
Rate Allocation and Buffer Management for Differentiated
Services∗

Jörg Liebeherr Nicolas Christin
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

To appear in Computer Networks, Special Issue on the New Internet
Architecture , May 2002.

c© Elsevier, 2002.

Abstract

A novel algorithm for buffer management and rate allocation is presented for providing loss and delay
differentiation for traffic classes at a network router. The algorithm, called JoBS, provides delay and loss
differentiation independently at each node, without assuming admission control or policing. Contrary to
most existing algorithms, scheduling and buffer management decisions are performed in a single step.
Both relative and (whenever possible) absolute QoS requirements of classes are supported. Simulation
examples, including results for a heuristic approximation, are presented to illustrate the effectiveness of
the approach, to compare the new algorithm to existing methods for loss and delay differentiation.1

Key Words: Buffer Management, Scheduling, Service Curves, Quality-of-Service, Service Differentiation.

∗This work is supported in part by the National Science Foundation through grants NCR-9624106 (CAREER), ANI-9730103,
and ANI-0085955.

1An earlier version of this paper was presented at the Ninth International Workshop on Quality-of-Service (IWQoS 2001) [28].

1 Introduction

Quality-of-Service (QoS) guarantees in packet networks are often classified according to two criteria. The
first criterion is whether guarantees are expressed for individual end-to-end traffic flows (per-flow QoS)
or for groups of flows with the same QoS requirements (per-class QoS). The second criterion is whether
guarantees are expressed with reference to guarantees given to other flows/flow classes (relative QoS), or
whether guarantees are expressed as absolute bounds (absolute QoS).

Efforts to provision for QoS in the Internet in the early and mid-1990s, which resulted in theIntegrated
Services(IntServ) service model [7], focused on per-flow absolute QoS guarantees. However, due to scala-
bility issues and a lagging demand for per-flow absolute QoS, the interest in Internet QoS eventually shifted
to relative per-class guarantees. Since late 1997, theDifferentiated Services(DiffServ) [5] working group
has discussed several proposals for per-class relative QoS guarantees, e.g., [11, 33].

With the exception of the Expedited Forwarding service [22] and its current revisions [3, 16], proposals
for relative per-class QoS discussed within the DiffServ context define the service differentiation qualita-
tively, in the sense that some classes receive lower delays and a lower loss rate than others, but without
quantifying the differentiation. Recently, research studies have tried to strengthen the guarantees of relative
per-class QoS, and have proposed new buffer management and scheduling algorithms which can support
stronger notions of relative QoS [6, 13, 14, 31, 32, 39]. Probably the best known such effort is thepropor-
tional service differentiationmodel [13, 14], which attempts to enforce that the ratios of delays or loss rates
of successive priority classes be roughly constant. For two priority classes such a service could specify that
the delays of packets from the higher-priority class be half of the delays from the lower-priority class, but
without specifying an upper bound on the delays.

In this paper, we express the provisioning of per-class QoS within a formalism inspired by the network
calculus [12]. We present a rate allocation and dropping algorithm for a single output link, calledJoint
Buffer Management and Scheduling (JoBS), which is capable of supporting a wide range of relative, as well
as absolute, per-class guarantees for loss and delay, without assuming admission control or traffic policing.

JoBS has two unique capabilities: (1) Rate allocation for link scheduling and buffer management are
approached together in a single step, and (2) JoBS supports both relative and absolute QoS requirements of
classes.

The JoBS algorithm operates as follows. Upon each arrival, a prediction is made on the delays of
the currently backlogged traffic. Then, the service rates allocation to classes are adjusted to meet delay
requirements. If necessary, traffic from certain classes is selectively dropped. The algorithm provides delay
and loss differentiation independently at each node. End-to-end delays and end-to-end loss rates are thus
dependent on the per-node guarantees of traffic and on the number of nodes traversed.

This paper is organized as follows. In Section2 we give an overview of the current work on relative
per-class QoS guarantees. In Sections3 and4, we specify our algorithm for buffer management and rate
allocation. In Section5 we propose a heuristic approximation of the algorithm. In Section6 we evaluate the
effectiveness of our algorithm via simulation. In Section7 we present brief conclusions.

2 Related Work

The significant amount of literature on service differentiation prevents us from presentive a comprehensive
survey of the related work on scheduling and buffer management algorithms on per-class relative guarantees.
The discussion in this section thus focuses on techniques devised to improve Best Effort or DiffServ services,
which are the closest to our proposed scheme.

With two exceptions [21, 39], the related work on relative per-class service differentiation treats delay
and loss differentiation as orthogonal issues. The common approach is to use scheduling algorithms for

2

achieving delay differentiation, and to use buffer management algorithms for performing loss differentiation.

2.1 Scheduling

The majority of work on per-class relative service differentiation suggests to use well-known fixed-priority,
e.g., [33], or rate-based scheduling algorithms, e.g., [19]. Only a few scheduling algorithms have been
specifically designed for relative delay differentiation.

The Proportional Queue Control Mechanism (PQCM, [31]) and Backlog-Proportional Rate (BPR,[15])
are variations of the GPS algorithm [35]. Both schedulers dynamically adjust service rate allocations of
classes to meet relative QoS requirements. The service rate allocation is based upon the backlog of classes
at the scheduler. The main difference between PQCM and BPR is the specific method used to calculate the
service rates. Both schemes bear similarity to the scheduling component of JoBS, in the sense that they
dynamically adjust service rate allocations to meet relative QoS requirements.

Different from the rate-based schedulers discussed above, Waiting-Time Priority (WTP, [15]) imple-
ments a well-known scheduling algorithm with dynamic time-dependent priorities ([23], Ch. 3.7). A class-i
packet, which arrives at timeτ , is assigned a time-dependent priority as follows. If the packet is backlogged
at timet > τ , then WTP assigns this packet a priority of(t− τ) · si, wheresi is a class-dependent priority
coefficient [23]. WTP packets are transmitted in the order of their priorities. In [15], the coefficientssi are
chosen so thats1 = k · s2 = k2 · s3 = . . . = kQ · sQ, resulting in a delay differentiation under high loads,
where Class-(i+ 1) Delay≈ k·Class-i Delay. The Mean-Delay Proportional scheduler (MDP, [32]) has a
dynamic priority mechanism similar to WTP, but uses estimates of the average delay of a class to determine
the priority of that class. Thus, the priority of a class-i packet is set tosi · di(t), wheredi(t) is the estimated
average delay for class-i, averaged over the entire up-time of the link. The coefficientssi, are as in WTP,
i.e., s1 = k · s2 = k2 · s3 = . . . = kQ · sQ. Finally, the Hybrid Proportional Delay scheduler (HPD,
[13]) uses a combination of waiting-time and average experienced delay to determine the priority of a given
packet. Therefore, the priority of a given class is set tosi(g(t − τ) + (1 − g)di(t)) with 0 < g < 1. ([13]
recommends to setg = 0.875.)

In contrast to the schedulers presented in this section, the rate allocation algorithms presented in this
paper not only consider the current state and past history of the link, but, in addition, use this information to
make predictions on future delays in order to improve the performance of the scheduling decisions.

We conclude by briefly discussing the relation of our work to the recently proposed Scalable-Core
(SCORE) approach [38]. SCORE provides end-to-end delay guarantees to flows without requiring per-
flow state information at network routers. The basic idea for meeting end-to-end delay requirements is to
keep track of the delays experienced by packets along the path from the source to the destination, by storing
the experienced delays in the packet headers. The stored information is used for adjusting the priority of
packets so that end-to-end requirements are met. The CoreLite architecture [32] is an extension of this work
which couples per-hop proportional delay differentiation with end-to-end delay guarantees. Different from
the above schedulers, the algorithms presented in this paper do not store any state information in packets.

2.2 Buffer Management

The key mechanisms of a buffer management algorithm are thebacklog controller, which specifies the time
instances when traffic should be dropped, and thedropper, which specifies the traffic to be dropped. We
refer to a recent survey article [25] for an extensive discussion of buffer management algorithms.

Backlog Controllers Initial proposals for buffer management (or active queue management) in IP net-
works [17, 18] were motivated by the need to improve TCP performance, without considering service dif-

3

ferentiation. More recent research efforts [11, 30, 34, 36] enhance these initial proposals in order to provide
service differentiation.

Among backlog controllers for IP networks, Random Early Detection (RED, [18]) is probably the best
known algorithm. RED was motivated by the goal to improve TCP throughput in highly loaded networks.
RED operates by probabilistically dropping traffic arrivals, when the backlog at a node grows large. RED
has two threshold parameters for the backlog at a node, denoted asTHsmall andTHlarge. RED estimates
the average queue size,Qest and compares the estimate to the two thresholds. IfQest < THsmall, RED does
not drop any arrival. IfQest > THlarge, RED drops all incoming traffic. IfTHsmall ≤ Qest ≤ THlarge,
RED will drop an arrival with probabilityP (Qest), where0 ≤ P (Qest) ≤ 1 is a function which increases
in Qest.

Several algorithms that attempt to improve or extend RED have been proposed, e.g., [4, 11, 17, 20, 30,
34, 36]. For example, BLUE [17] uses different metrics to characterize the probability of dropping an arrival.
Instead of the backlog, this algorithm uses the current loss ratio and link utilization as input parameters.

RIO [11] and multiclass RED [36] are extensions to RED which aim at class-based service differentia-
tion. Both schemes have different dropping thresholds for different classes, in order to ensure loss differen-
tiation. In an IntServ context, the idea of using different threshold values is pursued for Flow-RED (FRED,
[30]), which uses per-flow thresholds. Flows are discriminated by their source-destination address pairs.

Random Early Marking (REM, [4]) is close in spirit to the dropping algorithm in JoBS, since it treats
the problem of marking (or dropping) arrivals as an optimization problem. The objective is to maximize
a utility function subject to the constraint that the output link has a finite capacity. In [4], this problem is
reduced to the REM algorithm, which marks packets with a probability exponentially dependent on the cost
of a link. The cost is directly proportional to the buffer occupancy. [20] proposes to replace RED with a
proportional-integral controller to achieve faster convergence to the desired queue length and to increase
robustness of the system.

Droppers The simplest and most widely used dropping scheme is Drop-Tail, which discards arrivals to
a full buffer. For a long time, discarding arrivals was thought to be the only viable solution for high-speed
routers. Recent implementation studies [40] demonstrated that other, more complex, dropping schemes,
which discard packets that are already present in the buffer (push-out), are viable design choices even at
high data rates.

The simplest push-out technique is called Drop-from-Front [26]. Here, the oldest packet in the trans-
mission queue is discarded. In comparison to Drop-Tail, Drop-from-Front lowers the queueing delays of all
packets waiting in the system. Note that with Drop-Tail, dropping of a packet has no influence on the delay
of currently queued packets.

Other push-out techniques include Lower Priority First (LPF, [24, 29]), Complete Buffer Partitioning
(CBP, [29]), and Partial Buffer Sharing (PBS, [24]). LPF always drops packets from the lowest backlogged
priority queue. As shown in [14], LPF does not provide any mechanism for proportional loss differentiation.
CBP assigns a dedicated amount of buffer space to each class, and drops traffic when this dedicated buffer is
full. PBS uses a partitioning scheme similar to CBP, but the decision to drop is made after having looked at
the aggregated backlog of all classes. The static partitioning of buffers in LPF, CBP, and PBS is not suitable
for relative per-class service differentiation, since noa priori knowledge of the incoming traffic is available
[14].

The Proportional Loss Rate (PLR) dropper [14] is specifically designed to support proportional differ-
entiated services. PLR enforces that the ratio of the loss rates of two successive classes remains roughly
constant at a given value. There are two variants of PLR. PLR(M) uses only the lastM arrivals for estimat-
ing the loss rate of a class, whereas PLR(∞) has no such memory constraints. Average Drop Distance (ADD,
[6]) is a variant of PLR(M) aiming at providing loss differentiation regardless of the timescale chosen for

4

computing the loss rates.

There are two recent exceptions to the idea that delay and loss differentiation are orthogonal issues
which are handled by separate algorithms. The Duplicate Scheduler with Deadlines used in the Alternative
Best-Effort service (ABE, [21]) provides service differentiation for two traffic classes. The first class has
an absolute delay bound, while the second class experienes a lower loss rate. The delay guarantees for
the first class are enforced by dropping all traffic that has exceeded a given delay bound. The recently
proposed Class-Distance-Based-Priority-Delay-Loss scheduler (C-DBP-Delay-Loss, [39]) tries to provide
proportional delay and proportional loss differentiation in a single algorithm. At any time, C-DBP-Loss-
Delay keeps state information as a set of(mi, k) pairs, where, for each classi,mi represents the number of
packets that have been successfully transmitted in the lastk packets. For each packet, C-DBP-Loss-Delay
computes the distance between the current state of the system, and a “failure state”, defined as any state
wheremi is less than a desired valuêmi. The lower the distance, the higher the priority assigned to the
packet. The authors of [39] conjecture that settinĝmi = k − si, wheresi is selected as in WTP and MDP,
can be used to provide proportional loss and delay differentiation.

3 An Approach to Joint Buffer Management and Rate Allocation

In this section, we introduce the key concepts of the JoBS algorithm. Before we provide a detailed descrip-
tion, we first give an informal overview of the operations.

3.1 Overview

We assume that each output link performs per-class buffering of arriving traffic and that traffic is transmitted
from the buffers using a rate-based scheduling algorithm [41] with a dynamic, time-dependent service rate
allocation for classes. Traffic from the same class is transmitted in a First-Come-First-Served order. There
is no admission control and no policing of traffic. The set of performance requirements are specified to the
algorithm as a set of per-class QoS constraints. As an example, for three classes, the QoS constraints could
be of the form:

• Class-1 Delay≈ 2 · Class-2 Delay,

• Class-2 Loss Rate≈ 10−1 · Class-3 Loss Rate, or

• Class-3 Delay≤ 5 ms.

Here, the first two constraints are relative constraints and the last one is an absolute constraint.2The set
of constraints can be any mix of relative and absolute constraints. Since absolute constraints may render
a system of constraints infeasible, some constraints may need to be relaxed. We assume that all QoS con-
straints are given a precedence order, which is used to determine which constraints are relaxed in case of an
unfeasible system.

The service rate allocation operates as follows. For each arrival, a prediction is made on the delays of all
backlogged traffic. Then, the service rate allocation to traffic classes is modified so that all QoS constraints
will be met. If there exists no feasible rate allocation that meets all constraints, traffic is dropped, either
from a new arrival or from the current backlog.

We will view the service rate allocation in terms of an optimization problem. The constraints are relative
or absolute bounds on the loss and delay as given in the example above (QoS constraints) and constraints

2Throughout this paper, we only considerdeterministicQoS guarantees. Statistical guarantees (see for instance [8]), which, for
instance provide a delay boundD3 to Class-3 packets with probability1− ε whereε > 0 are outside the scope of this paper.

5

time

B
i
(t)

A
i
 R
i
n

R
out

Dropped

t
1
 t
2
 t
3
 t

C
la

ss
-

i T
ra

ffi
c

D
i
(t)

t
4

i

i

(a) Delay and backlog.

C
la

ss
-
 i

 T
ra

ffi
c

time

D
i,s
(t
5
)

s
 t
5
 t
6

D
i,s
(t
6
)

T
i,s

~

R
i
n
~

R
out
~

~

~

i,s

i,s

(b) Projected input curve, projected output
curve, and projected delays.

Figure 1:Delay, Backlog and Projections.In Figure1(b), the projection is performed at times for the time
interval[s, s+ T̃i,s].

on the link and buffer capacity (system constraints). The objective function of the optimization aims at
minimizing the amount of traffic to be dropped, and, as a secondary objective, aims at maintaining the
current service rate allocation. The first objective prevents traffic from being dropped unnecessarily, and
the second objective tries to avoid frequent fluctuations of the service rate allocation. The solution of the
optimization problem yields a service rate allocation of classes and determines how much traffic must be
dropped.

To explore the principal properties of the optimization, we will, at first, assume that sufficient computing
resources are available to solve the optimization problem for each arrival to the link. In a later section, we
will approximate the optimization with a heuristic which incurs less computational overhead.

3.2 Formal Description

Next we describe the basic operations of the service rate allocation and the dropping algorithms at a link
with capacityC and total buffer spaceB. We assume that all traffic is marked to belong to one ofQ traffic
classes. In general, we expectQ to be small, e.g.,Q = 4. Classes are marked by an index. We use a
convention, whereby a class with a smaller index requires a better level of QoS. We useai(t) andli(t) to
denote the traffic arrivals and amount of dropped traffic from classi at timet. We useri(t) to denote the
service rate allocated to classi at time t. We assume thatri(t) > 0 only if there is a backlog of class-i
traffic in the buffer (andri(t) = 0 otherwise), and we assume that scheduling is work-conserving, that is,∑

i ri(t) = C, if there is at least one backlogged class at timet.
Remark. With the exception of the evaluation section, we take a fluid-flow interpretation of traffic through-
out this paper. That is, the output link is regarded as serving simultaneously traffic from several classes.
Since actual traffic is sent in discrete-sized packets, a fluid-flow interpretation of traffic is idealistic. How-
ever, scheduling algorithms that closely approximate fluid-flow schedulers with rate guarantees are available
[35, 41].

We now introduce the notions ofarrival curve, input curve, andoutput curvefor a traffic classi in the
time interval[0, t]. The arrival curveAi and the input curveRini of classi are defined as

Ai(t) =
∫ t

0
ai(x)dx , Rini (t) = Ai(t)−

∫ t

0
li(x)dx . (1)

6

So, the difference between the arrival and input curve is the amount of dropped traffic. The output curve
Routi of class-i is the transmitted traffic in the interval[0, t], given by

Routi (t) =
∫ t

0
ri(x)dx . (2)

We refer to Figure1(a) for an illustration. In the figure, the service rate is adjusted at timest1, t2, andt4,
and packet drops occur at timest2 andt3.

The vertical and the horizontal distance between the input and output curves from classi, respectively,
are the backlogBi and the delayDi. This is illustrated in Figure1(a) for timet. The delayDi at timet is
the delay of an arrival which is transmitted at timet. Backlog and delay at timet are defined as

Bi(t) = Rini (t)−Routi (t) , Di(t) = max
x<t
{x | Routi (t) ≥ Rini (t− x)} . (3)

Upon a traffic arrival, say at times, the new service ratesri(s) and the amount of traffic to be dropped
li(s) for all classes are set such that all QoS and system constraints can be met at times greater thans. If all
constraints cannot be satisfied at the same time, then some QoS constraints are relaxed in a predetermined
order.

To determine the rate allocation, the scheduler makes a projection of the delays of all backlogged traffic.
For the purpose of the projection, it is assumed that the current state of the link will not change after times.
Specifically, indicating projected values by a tilde (˜), for timest > s, we assume that (1) service rates
remain as they are (i.e.,̃ri(t) = ri(s)), (2) there are no further arrivals (i.e.,ãi(t) = 0), and (3) there are no
further packet drops (i.e.,̃li(t) = 0).

With these assumptions, we now define the notions of projected input curveR̃ini,s, projected output curve

R̃outi,s , and projected backlog̃Bi,s, for t > s as follows:

R̃ini,s(t) = Rini (s) , R̃outi,s (t) = Routi (s) + (t− s)ri(s) , B̃i,s(t) = R̃ini,s(t)− R̃outi,s (t) . (4)

We refer to theprojected horizonfor classi at times, denoted as̃Ti,s, as the time when the projected backlog
becomes zero, i.e.,̃Ti,s = minx>0{x | B̃i,s(s + x) = 0}. With this notation, we can make predictions for
delays in the time interval[s, s+ T̃i,s]. We define the projected delaỹDi,s as

D̃i,s(t) = max
t−s<x<t

{x | R̃outi,s (t) ≥ Rini (t− x)} . (5)

If there are no arrivals after times, the delay projections are correct, in the sense that the projected delay at
time s is the delay that will be encountered when the traffic element departs the system at timet. In Fig-
ure1(b), we illustrate the projected input curve, projected output curve, and projected delays for projections
made at times. In the figure, all values fort > s are projections and are indicated by dashed lines. The
figure includes the projected delays for timest5 andt6.

4 Service Rate Adaptation and Drop Algorithm

In this section we discuss an algorithm to perform the service rates allocation to classes and the decision to
drop traffic in terms of an optimization problem.

Each times at which an arrival occurs, a new optimization is performed. The optimization variable is
a time-dependent vectorxs = (r1(s) . . . rQ(s) l1(s) . . . lQ(s))T , which contains the service ratesri(s) and
the amount of traffic to be droppedli(s). The optimization problem has the form

Minimize F (xs)
Subject to gj(xs) = 0, j = 1, . . . ,M

hj(xs) ≥ 0, j = M + 1, . . . , N,
(6)

7

whereF (.) is an objective function, and thegj ’s andhj ’s are constraints. The objective function, which
will be presented in Subsection4.2, will be chosen so that the amount of dropped traffic and the changes
to the current service rate allocation are minimized. The constraints of the optimization problem are QoS
constraints and system constraints. The optimization at times is done with knowledge of the system state
before times, that is the optimizer knowsRini andRouti for all timest < s, andAi for all timest ≤ s.

In the remainder of this section we present the constraints and the optimization function. The optimiza-
tion can be used as a reference system against which practical scheduling and dropping algorithms can be
compared.

4.1 System and QoS Constraints

There are two types of constraints.System constraintsdescribe constraints and properties of the output link,
andQoS constraintsdefine the desired service differentiation.

System Constraints. The system constraints specify physical limitations and properties at the output link.
The first such constraint states that the total backlog cannot exceed the buffer sizeB, that is,

∑
iBi(t) ≤ B

for all timest. The second system constraint enforces that scheduling at the output link is work-conserving.
At a work-conserving link,

∑
i ri(t) = C holds for all timest where

∑
iBi(t) > 0. Note that systems that

are not work-conserving, i.e., where the link may be idle even if there is a positive backlog, are undesirable
for networks that need to achieve a high resource utilization. Other system constraints enforce that trans-
mission rates and loss rates are non-negative. Also, the amount of traffic that can be dropped is bounded by
the current backlog. So we obtainri(t) ≥ 0 and0 ≤ li(t) ≤ Bi(t) for all timest.

QoS Constraints. We consider two types of QoS constraints, relative constraints and absolute constraints.
QoS constraints are either constraints on delays or constraints on the loss rate. The number and type of QoS
constraints is not limited. Since absolute QoS constraints may result in an infeasible system of constraints,
one or more constraints may need to be relaxed at certain times. We assume that the set of QoS constraints is
assigned some total order, and that constraints are relaxed in the given order until the system of constraints
becomes feasible. In addition, QoS constraints for classes which are not backlogged are simply ignored.

Absolute delay constraints (ADC)enforce that the projected delays of classi satisfy a worst-case bounddi.
That is,

max
s<t<s+T̃i,s

D̃i,s(t) ≤ di , (7)

for all t ∈ [s, s+ T̃i,s]. If this condition holds for alls, the delay bounddi is never violated.
Relative delay constraints (RDC)specify the proportional delay differentiation between classes. As an
example, for two classes1 and2, the RDC enforces a relationship

Delay of Class 2
Delay of Class 1

≈ constant.

While absolute delay constraints are needed by applications which present stringent QoS requirements,
relative differentiation is useful for differentiating traffic with less stringent QoS requirements in times of
resource contention [13]. Since, in general, there are several packets backlogged from a class, each likely
to have a different delay, the notion of ‘delay of classi’ needs to be further specified. For example, the
delay of classi could be specified as the delay of the packet at the head of the class-i queue, the maximum
projected delay as in Eqn. (7), or via other measures. We choose a measure, calledaverage projected delay
Di,s, which is the time average of the projected delays from a class, averaged over the horizonT̃i,s. That is,

Di,s =
1
T̃i,s

∫ s+T̃i,s

s
D̃i,s(x)dx . (8)

8

To provide some flexibility in the scheduling decision, we do not enforce relative delay constraints strictly,
but allow for some slack. Using the metric defined in Eqn. (8), and translating the notion of slack into a
tolerance level, we can write the relative delay constraints as

ki(1− ε) ≤
Di+1,s

Di,s

≤ ki(1 + ε) , (9)

whereki > 1 is a constant defining the proportional differentiation desired, andε (0 ≤ ε ≤ 1) indicates a
tolerance level. If relative constraints are not specified for some classes, the constraints are adjusted accord-
ingly. Note that in the delay constraints in Eqs. (7) and (9), all values with exception of the components of
the optimization variablexs are known at times.

Next we discuss constraints on the loss rate. Similar to delays, there are several sensible choices for
defining ‘loss’. Here, we select a loss measure, denoted bypi,s, which expresses the fraction of lost traffic
since the beginning of the current busy period at timet0.3 So,pi,s expresses the fraction of traffic that has
been dropped in the time interval[t0, s], that is,4

pi,s =

∫ s
t0
li(x)dx∫ s

t0
ai(x)dx

= 1− Rini (s−) + (ai(s)− li(s))−Rini (t0)
Ai(s)−Ai(t0)

. (10)

In the last equation, all values exceptli(s) are known at times. With this definition we now specify absolute
and relative constraints on the loss rates.
An absolute loss constraint (ALC)specifies that the loss rate of classi, as defined above, never exceeds a
limit Li, that is,

pi,s ≤ Li . (11)

Relative loss constraints (RLC)specify the desired proportional loss differentiation between classes. Similar
to the RDCs, we provide a certain slack within these constraints. The RLC for classes(i+ 1) andi has the
form

k′i(1− ε′) ≤
pi+1,s

pi,s
≤ k′i(1 + ε′) , (12)

wherek′i > 1 is the target differentiation factor, andε′ (0 ≤ ε′ ≤ 1) indicates a level of tolerance. Note that
the constraints defined by Eqs. (7), (9), (11) and (12) are expressed in terms of delays and loss ratios, but
the only parameters the system can control at times are the components of the optimization variablexs, that
is, the service ratesri(s) and the packet dropsli(s). We refer to [27] for the expression of the constraints
defined by Eqs. (7), (9), (11) and (12) as functions of the service rates and the packet drops.

4.2 Objective Function

Provided that the QoS and system constraints can be satisfied, the objective function will select a solution for
xs. Even though the choice of the objective function is a policy decision, we select two specific objectives,
which, we believe, have general validity: (1)avoid dropping traffic, and (2)avoid changes to the current
service rate allocation. The first objective ensures that traffic is dropped only if there is no alternative way
to satisfy the constraints. The second objective tries to hold on to a feasible service rate allocation as long
as possible. We give the first objective priority over the second objective.

3 A busy period is a time interval with a positive backlog of traffic. For timex with
∑
iBi(x) > 0, the beginning of the busy

period is given bysupy<x{
∑
iBi(y) = 0}.

4s− = s− h, whereh > 0 is infinitesimally small.

9

Find
 l
i
(s),
r
i
(s)

subject to:

- ADCs

- ALCs

- ignore RDCs

 and RLCs

Done

Buffer

overflow ?

N packets

arrived since

last test?

ADCs

violated?

(*) If necessary relax the RLCs (RDCs) to

 obtain a feasible solution fo
r the

l
i
(s)

o
r

r
i
(s)

No

No

Packet Arrival

Yes

Yes

RDCs

violated?
 No

Find
 l
i
(s)

subject to:

- ALCs

- RLCs

- Eqn. (14) (*)

Buffer Overflow

Yes

Yes

No

ADC violation

Find

r
i
(s)

subject to:

- ADCs

- RDCs

RDC violation

Figure 2:Outline of the Heuristic Algorithm .

The following formulation of an objective function expresses the above objectives in terms of a cost
function:

F (xs) =
Q∑
i=1

(ri(s)− ri(s−))2 + C2
Q∑
i=1

li(s) , (13)

whereC is the link capacity. The first term expresses the changes to the service rate allocation and the
second term expresses the losses at times. Note that, at times, ri(s) is part of the optimization variable,
while ri(s−) is a known value. In Eqn. (13) we use the quadratic form(ri(s)− ri(s−))2, since

∑
i(ri(s)−

ri(s−)) = 0 for a work-conserving link with a backlog at times. The scaling factorC2 in front of the
second sum of Eqn. (13) ensures that traffic drops are the dominating term in the objective function.

This concludes the description of the optimization process in JoBS. The structure of constraints and ob-
jective function makes this anon-linear optimization problem, which can be solved with available numerical
algorithms [37].

5 Heuristic Approximation

We next present a heuristic that approximates the optimization presented in the previous section, with signif-
icantly lower computational complexity. The presented heuristic should be regarded as a first step towards
a router implementation.

Approximating a non-linear optimization problem such as the one presented in Section4 can be per-
formed by well-known techniques such as fuzzy systems, or neural networks. However, these techniques
can be computationally expensive. Therefore, we choose a different approach, which decomposes the op-
timization problem into several computationally less intensive problems. The heuristic algorithm presented
here maintains a feasible rate allocation until a buffer overflow occurs or a delay violation is predicted. At
that time, the heuristic picks a new feasible rate allocation and/or drops traffic. Unless there is a buffer
overflow, the tests for violations of ADCs and RDCs are not performed for every packet arrival, but only
periodically.

10

A set of constraints, which contains absolute constraints (ALCs or ADCs), may be infeasible at certain
times. Then, some constraints need to be relaxed. In our heuristic algorithm, the constraints are prioritized
in the following order: system constraints have priority over absolute constraints, which in turn have priority
over relative constraints. If the system of constraints becomes infeasible, the heuristic relaxes the relative
constraints (RLCs or RDCs). If this does not yield a feasible solution, the heuristic relaxes one or more
absolute constraints.

A high-level overview of the heuristic algorithm is presented in Figure2. The algorithm consists of a
number of small computations, one for each situation which requires to adjust the service rate allocation
and/or to drop packets. We next present each of these situations and the associated computation.

Buffer Overflow. If an arrival at times causes a buffer overflow, one can either drop the arriving packet or
free enough buffer space to accommodate the arriving packets. Both cases are satisfied if∑

i

li(s) =
∑
i

ai(s) . (14)

The heuristic picks a solution for theli(s) which satisfies Eqn. (14) and the RLCs in Eqn. (12), where we set
ε′ = 0 to obtain a unique solution. If the solution violates an ALC, the RLCs are relaxed until all ALCs are
satisfied. Once theli(s)’s are determined the algorithm continues with a test for delay constraint violations,
as shown in Figure2. The algorithm only specifies the amount of traffic which should be dropped from a
particular class, however, the algorithm does not select the position in the queue from which to drop traffic.
As we did for the optimization-based algorithm, we assume a Drop-Tail dropping policy for the heuristic
presented in this section.

If there are no buffer overflows, the algorithm makes projections for delay violations only once for every
N packet arrivals. The selection ofN represents a tradeoff between the runtime complexity of the algorithm
and performance of the scheduling with respect to satisfying the constraints. Simulation experiments, as
described in Section6, were performed with the valueN = 100 and exhibit good performance.

The tests use the current service rate allocation to predict future violations. For delay constraint viola-
tions, the heuristic distinguishes three cases.
Case 1: No violation. In this case, the service rates are unchanged.
Case 2: RDC violation. If some RDC (but no ADC) is violated, the heuristic algorithm determines new
rate values. Here, the RDCs as defined in Eqn. (9) are transformed into equations by settingε = 0. Together
with the work-conserving property, one obtains a system of equations, for which the algorithm picks a
solution. If the solution violates an ADC, the RDCs are relaxed until the ADCs are satisfied.
Case 3: ADC violation. Resolving an ADC violation is not entirely trivial as it requires to recalculate the
ri(s)’s, and, if traffic needs to be dropped to meet the ADCs, theli(s)’s. To simplify the task, our heuristic
ignores all relative constraints when an ADC violation occurs, and only tries to satisfy absolute constraints.

The heuristic starts with a conservative estimate of the worst-case delay for the class-i backlog at times.
For this, the heuristic uses the fact that for allx ∈ [s, s + T̃i,s], D̃i,s(x) ≤ Di(s) + Bi(s)

ri(s)
, which can be

verified by referring to Figures1(a) and1(b). Then, usingBi(s) = Bi(s−) + ai(s)− li(s), we can write a
sufficient condition for satisfying the ADC of classi with delay bounddi at times,

1
ri(s)

Bi(s−) + ai(s)− li(s)
di −Di(s)︸ ︷︷ ︸
ρi

≤ 1 . (15)

The heuristic algorithm will select theri(s) andli(s) such that Eqn. (15) is satisfied for alli. Initially, rates
and traffic drops are set tori(s) = ri(s−) and li(s) = 0. Since at least one ADC is violated, there is at
least one class withρi > 1, whereρi is defined in Eqn.(15). Now, we apply a greedy method which tries to

11

42 201816141210860
0

20
40
60
80

100
120
140

Simulation Time (s)

O
ff

er
ed

 lo
ad

(i
n

%
 o

f
th

e
lin

k
ca

pa
ci

ty
)

Figure 3:Offered Load.

redistribute the rate allocations untilρi ≤ 1 for all classes. This is done by reducingri(s) for classes with
ρi < 1, and increasingri(s) for classes withρi > 1. If it is not feasible to achieveρi ≤ 1 for all classes
by adjusting theri(s)’s, theli(s)’s are increased untilρi ≤ 1 for all i. To minimize the number of dropped
packets,li(s) is never increased to a point where an ALC is violated.

6 Evaluation

We present an evaluation of the algorithms developed in this paper via simulation. Our goals are (1) to
determine if and how well the desired service differentiation is achieved; (2) to determine how well the
heuristic algorithm from Section5 approximates the optimization from Section4; (3) to compare our algo-
rithm with existing proposals for proportional differentiated services; and (4) to examine the effect of JoBS
on end-to-end flows.

In the simulations, we evaluate the following four schemes.

• JoBS (optimization) refers to the optimization algorithm described in Section4,

• JoBS (heuristic) is the heuristic algorithm discussed in Section5. Unless there is a buffer overflow,
tests for delay violations are performed once for everyN = 100 packet arrivals.

• WTP/PLR(∞) [14]: The dropping and scheduling algorithm WTP/PLR(M) and WTP/PLR(∞) from
[14] are discussed in Section2. Since WTP/PLR(∞) provides a better service differentiation, we only
include results for WTP/PLR(∞). Note that WTP/PLR(∞) does not support absolute guarantees to
traffic classes.

• MDP[32]/Drop-Tail: The MDP scheduler presented in [32] was discussed in Section2. Since MDP
does not provide mechanisms for loss differentiation, we assume a simple Drop-Tail algorithm for
discarding packets. As WTP/PLR(∞), MDP does not support absolute QoS guarantees.

We present three simulation experiments. In the first experiment, we compare the relative differentiation
provided by JoBS (optimization), JoBS (heuristic), WTP/PLR(∞), and MDP/Drop-Tail without specifying
absolute constraints, at a single node. In the second experiment, we augment the set of constraints by
absolute loss and delay constraints on the highest priority class, and show that JoBS can effectively provide
both relative and absolute differentiation at a single node. These first two experiments do not take into
account the possible effect of the transport protocol being used, nor the effect of JoBS on end-to-end traffic.
In the third experiment, we examine the effect of JoBS on end-to-end traffic in a multi-node network, with
a mix of TCP and UDP traffic.

12

0
1
2
3
4
5
6 Class 2/Class 1

Class 4/Class 3
Class 3/Class 2

Simulation Time (s)

R
at

io
 o

f
de

la
ys

2 4 6 8 10 12 14 16 18 200

(a) JoBS (optimization).

0
1
2
3
4
5
6 Class 2/Class 1

Class 4/Class 3
Class 3/Class 2

Simulation Time (s)

R
at

io
 o

f
de

la
ys

2 4 6 8 10 12 14 16 18 200

(b) JoBS (heuristic).

Class 2/Class 1

Class 4/Class 3
Class 3/Class 2

Simulation Time (s)

R
at

io
 o

f
de

la
ys

2 4 6 8 10 12 14 16 18 200
0
1
2
3
4
5
6

(c) WTP/PLR(∞).

0
1
2
3
4
5
6 Class 2/Class 1

Class 4/Class 3
Class 3/Class 2

Simulation Time (s)

R
at

io
 o

f
de

la
ys

2 4 6 8 10 12 14 16 18 200

(d) MDP/Drop-Tail.

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

Classes:
4
3
2
1

(e) JoBS (optimization).

1

3

Classes:
4

2

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(f) JoBS (heuristic).

4

1

Classes:

2
3

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(g) WTP/PLR(∞).

2

Classes:
4

1

3

0

10

1e5

100

1

1e4

1e3

2018
Simulation Time (s)

2 4 6 8 10 12 14 16

D
el

ay
 (

s)

µ

(h) MDP/Drop-Tail.

Figure 4: Experiment 1: Relative Delay Differentiation. The graphs show the ratios of the delays for
successive classes (a)-(d) and the absolute delay values (e)-(h). The target value for the ratios, indicated by
a dashed line, isk = 4.

13

1

2

3

4

5

0
Simulation Time (s)

0 2 18 20104 6 8 12 14 16

R
at

io
 o

f
lo

ss
 r

at
es

Class 2/Class 1
Class 3/Class 2
Class 4/Class 3

(a) JoBS (optimization).

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

R
at

io
 o

f
lo

ss
 r

at
es

Class 2/Class 1
Class 3/Class 2
Class 4/Class 3

1

2

3

4

5

0

(b) JoBS (heuristic).

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

R
at

io
 o

f
lo

ss
 r

at
es

Class 2/Class 1
Class 3/Class 2
Class 4/Class 3

1

2

3

4

5

0

(c) WTP/PLR(∞).

Simulation Time (s)
0 2 18 20104 6 8 12 14 16

R
at

io
 o

f
lo

ss
 r

at
es

Class 2/Class 1
Class 3/Class 2
Class 4/Class 3

1

2

3

4

5

0

(d) MDP/Drop-Tail.

0.1

1

10

100

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
R

at
e

(%
)

Class 1

Class 2

Class 4Class 3

(e) JoBS (optimization).

0.1

1

10

100

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
R

at
e

(%
)

Class 1

Class 2
Class 4Class 3

(f) JoBS (heuristic).

0.1

1

10

100

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
R

at
e

(%
)

Class 4

Class 1

Class 2

Class 3

(g) WTP/PLR(∞).

Class 1

Class 3
Class 2

Class 4

0.1

1

10

100

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

L
os

s
R

at
e

(%
)

(h) MDP/Drop-Tail.

Figure 5: Experiment 1: Relative Loss Differentiation. The graphs show the ratios of loss rates for
successive classes (a)-(d) and the loss rates (e)-(h). The target value for the ratios, indicated by a dashed
line, isk′ = 2.

14

6.1 Simulation Experiment 1: Relative Differentiation Only

The first experiment focuses on relative service differentiation, and does not include absolute constraints.5

We consider a single output link with capacityC = 1 Gbps and a buffer size of 6.25 MB. We assumeQ = 4
classes. The length of each experiment is 20 seconds of simulated time, starting with an empty system. In
all experiments, the incoming traffic is composed of a superposition of Pareto sources withα = 1.2 and
average interarrival time of 300µs. The number of sources active at a given time oscillates between 200
and 550, following a sinusoidal pattern. All sources generate packets with a fixed size of 125 bytes.6 The
resulting offered load is plotted in Figure3. At any time, each class contributes 25% of the aggregate load,
yielding a symmetric load. In a realistic environment, one would expect to have “less” high priority traffic
than low priority traffic. Therefore, a symmetric load can be regarded as a realistic worst-case that can occur
during bursts of high-priority traffic.

The objectives for the relative differentiation are so that we want to have a ratio of four between the
delays of two successive classes, and a ratio of two between the loss rates of two successive classes. Thus,
for JoBS, we setki = 4 andk′i = 2 for all i. The tolerance levels are set to(ε, ε′) = (0.001, 0.05) in
JoBS (optimization), and toε = 0.01 in JoBS (heuristic). The results of the experiment are presented
in Figures4 and5, where we graph the ratios of delays and loss rates, respectively, of successive classes
for JoBS (optimization), JoBS (heuristic), WTP/PLR(∞), and MDP/Drop-Tail. The plotted delay and loss
values are averages over moving time windows of size 0.1s.7

When the link load is above 90% of the link capacity, that is, in time intervals[0 s, 6 s] and[10 s, 15 s],
all methods provide the desired service differentiation. The oscillations around the target values in JoBS
(optimization) and JoBS (heuristic) are mostly due to the tolerance valuesε andε′. The selection of the
tolerance valuesε andε′ in JoBS presents a tradeoff: smaller values forε andε′ reduce oscillations, but
incur more work for the algorithms. When the system load is low, that is, in time intervals[6 s, 10 s] and
[16 s, 20 s], only JoBS (optimization) and WTP/PLR(∞) manage to achieve some delay differentiation,
albeit far from the target values. MDP/Drop-Tail, plotted in Figure4(d), provides some differentiation, but
the system seems unstable, particularly after a transient change in the load. However, at an underloaded
link, the absolute values of the delays are very small for all classes, regardless of the scheduling algorithm
used, as shown on Figures4(e)-(h). Figures4(e)-(h) also show that the absolute values for the delays are
comparable in all schemes.

In Figures5(a) and5(c), we observe that both WTP/PLR(∞) and JoBS (optimization) show some tran-
sient oscillations with respect to loss differentiation when the link changes from an overloaded to an under-
loaded state, while JoBS (heuristic) does not seem to suffer from this problem as much. Without offering an
explanation, we speculate that during a transition between an overloaded and an underloaded system, a per-
fect relative loss differentiation is not achievable without violating the workconserving property or without
dropping packets even if the buffer is not full. MDP/Drop-Tail does not exhibit these transient oscillations
since it does not provide any loss differentiation, as shown in Figure5(d).

Finally, the total loss rate is of interest, as a scheme may provide excellent proportional loss differen-
tiation, but have an overall high loss rate. Figures5(e)-(g) prove that in the simulations, the loss rates of
WTP/PLR(∞) and JoBS (optimization and heuristic) are very similar. With both WTP/PLR(∞) and JoBS
(optimization and heuristic), the average of the per-class loss rates is equal to the loss rate obtained with a
Drop-Tail policy, plotted in Figure5(h). This shows that, in this experiment, all schemes only drop packets
when a buffer overflow occurs.

5The simulator used for Experiments 1 and 2 is described athttp://qosbox.cs.virginia.edu/snooplet.html .
6Packet sizes on the Internet are in fact subject to a multimodal distibution [2], and thus, the simulation presented here is only a

simplified model.
7This measure is adopted from [14].

15

http://qosbox.cs.virginia.edu/snooplet.html

Class 2

Class 1

181614121086420 20

Class 3
Class 4

10

100

1

0.1

0.01

1000

0.001

D
el

ay
 (

m
s)

Simulation Time (s)

(a) With ADC, all RDCs.

Class 2
Class 1

181614121086420 20

Class 3
Class 4

10

100

1

0.1

0.01

1000

0.001

D
el

ay
 (

m
s)

Simulation Time (s)

(b) With ADC, one RDC removed.

Class 3
Class 2

181614121086420 20

Class 4

Class 1
10

100

1

0.1

0.01

1000

0.001

D
el

ay
 (

m
s)

Simulation Time (s)

(c) No ADC, all RDCs.

Figure 6:Experiment 2: Absolute Delay Differentiation. The graphs show the delays of all packets. All
results are for JoBS (heuristic).

0 2018161412108642

L
os

s
R

at
e

(%
)

10

100

1

0.1

Simulation Time (s)

Class 1

Class 4Class 3

Class 2

(a) With ADC, all RDCs.

Class 1

20181614121086420

Class 4
Class 3
Class 2

L
os

s
R

at
e

(%
)

10

100

1

0.1

Simulation Time (s)

(b) With ADC, one RDC removed.

Class 2

20181614121086420

Class 4
Class 3

Class 1

L
os

s
R

at
e

(%
)

10

100

1

0.1

Simulation Time (s)

(c) No ADC, all RDCs.

Figure 7:Experiment 2: Absolute Loss Differentiation. The graphs show the loss rates of all classes. All
results are for JoBS (heuristic).

6.2 Simulation Experiment 2: Relative and Absolute Differentiation

In this second experiment, we evaluate how well our algorithm can satisfy a mix of absolute and relative
constraints on both delays and losses. Here, we only present results for JoBS (heuristic). WTP/PLR(∞) and
MDP/Drop-Tail do not support absolute guarantees. The main objective of this second experiment is to show
that, compared to schemes that treat dropping and scheduling orthogonally, using a joint buffer management
and rate allocation approach such as JoBS allows for satisfying both absolute and relative constraints at the
same time by dropping traffic when an absolute delay constraint is on the verge of being violated.

We consider the same simulation setup and the same relative delay constraints as in Experiment 1, but
add an absolute delay constraint (ADC) for Class 1 such thatd1 = 1 ms, and we replace the relative
loss constraint (RLC) between Classes 1 and 2 by an absolute loss constraint (ALC) for Class 1 such that
L1 = 1%. We call this scenario “with ADC, all RDCs”. With the given relative delay constraints from
Experiment 1, the other classes have implicit absolute delay constraints, which are approximately8 4ms for
Class 2, 16ms for Class 3, and 64ms for Class 4. Removing the RDC between Class1 and Class2, we
avoid the ‘implicit’ absolute constraints for Classes 2, 3, and 4, and call the resulting constraint set “with
ADC, one RDC removed”. We also include the results for JoBS (heuristic) from Experiment 1, with the
ALC on Class 1 replacing the RLC between Classes 1 and 2, and refer to this constraint set as “no ADC, all
RDCs”. In Figure6 we plot the absolute delays of all packets, and in Figure7 we plot the loss rates of all
classes, averaged over time intervals of length 0.1s. We discuss the results for each of the three constraint
sets proposed.

Concerning the experiment “with ADC, all RDCs”, Figure6(a) shows that the heuristic maintains the
relative delay differentiation between classes, thus, enforcing the ‘implicit’ delay constraints for Classes 2,
3, and 4. With a large number of absolute delay constraints, the system of constraints easily becomes

8Due to the tolerance valueε, the exact values are not integers.

16

Router

1

B-1
 C-1

100
 100
TCP-1

UDP-4

TCP-3

TCP-2

100

100

100

100

45
 45
45

100

100

100

100

B-10
 C-10

100
 100

A-1
 A-10

100
 100

100
 100
100
 100
 100
 100

Router

4

Router

3

Router

2

TCP-1

UDP-4

TCP-3

TCP-2

B-1
 C-1
B-10
 C-10
A-1
 A-10

Sources

Sinks

Figure 8:Experiment 3: Network Topology. The numbers on the links denote the links capacities in Mb/s.

infeasible, as pointed out by the following two observations. First, Figure7(a) shows that the loss rates of
Classes 2, 3 and 4 are similar. This result illustrates that the heuristic relaxes relative loss constraints to meet
the absolute delay constraints. Second, Figure6(a) shows that the absolute delay constraintd1 is sometimes
violated. However, such violations are rare (over 95% of Class-1 packets have a delay less than 900µs),
and Class-1 packet delays always remain reasonably close to the delay boundd1. For the experiment “with
ADC, one RDC removed”, Figure6(b) shows that, without an RDC between Classes 1 and 2, the ratio of
Class-2 delays and Class-1 delays can exceed a factor of 10 at high loads. With this constraint set, the
absolute delay constraintd1 is never violated, and Figure7(b) shows the RLCs are consistently enforced
during periods of packet drops. Finally, for the experiment “no ADC, all RDCs”, Figure6(c) shows that,
without the ADC, the delays for Class 1 are as high as 5ms.9

6.3 Experiment 3: Multiple Node Simulation with TCP and UDP Traffic

Finally, we present a multinode simulation, to see if our approach is still able to provide the desired service,
in the context of a mix of TCP and UDP traffic, with multiple hops and propagation delays. We also want to
examine the level of quality of service anend-to-endflow can receive with the proposed per-node guarantees.
To that effect, we implemented a variant of JoBS (heuristic) [10] in thens-2network simulator [1].

For this third experiment, we simulate a network with a topology as shown in Figure8. We have four
routers connected by three 45 Mbps links, and sources and sinks connected to the routers by independent 100
Mbps links. Each 45 Mbps link has a propagation delay of 3ms, and each 100 Mbps link has a propagation
delay of 1ms. There are four classes of traffic. The composition of the traffic mix is given in Table1 and
the service guarantees are given in Table2.

Cross-traffic flows (denoted by A-1,. . ., C-10) start transmitting at timet = 0 s. The flows TCP-1,
TCP-2, TCP-3 and UDP-4 start transmitting at timet = 10 s. All flows consists of packets with a fixed size
of 500 Bytes, and the experiment lasts 70 seconds of simulated time.

From Tables1 and2, Classes 1, 2 and 3 only consist of TCP traffic, and Class 4 only consists of UDP
traffic. The offered load is asymmetric, since initially Class 1 contributes 10% of the aggregate cross-traffic,

9The delay values for Classes 2, 3, and 4 in Figures6(b) and (c) appear similar, especially since we use a log-scale. We
emphasize that the values arenot identical, and that the results are consistent.

17

Flow Class Type
Protocol Traffic On Off Shape

TCP-1 1 TCP Greedy N/A N/A N/A
TCP-2 2 TCP Greedy N/A N/A N/A
TCP-3 3 TCP Greedy N/A N/A N/A
UDP-4 4 UDP Pareto On-off 10ms 10ms 1.9

A-1 1 TCP Exponential On-off 1000 pkts 200ms N/A
A-2, A-3 2 TCP Exponential On-off 1000 pkts 200ms N/A

A-4, A-5, A-6 3 TCP Exponential On-off 1000 pkts 200ms N/A
A-7, A-8, A-9, A-10 4 UDP Pareto On-off 120ms 200ms 1.9

Table 1:Experiment 3: Traffic mix. The traffic mix for flows B-1,. . ., B-10 and C-1,. . ., C10 is identical
to the traffic mix described here for flows A-1,. . .,A-10. TCP sources run theTCP Renocongestion control
algorithms. The “Shape” parameters characterizes the Pareto distributions used.

Class Service Guarantees
di Li ki k′i

1 2ms 0.1 % – –
2 – – 4 4
3 – – 4 4
4 – – N/A N/A

Table 2:Experiment 3: Service guarantees.The guarantees are identical at each router.

Class 2 contributes 20%, Class 3 contributes 30% and Class-4 contributes 40 %. Thus, there is more UDP
traffic in this simulation experiment than can be expected in an actual network, since UDP traffic accounts
for less than 10% of the traffic on the Internet [2]. We made this choice so that we could examine the effects
of mixing the two types (UDP and TCP) of traffic more easily.

Per-hop per-class QoS We graph the per-class queueing delays and per-class loss rates at each of the first
three routers in Figure9, starting at timet = 0 s. Given that the aggregate arrival rate at Router 4 is always
less than the total output capacity of Router 4, there is never any backlog at Router 4, and thus, the queueing
delays and loss rates are constantly equal to zero. With the exception of Figure9(c), (g) and (k), where
the individual packet delays are represented, each point on Figure9 represents an average over a sliding
window of size 0.5 s. Figure9 shows that the proposed algorithm manages to enforce all proposed service
guarantees at each node, with only a couple of transient violations of the absolute delay bound on Class 1 at
Router 1, and that the algorithm seems to respond appropriately to transient changes such as the introduction
of additional traffic at timet = 10 s.

End-to-end per-flow QoS Finally, we present end-to-end measurements for the flows TCP-1, TCP-2,
TCP-3 and UDP-4. Each of these four flows traverses the four routers, each router providing an absolute
delay guarantee of 2ms on Class 1. Adding to these per-node delay guarantees the propagation delays
between each node, one can infer that the end-to-end delays of TCP-1 packets have to be less than4 ×
2 + 3 × 3 + 2 × 1 = 19 ms. We call this bound an ‘implicit’ end-to-end delay guarantee. Similarly, the
end-to-end loss rate encountered by TCP-1 should be less than1− (1− L1)4 ≈ 0.004, that is, 0.4%.

18

10
8
6
4
2
0

Class 4/Class 3
Class 3/Class 2

R
at

io
s

of
 D

el
ay

s

0 10 20 30 40 50 60 70
Simulation Time (s)

(a) Router 1 - Ratios of Delays

L
os

s
R

at
es

Class 4/Class 3
Class 3/Class 2

0 10 20 30 40 50 60 70

R
at

io
s

of

1
2
3
4
5

0

Simulation Time (s)

(b) Router 1 - Ratios of Loss Rates

Class 1

Simulation Time (s)
10 20 40 50 60 700 30

D
el

ay
 (

m
s)

0

2
1

3

(c) Router 1 - Class 1 Delays

Class 1

0 10 20 30 40 50 60 70
Simulation Time (s)L

os
s

R
at

e
(%

)

0

0.1

0.2

(d) Router 1 - Class 1 Loss Rates
10

8
6
4
2
0

Class 4/Class 3
Class 3/Class 2

R
at

io
s

of
 D

el
ay

s

0 10 20 30 40 50 60 70
Simulation Time (s)

(e) Router 2 - Ratios of Delays

L
os

s
R

at
es

Class 4/Class 3
Class 3/Class 2

R
at

io
s

of
1
2
3
4
5

0
0 10 20 30 40 50 60 70

Simulation Time (s)

(f) Router 2 - Ratios of Loss Rates

Class 1

Simulation Time (s)
10 20 40 50 60 700 30

D
el

ay
 (

m
s)

0

2
1

3

(g) Router 2 - Class 1 Delays

Class 1

0 10 20 30 40 50 60 70
Simulation Time (s)

0

0.1

0.2

L
os

s
R

at
e

(%
)

(h) Router 2 - Class 1 Loss Rates
10

8
6
4
2
0

Class 4/Class 3
Class 3/Class 2

R
at

io
s

of
 D

el
ay

s

0 10 20 30 40 50 60 70
Simulation Time (s)

(i) Router 3 - Ratios of Delays

L
os

s
R

at
es

Class 4/Class 3
Class 3/Class 2

0 10 20 30 40 50 60 70

R
at

io
s

of

1
2
3
4
5

0

Simulation Time (s)

(j) Router 3 - Ratios of Loss Rates

Class 1

Simulation Time (s)
10 20 40 50 60 700 30

D
el

ay
 (

m
s)

0

2
1

3

(k) Router 3 - Class 1 Delays

Class 1

0 10 20 30 40 50 60 70
Simulation Time (s)

0

0.1

0.2

L
os

s
R

at
e

(%
)

(l) Router 3 - Class 1 Loss Rates

Figure 9: Experiment 3: Multiple Node simulation with TCP and UDP traffic. The graphs show the
delays and loss rates encountered at each router by Class 1 traffic, and the ratios of delays and the ratios of
loss rates for Classes 2, 3 and 4 at each router. The absolute constraints and the target ratios are indicated
by straight dashed lines.

19

TCP−1 TCP−2

TCP−3

UDP−4

0.01

0.1

1

Simulation Time (s)
10 20 30 40 50 60 70

E
nd

−
to

−
en

d
D

el
ay

s
(s

)

(a) End-to-End Packet Delays

UDP−4−Delay/TCP−3−Delay

TCP−3−Delay/TCP−2−Delay

0

1

2

3

4

5

6

7

8

20 30 40 50 60 70
Simulation Time (s)

10

R
at

io
s

of
 d

el
ay

s

(b) End-to-End Ratios of Delays

TCP−2TCP−1

UDP−4

TCP−3

10 20 30 40 50 60 70
0.01

0.1

1

10

L
os

s
R

at
e

(%
)

Simulation Time (s)
(c) End-to-End Packet Loss Rates

TCP−3−Loss Rate/TCP−2−Loss Rate

UDP−4−Loss Rate/TCP−3−Loss Rate

0

1

2

3

4

5

6

7

8

20 30 40 50 60 70
Simulation Time (s)

10

R
at

io
s

of
 lo

ss
 r

at
es

(d) End-to-End Ratios of Loss Rates

7

6

5

4

TCP−1

TCP−1+TCP−2+TCP−3+UDP−4

8

50 60 7040302010

10

10

10

10

10

Simulation Time (s)

T
hr

ou
gh

pu
t (

bp
s)

(e) Class-1 Throughput

Figure 10: Experiment 3: End-to-end packet delays.The graphs represent the individual, end-to-end,
packet delays encountered by flows TCP 1, TCP-2, TCP-3, UDP-4 (a), the ratios of delays over a sliding
window of size 0.5 s for TCP-2, TCP-3, and UDP-4 (b), the loss rates (c), ratio of loss rates (d), and the
throughput obtained by TCP-1, as well as the aggregate throughput obtained by all four flows (e). The
‘implicit’ end-to-end delay guarantee, indicated by a dashed line, on TCP-1 is a delay bound of 19ms, the
‘implicit’ end-to-end loss guarantee on TCP-1, also indicated by a dashed line, is 0.4%.

20

In Figure10(a), we present the individual end-to-end packet delays encountered by each flow. Flow 1’s
end-to-end delays are indeed always below 19ms, and we see again that the algorithm we propose uses a
conservative estimate of the delays for enforcing delay bounds, since most Flow 1 packets encounter a total
delay close to 15ms. 10 Figure10(b) also suggests that the proportional delay differentiation holds with
respect to the end-to-end delays between Classes 3 and 4, even if the relative delay constraints are enforced
only on a per-node basis. This result can be explained by the fact that the propagation delays are negligible
compared to the queueing delays encountered by TCP-3, and UDP-4. Conversely, the propagation delay
cannot be neglected compared to the queueing delays in the case of the flow TCP-2, hence, the proportional
differentiation between TCP-2 and TCP-3 is close to a factor of 3.3.

We plot the end-to-end packet loss rates in Figure10(c). We see that the end-to-end loss rate bound of
0.4% on flow TCP-1 is respected, even though the load is asymetric.11 However, as shown in Figure10(d),
proportional guarantees on loss rates between classes do not translate into proportional guarantees between
end-to-end flows: loss rates ratios between TCP-2, TCP-3, and UDP-4 are consistently above the desired
ratiosk′2 = k′3 = 2. This result is mostly due to the fact that the different flows present in the network do
not have the same probability of suffering packet drops, since some of them are greedy flows, while others
are on-off flows.

Last, in Figure10, we graph the throughput received by flow TCP-1, as well as the aggregate throughput
received by flows TCP-1, TCP-2, TCP-3 and UDP-4. There is no throughput guarantee on any class, but
we see that the flow TCP-1 consistently gets an end-to-end throughput greater than 1.5 Mbps, and close to
3 Mbps in general. This result shows that the strong guarantees on the loss and delay of Class 1 are not
realized at the expense of a low throughput. For readability purposes, we do not show the throughput plots
for the three other flows, which present values close to that of TCP-1.

As a conclusion to this third experiment, we showed that our algorithm was able to provide the desired
per-class, per-node service guarantees in a multiple node simulation, with a mix of TCP and UDP traffic.
We also showed how these per-class, per-node service guarantees could translate into end-to-end, per-flow
performance.

7 Conclusions

We proposed an algorithm, called JoBS (Joint Buffer Management and Scheduling), for relative and abso-
lute per-class QoS guarantees without information on traffic arrivals. At times when not all absolute QoS
guarantees can be satisfied simultaneously, JoBS selectively ignores some of the QoS guarantees. The JoBS
algorithm reconciles rate allocation and buffer management into a single scheme, thereby acknowledging
that scheduling and dropping decisions at an output link are not orthogonal issues, but should be addressed
together. JoBS implements the desired service differentiation based on delay predictions of backlogged
traffic. The predictions are used to update service rate allocations to classes and the amount of traffic to
be dropped. We showed in a set of simulation experiments, that JoBS can provide relative and absolute
per-class QoS guarantees for delay and loss, thereby demonstrating the virtue of an approach combining
scheduling and dropping, and examined the effect of the algorithm on end-to-end flows.

In future work, we will extend the approach presented in this paper to TCP congestion control. As a
point of departure, we will attempt to express existing active queue management schemes, e.g., RED [18],

10Even if we do not take into account the queueing delays at Router 4, which are always zero due to the topology, in the
computation of the end-to-end delay guarantee, the end-to-end delay guarantee becomes 16ms, and is respected as well.

11Due to the topology we chose, the loss rate at Router 4 is always zero. If we ignore the guarantees offered at Router 4 in the
computation of the end-to-end loss guarantee, we get an end-to-end loss bound of1− (1− L1)3 ≈ 0.003, that is, 0.3%, which is
also respected.

21

RIO [11], or the proportional-integral controller of [20] within the formal framework introduced in this
paper. Additionally, we are currently working on router implementations of JoBS-style algorithms [9].

References

[1] ns-2network simulator.http://www.isi.edu/nsnam/ns/ .

[2] Packet sizes and sequencing, May 2001.http://www.caida.org/outreach/resources/learn/
packetsizes .

[3] G. Armitage, A. Casati, J. Crowcroft, J. Halpern, B. Kumar, and J. Schnizlein. A delay bound alternative revision
of RFC2598, April 2001. IETF draft (informational), draft-ietf-diffserv-efresolve-01.txt.

[4] S. Athuraliya, D. Lapsley, and S. Low. An enhanced random early marking algorithm for internet flow control.
In Proceedings of IEEE INFOCOM 2000, pages 1425–1434, Tel-Aviv, Israel, April 2000.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for differentiated services.
IETF RFC 2475, December 1998.

[6] U. Bodin, A. Jonsson, and O. Schelen. On creating proportional loss differentiation: predictability and perfor-
mance. InProceedings of IWQoS 2001, pages 372–386, Karlsruhe, Germany, June 2001.

[7] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architecture: an overview. IETF RFC
1633, July 1994.

[8] C. S. Chang.Performance Guarantees in Communication Networks. Springer Verlag, London, UK, 1999.

[9] N. Christin and J. Liebeherr. The QoSbox: A PC-router for quantitative service differentiation in IP networks.
Technical Report CS-2001-28, University of Virginia, November 2001.ftp://ftp.cs.virginia.edu/
pub/techreports/CS-2001-28.pdf .

[10] N. Christin, J. Liebeherr, and T. F. Abdelzaher. A quantitative assured forwarding service. InProceedings of
IEEE INFOCOM 2002, New York, NY, June 2002. To appear.

[11] D. Clark and W. Fang. Explicit allocation of best-effort packet delivery service.IEEE/ACM Transactions on
Networking, 6(4):362–373, August 1998.

[12] R. Cruz, H. Sariowan, and G. Polyzos. Scheduling for quality of service guarantees via service curves. In
Proceedings of the Fourth IEEE International Conference on Computer Communications and Networks (ICCCN
’95), pages 512–520, Las Vegas, NV, September 1995.

[13] C. Dovrolis.Proportional differentiated services for the Internet. PhD thesis, University of Wisconsin-Madison,
December 2000.

[14] C. Dovrolis and P. Ramanathan. Proportional differentiated services, part II: Loss rate differentiation and packet
dropping. InProceedings of IWQoS 2000, pages 52–61, Pittsburgh, PA., June 2000.

[15] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional differentiated services: Delay differentiation and
packet scheduling. InProceedings of ACM SIGCOMM ’99, pages 109–120, Boston, MA., August 1999.

[16] B. Davie (editor), F. Baker, J. Bennet, K. Benson, J.-Y. Le Boudec, A. Charny, A. Chiu, W. Courtney, S. Davari,
V. Firoiu, C. Kalmanek, K.K. Ramakrishnam, and D. Stiliadis. An expedited forwading PHB, September 2001.
IETF draft, draft-ietf-diffserv-rfc2598bis-02.txt.

[17] W. Feng, D. Kandlur, D. Saha, and K. Shin. Blue: A new class of active queue management algorithms. Technical
Report CSE-TR-387-99, University of Michigan, April 1999.

[18] S. Floyd and V. Jacobson. Random early detection for congestion avoidance.IEEE/ACM Transactions on
Networking, 1(4):397–413, July 1993.

[19] S. Floyd and V. Jacobson. Link-sharing and resource management models for packet networks.IEEE/ACM
Transactions on Networking, 3(4):365–386, August 1995.

22

http://www.isi.edu/nsnam/ns/
http://www.caida.org/outreach/resources/learn/packetsizes
http://www.caida.org/outreach/resources/learn/packetsizes
ftp://ftp.cs.virginia.edu/pub/techreports/CS-2001-28.pdf
ftp://ftp.cs.virginia.edu/pub/techreports/CS-2001-28.pdf

[20] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. On designing improved controllers for AQM routers supporting
TCP flows. InProceedings of IEEE INFOCOM 2001, volume 3, pages 1726–1734, Anchorage, AK, April 2001.

[21] P. Hurley, J.-Y. Le Boudec, P. Thiran, and M. Kara. ABE: providing low delay service within best effort.IEEE
Networks, 15(3):60–69, May 2001. See alsohttp://www.abeservice.org .

[22] V. Jacobson, K. Nichols, and K. Poduri. An expedited forwarding PHB. IETF RFC 2598, June 1999.

[23] L. Kleinrock. Queueing Systems. Volume II: Computer Applications. John Wiley & Sons, New York, NY, 1976.

[24] H. Kroner, G. Hebuterne, P. Boyer, and A. Gravey. Priority management in ATM switching nodes.IEEE Journal
in Selected Areas in Communications, 9(3):418–427, April 1991.

[25] M. A. Labrador and S. Banerjee. Packet dropping policies for ATM and IP networks.IEEE Communications
Surveys, 2(3), 3rd Quarter 1999.http://www.comsoc.org/pubs/surveys .

[26] T.V. Lakshman, A. Neidhardt, and T. Ott. The drop from front strategy in TCP and in TCP over ATM. In
Proceedings of IEEE INFOCOM ’96, pages 1242–1250, San Francisco, CA, March 1996.

[27] J. Liebeherr and N. Christin. Buffer management and scheduling for enhanced differentiated s ervices. Technical
Report CS-2000-24, University of Virginia, August 2000.

[28] J. Liebeherr and N. Christin. JoBS: Joint buffer management and scheduling for differentiated services. In
Proceedings of IWQoS 2001, pages 404–418, Karlsruhe, Germany, June 2001.

[29] A.-M. Lin and J.A. Silvester. Priority queueing strategies and buffer allocation protocols for traffic control at an
ATM integrated broadband switching system.IEEE Journal on Selected Areas in Communications, 9(9):1524–
1536, December 1991.

[30] D. Lin and R. Morris. Dynamics of random early detection. InProceedings of ACM SIGCOMM ’97, pages
127–137, Cannes, France, September 1997.

[31] Y. Moret and S. Fdida. A proportional queue control mechanism to provide differentiated services. InProceed-
ings of the International Symposium on Computer and Information Systems (ISCIS), pages 17–24, Belek, Turkey,
October 1998.

[32] T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Barghavan. Delay differentiation and adaptation in core
stateless networks. InProceedings of IEEE INFOCOM 2000, pages 421–430, Tel-Aviv, Israel, April 2000.

[33] K. Nichols, V. Jacobson, and L. Zhang. Two-bit differentiated services architecture for the Internet. IETF RFC
2638, July 1999.

[34] R. Pan, B. Prabhakar, and K. Psounis. CHOKe: A stateless active queue management scheme for approximating
fair bandwidth allocation. InProceedings of IEEE INFOCOM 2000, pages 942–951, Tel-Aviv, Israel, April
2000.

[35] A. K. Parekh and R. G. Gallagher. A generalized processor sharing approach to flow control in integrated services
networks: The single-node case.IEEE/ACM Transactions on Networking, 1(3):344–357, June 1993.

[36] S. Sahu, P. Nain, D. Towsley, C. Diot, and V. Fioroiu. On achievable service differentiation with token bucket
marking for TCP. InProceedings of ACM SIGMETRICS 2000, pages 23–33, Santa Clara, CA, June 2000.

[37] K. Schittkowski. NLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems.An-
nals of Operations Research, 5:485–500, 1986. Edited by Clyde L. Monma.

[38] I. Stoica and H. Zhang. Providing guaranteed services without per-flow management. InProceedings of ACM
SIGCOMM ’99, pages 81–94, Boston, MA, August 1999.

[39] A. Striegel and G. Manimaran. Packet scheduling with delay and loss differentiation.Computer Communica-
tions, 25(1):21–31, January 2002.

[40] B. Suter, T.V. Lakshman, D. Stiliadis, and A.K. Choudhury. Buffer management schemes for supporting TCP in
gigabit routers with per-flow queueing.IEEE Journal on Selected Areas of Communications, 17(6):1159–1170,
September 1999.

[41] L. Zhang. Virtual clock: A new traffic control algorithm for packet switched networks.ACM Trans. Comput.
Syst., 9(2):101–125, May 1991.

23

http://www.abeservice.org
http://www.comsoc.org/pubs/surveys

	Introduction
	Related Work
	Scheduling
	Buffer Management

	An Approach to Joint Buffer Management and Rate Allocation
	Overview
	Formal Description

	Service Rate Adaptation and Drop Algorithm
	System and QoS Constraints
	Objective Function

	Heuristic Approximation
	Evaluation
	Simulation Experiment 1: Relative Differentiation Only
	Simulation Experiment 2: Relative and Absolute Differentiation
	Experiment 3: Multiple Node Simulation with TCP and UDP Traffic

	Conclusions

