j(t)

�
esA

�

j (t) � 1
�
; (3)

and where �j := limt!1A�j (t)=t is assumed to ex-
ist.

Since the effective envelopes in [5] assume homo-
geneity of flows, that is, all flows in C have the same

arrival envelope, we briefly discuss an adaptation of
the results to heterogeneous flows, with different ar-
rival envelopes [8].

With assumption (A4) and with the bound in
Eqn. (3), we obtain from the Chernoff bound that

Pr[AC(t) � x] � e�xs
Y
j2C

M j(s; t) :

Setting the right hand side equal to " and solving
for x gives

x =
1

s

�X
j2C

logM j(s; t) + log "�1
�
: (4)

Any choice of s yields a point of an effective enve-
lope for the arrivals from C. We select the value of
the effective envelope at t to be

G"C(t) = min
s

1

s

�X
j2C

logM j(s; t) + log "�1
�
:

With this choice, G"C(t) � A�C(t) is always satisfied.
Since the right hand side of Eqn. (4), as a function of
s, has at most one minimum, which can be found by
searching for the zero of the derivative [8].

VI. EVALUATION

We now present numerical examples which
demonstrate different applications of effective ser-
vice curves, and evaluate the statistical multiplexing
gain feasible with effective service curves from Sec-
tion IV.

We assume that individual flows are regulated at
the entrance to the network, using a peak rate lim-
ited leaky bucket with arrival envelope A�j(�) =
min fPj�; �j + �j�g for flow j, where Pj � �j is
the peak rate, �j is the average rate, and �j is a burst
size parameter. We consider two types of flows with
parameters as given in the following table.

Type Peak Rate Mean Rate Burst Size
Pj (Mbps) �j (Mbps) �j (bits)

Type 1 1.5 0.15 95400
Type 2 6.0 0.15 10345

The parameters are selected to be equal to those in
[4], [15] and other studies.

We assume that the arrivals satisfy assumptions
(A1)–(A4), and we construct effective envelopes as
shown in Section V.

We assume that capacities are allocated to ag-
gregates of flows, in terms of deterministic service
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curves SN and SN for a set of N flows. We will
assume that service curves for the aggregate have
a very simple constant-rate form, such as SN (t) =
Nc t (c > 0), where c is referred to as ‘per-flow
capacity’ . For the construction of effective service
curves S"j , we use the most conservative bound from
Corollary 1, i.e., S"j = [SN � G"N ]+. This bound
does not require a maximum service curve (as used
in Theorem 4) and merely requires us to calculate the
effective envelope G"N .

We compare the results obtained with effective
service curves to the following non-statistical per-
flow service provisioning schemes.
� A peak rate allocation, where each flow j has a ser-
vice curve of Sj(t) = Pj t, provides an upper bound
for the amount of resources reserved for a flow.
� An average rate allocation, where each flow j has
a service curve of Sj(t) = �j t, is a lower bound for
the amount of resources reserved.
� A deterministic allocation delivers worst-case de-
lay guarantees. The resources allocated to a flow are
determined by the smallest (deterministic) constant-
rate service curve Sj(t) = ĉj t that satisfies the delay
bound d, i.e.,
ĉj = inf fc � 0 j 8t � 0 : A�(t� d) � c tg.

A. Example 1: Single Node

We investigate arrivals from a group of N Type-1
flows at a single node. The delay guarantee of the
flows is given by d = 50 ms.

We first compare the shape of effective service
curves for different values of N and for " = 10�9,
with the deterministic service curves.

We assume that the capacity allocated for the
aggregate of N flows, is SN (t) = Nĉ t, where
ĉ � 0:8785 is the constant-rate service curve re-
quired by a Type-1 flow to satisfy a delay bound
of d = 50 ms according to the deterministic allo-
cation given above. Then, according to Corollary 1,
the effective service curve of any single flow from
the set is given by S"1(t) = [Nĉ t � G"N (t)]+. In
Figure 2 we plot effective service curves S"1 for dif-
ferent values of N , and compare it to the determin-
istic service curve S1 = ĉ t. The figure shows that
for large N (N � 100), the effective service curve
is significantly larger than the deterministic service
curve. For small values of N , i.e., N � 30, there is
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Fig. 3. Example 1: Number of flows admitted on a
link with capacity C to satisfy a delay bound of d =
50 ms.

not sufficient multiplexing gain. In those cases, the
conservative bound of the effective service curve is
inferior to a deterministic service curve, or improves
upon the deterministic service curve only for large
values of t. To explain the change of slope of the
curve for N = 30 at t � 70 ms, we note that at
�=(P � �) � 70 ms, the arrival envelope of Type-1
flows changes from P t to � t.

Next we compare the number of flows that can be
provisioned on a link with capacity C , again using a
delay bound of d = 50 ms. For deterministic allo-
cation, we use the same service curve as before, i.e.,
S1(t) � 0:8785 t. For the effective service curve we
find the largest N such that S"1(t) = [C t�G"N (t)]+
assures, via Theorem 3, the delay bound d with prob-
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ability 1 � ". The results are shown in Figure 3,
where we include plots for effective service curves
with " = 10�3; 10�6; 10�9. We also include results
for an average rate allocation (which does not satisfy
the delay bound). The graphs show that, even for "
very small, the effective service curve shows signif-
icant statistical multiplexing gain, as C is increased,
and for C � 30 Mbps we can admit more flows than
through deterministic allocation. For large C , the
plots for effective service curves and average rate al-
location become close. For small C , on the other
hand, the number of flows is too small to extract mul-
tiplexing gain, and, consequently, the effective ser-
vice curve can be inferior to a deterministic service
curve.

B. Example 2: Multiple Nodes with Cross Traffic

Node 1 Node 2

M flows
(Type 2)

Q flows
(Type 2)

M flows Q flows

N flows
(Type 1)

N flows N flows

Fig. 4. Example 2: A network with 2 nodes and with
cross traffic at each node. The cross-traffic consists of
M Type-2 flows at the first node, andQ Type-2 flows
at the second node.
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Fig. 5. Example 2: Required capacity for each Type-
1 flow to reach an end-to-end delay bound of d =

50 ms, as a function of the number of Type-2 cross
flows.

We assume a network with two nodes, as shown
in Figure 4, and determine the multiplexing gain at-
tainable with effective service curves for a set of N
flows through these two nodes, with end-to-end de-

lay bound of d = 50 ms. There is cross traffic from
M flows at the first node, and from Q flows at the
second node. The flows with traffic through both
nodes are assumed to be of Type 1, and cross traf-
fic at both nodes is of Type 2.

Consider one Type-1 flow which passes through
Node 1 and Node 2. Using Corollary 1, the effec-
tive service curves of this flow, denoted by, S1;"1 and
S2;"
1 , are given by S1;"1 = [S1

N+M � G1;"N+M ]+ and

S2;"
1 = [S2

N+Q � G2;"N+Q]+, respectively. G1;"N+M is
the effective envelope of the N + M flows at the
first node, and G2;"N+Q is the effective envelope of the
N +Q flows at the second node.

We assume that S1N+M (t) = ~c(N + M) t and
S2
N+Q(t) = ~c(N + Q) t are the deterministic ser-

vice curves allocated to the aggregate of Type-1 and
Type-2 flows, at Node 1 and Node 2, respectively.
Here, ~c > 0 is selected as the smallest value such
that the effective network service curve of a Type-1
flow, S1;"

1 � S2;"
1 , satisfies a probabilistic end-to-end

delay bound of d = 50 ms, according to Theorem 3.
Recall, from Theorem 3 that the probability of an
end-to-end delay bound violation is 2".

Calculating G2;"N+Q raises a technical problem. If
we calculate the effective envelope using Eqn. (4),
we need a (deterministic) arrival envelope for each
Type-1 flow at the second node. From Theorem 3,
we know that A�1 � S1;"

1 is an effective envelope for
the departures of a Type-1 flow from the first node.5

To turn this envelope into a deterministic envelope,
we require a policer for Type-1 flows in front of
the second node, which discards all traffic exceed-
ing A�1 � S1;"

1 .
Remark: An alternative approach, which does not
require policing at the second node, sets G2;"N+Q =

G2;"N + G2;"Q , where G2;"Q is the effective envelope of

the Q Type-2 flows and G2;"N = N
�
A�1 � S1;"

1

�
.

In a variation of this approach, we can calculate an
effective service curve for all Type-1 flows at the
first node, by S1;"N = [S1

N+M � G1;"M ]+, where G1;"M

is the effective envelope of the M Type-2 flows at
the first node. In this variation we obtain G2;"N =�
N � A�1

�
� S1;"

N .
In Figure 5, we depict the required per-flow capac-

5In this example, we use A�1 and A�2 to denote the arrival en-
velope of a Type-1 and a Type-2 flow, respectively.
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ity ~c for Type-1 flows to satisfy a probabilistic delay
bound as a function of the number of cross flows.
We include results for " = 10�3; 10�6; 10�9. In the
figure, we set N = 1; hence, the multiplexing gain
is collected exclusively from cross traffic. The num-
ber of cross traffic flows is assumed to be identical at
both nodes, that is, M = Q, and is varied from 10
to 10,000 flows. We also consider results for a peak
rate allocation with P = 1:5 Mbps, average rate al-
location with � = 0:15 Mbps, and a deterministic
allocation with ĉ � 0:8785 Mbps.

Figure 5 illustrates the significant bandwidth sav-
ings attainable with effective service curves. Even
when " = 10�9, the required bandwidth to satisfy
an end-to-end delay bound of d = 50 ms is close to
an average rate allocation when the number of cross
flows is large.

C. Example 3: Multiple Nodes With No Cross Traf-
fic

Node 1 Node 2

N flows
(Type 1)

N flows N flows

Fig. 6. Example 3: A network with 2 nodes and no cross
traffic.
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Fig. 7. Example 3: Capacity per flow needed to support
a delay bound of d = 50 ms as a function of the total
number of flows.

We consider the two-node network shown in Fig-
ure 6 with no cross traffic, with N Type-1 flows
passing through both nodes. We will again evalu-
ate the per-flow capacity needed at each node to sat-
isfy a probabilistic or deterministic end-to-end delay
bound of d = 50 ms. Similar to Example 2, we set

S1
N (t) = S2

N (t) = ~cN t to be the deterministic ser-
vice curves allocated to the flows at the two nodes,
where ~c > 0 is set to be the smallest rate such that
the end-to-end delay bounds are satisfied.

Here, we could proceed as in the previous exam-
ples, that is, we could use the effective service curves
given by S1;"1 = [S1

N � G1;"N ]+ and S2;"
1 = [S2

N �

G2;"N ]+, and determine ~c > 0 as the smallest number
for which the delay bound of d = 50 ms is satis-
fied, according to Theorem 3. The functions G1;"N and
G2;"N are effective envelopes for the arrivals of the N
flows at the first and second node, respectively. Since
there is no cross traffic, G2;"N = G1;"N � S1

N , is, with
Theorem 3, an effective envelope for the arrivals at
the second node. Hence, the difficulty in Example 2
with the construction of effective envelopes at down-
stream nodes, which required to assume policing of
flows between nodes, does not arise.

However, the analysis of this example can be
much simplified, by referring to the determinis-
tic network calculus. From Theorem 1 and from
f = f � f for all functions f [3], we obtain that
SnetN = S1

N � S2
N . With this deterministic network

service curve, we can now proceed as in Example 1,
and construct a network effective service curve from
Snet;"1 (t) = [~cN t� G1;"N (t)]+. 6

In Figure 7, we show the per-flow capacity ~c re-
quired to satisfy a probabilistic delay bound, as a
function of the number of flows. As in Example 2,
the results illustrate that the bandwidth requirements
of a flow approach the average rate, as the number of
flows is increased.

VII. CONCLUSIONS

We have presented a network calculus for statisti-
cally multiplexed traffic, which introduces the notion
of effective service curves as a probabilistic bound on
the service received by individual flows in a network.
We have shown that many of the results from the de-
terministic network calculus can be carried over to
the statistical framework, by inserting an appropri-
ate probabilistic arguments. Through the use of ef-
fective service curves, we are able to describe the
service delivered to individual flows when capacities
are allocated to aggregates of flows.

6We point out that the simplified analysis yields a better mul-
tiplexing gain, and we refer to [19] for a comparison.
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As directions for future work, the calculus in this
paper may be sufficient to provision end-to-end de-
lays in feedforward networks, however, it is not di-
rectly applicable to general networks. Further, it
is desirable to find explicit bounds for the effective
envelope of heterogeneous arrivals (Section V) that
can replace the numerical method used in this pa-
per. The requirement for policing mechanisms be-
tween nodes (as in Example 2) is undesirable. It can
be eliminated by determining an effective arrival en-
velope for an aggregate of flows from probabilistic
envelopes for individual flows, i.e., without the need
for a deterministic envelope for each flow at down-
stream nodes. Finally, the service curves considered
in this paper are quite simple, and the benefits of
more sophisticated service curves to the multiplex-
ing gain have not been explored.
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APPENDIX

I. PROOF OF THEOREM 4

We will show that S"j in Theorem 4 satisfies Defi-
nition 2. Without loss of generality we will conduct
the proof for the first flow in set C, that is, we set
j = 1.

D1(t) = DN �DN�1(t) (5)

� AN � SN (t)�AN�1 � SN�1(t) (6)

= inf
x�t

[AN (t� x) + SN (x)]

� inf
y�t

�
AN�1(t� y) + SN�1(y)

�
; (7)

where Eqn. (6) follows from the definition of min-
imum and maximum service curves, and Eqn. (7)
merely expands the operators.

Suppose the minimum of the left term in Eqn. (7)
is attained at x = x̂ and that the minimum of the
right term is attained at y = ŷ. We now distinguish
two cases: (1) ŷ < x̂, and (2) ŷ � x̂.
Case 1: ŷ < x̂. With this assumption, we can write
Eqn. (7) as

D1(t) � inf
x�t

h
AN (t� x) + SN (x)

�inf
y�t

�
AN�1(t� y) + SN�1(y)

�i
(8)

= inf
x�t

h
AN (t� x) + SN (x)

� inf
y�x

�
AN�1(t� y) + SN�1(y)

�i
(9)

= inf
x�t

h
(A1(t� x) +AN�1(t� x)) + SN (x)

� inf
y�x

[(AN�1(t� x)

+AN�1(t� x; t� y)) + SN�1(y)
�i

(10)

= inf
x�t

h
A1(t� x) + SN (x)

� inf
y�x

�
AN�1(t� x; t� y) + SN�1(y)

�i
; (11)

where Eqn. (10) uses the equalities AN (t � x) =
A1(t � x) + AN�1(t � x) and AN�1(t � y) =
AN�1(t � x) + AN�1(t � x; t � y). Using Defi-
nition 1, we obtain from Eqn. (11) that

1� " � Pr
n
D1(t) � inf

x�t

h
A1(t� x) + SN (x)

� inf
y�x

�
G"N�1(y � x) + SN�1(y)

�io
(12)

= Pr
n
D1(t) � inf

x�t
[A1(t� x)

+
�
SN � G"N�1 � SN�1

�
(x)
�o

(13)

= Pr
n
D1(t) � A1 �

�
SN � G"N�1 � SN�1

�
(t)
o
:(14)

Eqn. (12) merely applies Definition 1, and Eqs. (13)
and (14) use the definition of the convolution opera-
tor.
Case 2: ŷ � x̂. We rewrite Eqn. (7) as

D1(t) � inf
x�t

h
AN (x) + SN (t� x)

� inf
y�t

�
AN�1(y) + SN�1(t� y)

�i
(15)

= inf
x�t

h
AN (x) + SN (t� x)

� inf
x�y�t

�
AN�1(y) + SN�1(t� y)

�i
(16)

= inf
x�t

h
(A1(x) +AN�1(x)) + SN (t� x)�

� inf
x�y�t

[(AN�1(x) +AN�1(x; y))

+SN�1(t� y)
�i
: (17)

Eqn. (15) is a simple manipulation. Eqn. (16) fol-
lows with ŷ � x̂. Eqn. (17) uses AN (x) = A1(x) +
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AN�1(x) and AN�1(y) = AN�1(x) +AN�1(x; y).
With the properties of G"N�1, we obtain from
Eqn. (17) that

1� " � Pr
n
D1(t) � inf

x�t
[A1(x) + SN (t� x)

� inf
x�y�t

�
G"N�1(y � x) + SN�1(t� y)

��o
(18)

= Pr
n
D1(t) � inf

x�t
[A1(x)

+
�
SN � G"N�1 � SN�1

�
(t� x)

�o
(19)

= Pr
n
D1(t) � A1 �

�
SN � G"N�1 � SN�1

�
(t)
o
:

(20)
Note that Eqn. (18) uses Definition 1 and Eqn. (19)
follows from

inf
x�y�t

h
G"N�1(y � x) + SN�1(t� y)

i

= inf
0�y�t�x

h
G"N�1(y) + SN�1(t� x� y)

i
;

and the convolution operator. Eqn. (20) is another
use of the convolution operator.

The above derivations also hold if the minima
ŷ and x̂ are not attained by using minimizing se-
quences [19].

Finally, since D1(t) � 0 with probability one, the
theorem follows. 2
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