
100

JoBS: Joint Buffer Management and
Scheduling for Differentiated Services
Jörg Liebeherr, Nicolas Christin,Department of Computer Science, University of Virginia

Abstract— A novel algorithm, called JoBS (Joint
Buffer Management and Scheduling), is presented for
loss and delay differentiation of traffic classes in a
packet network. JoBS has two unique capabilities: (1)
JoBS makes scheduling and buffer management deci-
sions in a single step, and (2) JoBS supports both rel-
ative and absolute QoS requirements of classes. The
JoBS algorithm is presented in terms of the solution
to an optimization problem. Numerical simulation ex-
amples, including results for a heuristic approxima-
tion of JoBS, are presented to illustrate the effective-
ness of the approach and to compare JoBS to existing
methods for loss and delay differentiation.

Keywords— Buffer Management, Scheduling, Ser-
vice Curves, Quality-of-Service, Service Differentia-
tion.

I. INTRODUCTION

T
HERE are two important criteria for classifying
Quality-of-Service (QoS) guarantees in packet

networks. The first criteria is whether guarantees
are expressed for individual end-to-end traffic flows
(per-flow QoS) or for groups of flows with the same
QoS requirements (per-class QoS). The second cri-
teria is whether guarantees are expressed with refer-
ence to guarantees given to other flows/flow classes
(relative QoS) or if guarantees are expressed in ab-
solute terms (absolute QoS).

Efforts to provision for QoS in the Internet in the
early and mid-1990s, which resulted in the IntServ
model [3], focused on per-flow absolute QoS guar-
antees. However, due to scalability issues and a lag-
ging demand for per-flow absolute QoS, the inter-
est in Internet QoS eventually shifted to relative per-
class guarantees. An important argument in favor of
relative per-class QoS guarantees is that they do not
require admission control or traffic policing. Since

This work is supported in part by the National Science
Foundation through grants NCR-9624106 (CAREER), ANI-
9730103, and ANI-9903001.

late 1997, theDifferentiated Services(DiffServ) [2]
working group has discussed several proposals for
per-class relative QoS guarantees [4], [16], [15].

Most proposals for relative per-class QoS dis-
cussed within the DiffServ context define the ser-
vice differentiation qualitatively, in the sense that
some classes receive lower delays and a lower loss
rate than others, but do not quantify the service dif-
ferentiation. Recently, research studies have tried
to strengthen the guarantees of relative per-class
QoS, and have proposed new buffer management and
scheduling algorithms which can support stronger
relative QoS notions [7], [13], [14]. Probably the
best known such effort is theproportional service
differentiation model, proposed by Dovrolis, Stil-
iadis, and Ramanathan, which tries to enforce that
the ratios of delays [7] and loss rates [6] of succes-
sive priority classes is roughly constant. For two pri-
ority classes such a service could specify that the de-
lays of packets from the higher-priority class be half
of the delays from the lower-priority class, but with-
out specifying an upper bound on the delays.

In this paper, we express the provisioning of rel-
ative per-class QoS within a formal framework in-
spired by Cruz’s service curves [5]. Using this
approach, we present a scheduling/dropping algo-
rithm, calledJoint Buffer Management and Schedul-
ing (JoBS), which is capable of supporting a wide
range of relative, as well as absolute, per-class guar-
antees for loss and delay, without assuming admis-
sion control or traffic policing. JoBS operates as
follows. Whenever there is an arrival jobs makes
prediction on the delays of the currently backlogged
traffic, and then adjusts the service rate allocation to
classes and the amount of traffic to be dropped. A
unique feature of JoBS is that it considers schedul-
ing and buffer management (dropping) together in a
single step. We also present a heuristic approxima-
tion of the JoBS algorithm.

101

This paper is organized as follows. In Section II
we give an overview of the state-of-the-art of rela-
tive per-class QoS guarantees. Then, in Sections III
and IV, we specify the JoBS framework. In Sec-
tion V we present a heuristic approximation of JoBS.
In Section VI we present simulation scenarios to
evaluate the effectiveness of JoBS. In Section VII we
present brief conclusions.

II. RELATED WORK

Due to space considerations, we limit our discus-
sions to a small set of relevant work on scheduling
and buffer management algorithms for relative ser-
vice differentiation.
SCHEDULING: The majority of work on per-class
relative QoS suggests to use a fixed-priority, e.g.,
[16], or rate-based scheduler, e.g., [9], and the num-
ber of scheduling algorithms that have been specif-
ically designed for relative delay differentiation is
small. The Proportional Queue Control Mechanism
(PQCM) [13] uses the backlog of classes to deter-
mine the service rate allocation. Similarly, Backlog-
Proportional Rate (BPR) [7] is a variation of the GPS
algorithm [17] which sets the service rates of classes
proportional to their backlog. Both schemes bear
similarity to the scheduling component of JoBS, in
the sense that they dynamically adjust service rate
allocations to meet relative QoS requirements.

Waiting-Time Priority (WTP), also presented in
[7], implements a well-known scheduling algo-
rithm with dynamic time-dependent priorities ([10],
Ch. 3.7). The Mean-Delay Proportional scheduler
(MDP) [14] also uses a dynamic priority mechanism,
but sets priorities based on the average experienced
delay of packets.

With respect to these schedulers, a distinguishing
feature of JoBS is that it not only considers the cur-
rent state and the past history of the link, but, in ad-
dition, uses the current state to make predictions on
future delays and backlog.
BUFFERMANAGEMENT: For a discussion of buffer
management algorithms proposed in an IP and/or
ATM context, we refer to a recent survey article [11].
Proposals for buffer management (active queue man-
agement) in IP networks are often motivated with
the need to improve TCP performance (e.g., RED
[8], FRED [12], REM [1]), while some techniques

have been specifically targeted for class-based ser-
vice differentiation (RIO [4], multiclass RED [18]).
Of these schemes, REM is closest in spirit to the
dropping algorithm in JoBS, since it treats the prob-
lem of marking (or dropping) arrivals as an optimiza-
tion problem.

The Proportional Loss Rate (PLR) dropper [6] has
been specifically designed to support proportional
differentiated services. PLR enforces that the ratio
of the loss rates of two successive classes remains
roughly constant at a given value. There are two
variants of this scheme. PLR(M) uses only the last
M packets for estimating the loss rates of a class,
whereas PLR(1) has no such memory constraints.

Most of the work on relative per-class service dif-
ferentiation considers delay and loss differentiation
as orthogonal issues. A notable exception is the
most recent revision of theProportional Differen-
tiated Servicesmodel [6], which provides mecha-
nisms for both proportional dropping and delay dif-
ferentiation. However, scheduling and dropping in
this scheme are treated independently by separate al-
gorithms.

III. T HE JOINT BUFFER MANAGEMENT AND

SCHEDULING FRAMEWORK

In this section, we introduce our framework of
Joint Buffer Management and Scheduling(JoBS),
for scheduling and buffer management at the output
link of a router. We will first give an informal dis-
cussion of the operations of JoBS, and then provide
a detailed description.

A. Overview of JoBS

JoBS assumes per-class buffering of arriving traf-
fic, and serves traffic from the same class in a First-
Come-First-Served order. JoBS also assumes the
availability to perform rate-based scheduling with
service rate guarantees to classes [5], [17]. Within
the context of JoBS, there is no admission control
and no policing of traffic.

The set of relative or absolute performance re-
quirements are given to the JoBS algorithms as a
set of per-class QoS constraints. As an example,
for three classes, the QoS constraints could be of the
form:

102

� Class-1 Delay� 2 � Class-2 Delay,
� Class-2 Loss Rate� 10�1 � Class-3 Loss Rate, or
� Class-3 Delay� 5ms.
Here, the first two constraints are relative constraints
and the last one is an absolute constraint. The set
of constraints given to JoBS can be any mix of rela-
tive and absolute constraints. Note that absolute con-
straints may render a system of constraints infeasi-
ble. Then, some constraints may need to be relaxed.
We assume that JoBS is provided with an order in
which constraints should be relaxed in case of an in-
feasible state.

The JoBS algorithm operates as follows. For ev-
ery arrival, JoBS makes a prediction on the delays of
the backlogged traffic, and modifies the service rates
so that all QoS and system constraints will be met. If
changing the service rates is not sufficient for meet-
ing all constraints, JoBS will drop either the arrival
or it will drop queued traffic.

We find it convenient to view the operation of
JoBS in terms of an optimization problem. The con-
straints of the optimization problem are relative or
absolute bounds on the loss and delay as given in
the example above (QoS constraints) and constraints
on the link and buffer capacity (system constraints).
The objective function of the optimization is such
that the amount of dropped traffic and changes to the
current service rate allocation are minimized. The
first objective prevents traffic from being dropped
unnecessarily and the second objective tries to avoid
frequent fluctuations of the service rate allocation.
The solution of the optimization problem yields a
service rate allocation of classes and determines how
much traffic must be dropped. The optimization is
performed for each arrival to the link.

The computational complexity of JoBS is deter-
mined by the number and the type of constraints and
by the frequency of running the above optimization.
To explore the principal properties of JoBS, we will,
for now, assume that infinite computing resources
are available. In a later section, we will approxi-
mate JoBS with a heuristic which incurs less com-
putational overhead.

B. Formal Description of JoBS

Next we describe the basic operations of the algo-
rithms for service rate adjustment and dropping al-

time

Bi(t)

Ai

Rin
i

Rout
i

Dropped

t1 t2 t3 t

C
la

ss
-

i T
ra

ffi
c

Di(t)

t4

Fig. 1. Delay and backlog.

gorithms at a JoBS link with capacityC and total
buffer spaceB.

We assume that all traffic is marked to belong to
one ofQ traffic classes. In general, we expectQ to
be small, e.g.,Q = 4. Classes are marked by an
index. We use a convention, whereby a class with
a smaller index requires a better level of QoS. Let
ai(t) and`i(t) denote the traffic arrivals and amount
of dropped (‘lost’) traffic from classi at timet.

Let ri(t) denote the service rate allocated by JoBS
to classi at timet. We assume thatri(t) is nonzero,
only if there is a backlog of class-i traffic in the
buffer, and we assume that scheduling in JoBS is
workconserving, that is,

P
i ri(t) = C if the backlog

at timet is nonzero.
Remark: Throughout this paper, we take a fluid-
flow interpretation of traffic, that is, the output link is
regarded as serving simultaneously traffic from sev-
eral classes. Since actual traffic is sent in discrete-
sized packets, a fluid-flow interpretation of traffic is
idealistic. On the other hand, scheduling algorithms
that closely approximate fluid-flow schedulers with
rate-guarantees are readily available [17].

We now introduce the notions ofarrival curve, in-
put curve, andoutput curvefor a traffic classi in the
time interval[0; t]. The arrival curveAi and the input
curveRin

i of classi are defined as

Ai(t) =

Z t

0

ai(x)dx ; (1)

Rin
i (t) = Ai(t)�

Z t

0

`i(x)dx : (2)

So, the difference between the arrival and input curve

103

Rin
i,s

C
la

ss
- i

 T
ra

ffi
c

time

Di,s(t5)

s t5 t6

Rout
i,s

Di,s(t6)

Ti,s

Fig. 2. Projected input curve, projected output curve, and
projected delays. The projection is performed at times
for the time interval[s; s+ ~Ti;s].

is the amount of dropped traffic. The output curve
Rout
i of class-i is the transmitted traffic in the interval

[0; t], given by

Rout
i (t) =

Z t

0

ri(x)dx : (3)

We refer to Figure 1 for an illustration. In the figure,
the service rate is adjusted at timest1, t2, andt4, and
packet drops occur at timest2 andt3.

The vertical and the horizontal distance between
the input and output curves from classi, respectively,
are the backlogBi and the delayDi. This is illus-
trated in Figure 1 for timet. The delayDi at timet is
the delay of an arrival which is transmitted at timet.
Backlog and delay at timet are defined as

Bi(t) = Rin
i (t)�Rout

i (t) ; (4)

Di(t) = max
x<t

fx j Rout
i (t) � Rin

i (t� x)g :(5)

Upon a traffic arrival, say at times, JoBS sets new
service ratesri(s) and the amount of traffic to be
dropped`i(s) for all classes, such that all QoS and
system constraints can be met at times> s. To deter-
mine the rates, JoBS projects the delays of all queued
traffic. For the projections, JoBS assumes that the
current state of the link will not change after times.
Specifically, JoBS makes the following assumptions
on the service, the arrival, and the drops (we indicate
projected values by a tilde (˜)) for timest > s:
1. Service rates remain as they are:~ri(t) = ri(s),
2. There are no further arrivals:~ai(t) = 0,
3. There are no further packet drops:~̀

i(t) = 0.

With these assumptions, we now define the notions
of projected input curve~Rin

i;s, projected output curve
~Rout
i;s , and projected backlog~Bi;s, for t > s as fol-

lows:

~Rin
i;s(t) = Rin

i (s) ;

~Rout
i;s (t) = Rout

i (s) + (t� s)ri(s) ;

~Bi;s(t) = ~Rin
i;s(t)� ~Rout

i;s (t) :

We refer to theprojected horizonfor classi at times,
denoted as~Ti;s, as the time when the projected back-
log becomes zero, i.e.,

~Ti;s = min
x>0

fx j ~Bi;s(s+ x) = 0g : (6)

With this notation, we can now make predictions for
the (future) delays in the time intervalt 2 [s; s +
~Ti;s]. We define the projected delay~Di;s as

~Di;s(t) = max
s<x<s+~Ti;s

fx j ~Rout
i;s (t) � Rin

i (t� x)g :

(7)

Note that, if there are no arrivals after times, the de-
lay projections are correct. In Figure 2, we illustrate
the projected input curve, projected output curve,
projected delays for projections made at times. In
the figure, all values fort > s are projections and
are indicated by dashed lines. The figure includes
the projected delays for timest5 andt6.

IV. SERVICE RATE ADAPTATION AND DROP

ALGORITHM IN JOBS

In this section we discuss how JoBS adjusts the
service rates of classes and decides if and how much
traffic to drop. The algorithm will be expressed in
terms of an optimization problem.

Each times, when an arrival occurs, a new op-
timization is performed. The optimization variable
is a time-dependent vectorxs which contains the
service ratesri(s) and the amount of traffic to be
dropped̀ i(s),

xs = (r1(s) : : : rQ(s) `1(s) : : : `Q(s))
T : (8)

104

The optimization problem has the form

MINIMIZE F (xs)
SUBJECT TO gk(x) = 0, k = 1; : : : ;M

hk(x) � 0, k = M + 1; : : : ; N .

whereF (:) is an objective function, and thegk’s and
hk’s are constraints.

The objective function of JoBS will be stated such
that JoBS minimizes the amount of dropped traffic,
and keeps the changes to the current service rate al-
location small. The constraints are QoS constraints
and system constraints. The optimization at times
is done with knowledge of the system state before
timess, that is, the optimizer knowsRin

i andRout
i

for all timest < s, andAi for all timest � s.
In the remainder of this section we discuss the

constraints and the optimization function. We will
use the optimization problem as a reference system
that provides a benchmark, against which practical
scheduling and dropping algorithms can be com-
pared.

A. System and QoS Constraints

There are two types of constraints:System con-
straints describe constraints and properties of the
output link, andQoS constraintsdefine the desired
service differentiation.

SYSTEM CONSTRAINTS. The system constraints
specify physical limitations and properties at the out-
put link.
� Buffer size: The total backlog cannot exceed the
buffer sizeB, that is,

P
iBi(t) � B for all timest.

� Workconserving property: At a workconserv-
ing link

P
i ri(t) = C holds for all timest whereP

iBi(t) > 0. This constraint is stronger than the
limit given by the link capacityC, i.e.,

P
i ri(t) �

C.
� Other bounds: Rates and packet drops are non-
negative. Also, the amount of traffic that can be
dropped is bounded by the current backlog. So we
obtain ri(t) � 0 and 0 � `i(t) � Bi(t) for all
timest.

QOS CONSTRAINTS. JoBS allows two types of QoS
constraints, relative constraints and absolute con-
straints. Also, QoS constraints can be expressed for
delays and for loss rates. The number and type of
QoS constraints is not limited by JoBS. However,

absolute QoS constraints may result in an infeasi-
ble system of constraints. In such a situation, one or
more constraints must be relaxed or eliminated. We
assume that the set of QoS constraints is assigned
some total order, and that constraints are relaxed in
the given order until the system of constraints is fea-
sible. In addition, QoS constraints for classes which
are not backlogged are simply ignored.
� Absolute Delay Constraints (ADC):These con-
straints enforce that the projected delays of classi
satisfy a worst-case bounddi.

max
s<t<s+~Ti;s

~Di;s(t) � di ; (9)

for all t 2 [s; s+ ~Ti;s]. If this condition holds at alls,
the delay bounddi is never violated.
� Relative Delay Constraints (RDC):These con-
straints specify the proportional delay differentiation
between classes. As an example, for two classes1
and2, the proportional delay differentiation enforces
a relationship

Delay of Class 2
Delay of Class 1

� constant:

Since, in general, there are several packets back-
logged from a class, each likely to have a different
delay, the notion of ‘delay of classi’ needs to be fur-
ther specified. (For example, it could be specified
as the delay of the packet at the head of the class-i
queue, the maximum projected delay as in Eqn. (9),
or via other measures). We choose a measure, called
average projected delayDi;s, which is the time av-
erage of the projected delays from a class, averaged
over the horizon~Ti;s. We obtain:

Di;s =
1
~Ti;s

Z s+~Ti;s

s

~Di;s(x)dx : (10)

To provide some flexibility in the scheduling deci-
sion, we do not enforce relative delay constraints
strictly, but allow for some slack. The relative de-
lay constraints are of the form

ki(1� ") �
Di+1;s

Di;s

� ki(1 + ") (11)

for i = 1; : : : ; Q � 1, whereki > 1 is the target
differentiation factor and" (0 � " � 1) indicates

105

a tolerance level. If relative constraints not specified
for some classes, the constraints are adjusted accord-
ingly.
Note that in the delay constraints in Eqs. (9) and
(11), all values with exception of the components of
the optimization variablexs are known at times.

Next we discuss constraints on the loss rate. Sim-
ilar to delays, there are several sensible choices for
defining ‘loss’ in this context. For this paper, we se-
lect one specific loss measure, denoted bypi;s, which
expresses the fraction of lost traffic since the begin-
ning of the current busy period at timet0.1 So,pi;s
expresses the fraction of traffic that has been dropped
in the time interval[t0; s], that is,2

pi;s =

R s
t0
`i(x)dxR s

t0
ai(x)dx

(12)

= 1�
Rin
i (s�) + (ai(s)� `i(s))�Rin

i (s� t0)

Ai(s)�Ai(s� t0)

In the last equation, all values except`i(s) are known
at times.
� Absolute Loss Constraints (ALC):An ALC spec-
ifies that the loss ratio of classi, as defined above,
never exceeds a limitLi. That is, ifBi(s) > 0, then

pi;s � Li : (13)

� Relative Loss Constraints (RLC):The RLCs spec-
ify the desired proportional loss differentiation be-
tween classes. Similar to the RDCs, we provide a
certain slack within these constraints. If, at time
s, Bi(s) > 0 andBi+1(s) > 0, then the RLC for
classesi+ 1 andi has the form

k0i(1� "0) �
pi+1;s
pi;s

� k0i(1 + "0) ; (14)

wherek0i > 1 is the target differentiation factor, and
"0i (0 � "0 � 1) indicates a level of tolerance.

Remark: JoBS only specifies the amount of traffic
which should be dropped from a particular class,
however, JoBS does not select the position in the
queue from which to drop traffic. For example, drops

1A busy period is a time interval with a positive backlog of
traffic. For timex with

P
i
Bi(x) > 0, the beginning of the

busy period is given bymaxy<xf
P

i
Bi(y) = 0g.

2s� = s� h, whereh > 0 is infinitesimally small.

may occur from the head of the queue (Drop-from-
Front) or from the tail (Drop-Tail) [11]. Note that
such a policy has an impact on the shape of the in-
put curve. The definitions in Section III assume a
Drop-Tail policy.

B. Objective Function

Provided that the QoS and system constraints can
be satisfied, the objective function of JoBS selects a
solution forxs. Even though the choice of the ob-
jective function is a policy decision, we select two
specific objectives, which - we believe - have gen-
eral validity:

� OBJECTIVE 1: Avoid dropping traffic,
� OBJECTIVE 2: Avoid changes to the current ser-
vice rate allocation.

The first objective ensures that traffic is dropped
only if there is no alternative way to satisfy the con-
straints. The second objective tries to hold on to a
feasible service rate allocation as long as possible.
We give the first objective priority over the second
objective.

The formulation of the objective function ex-
presses the above objectives in terms of a cost func-
tion.

F (xs) =
QX
i=1

(ri(s)� ri(s
�))2 + C2

QX
i=1

`i(s) ;

(15)

whereC is the link capacity. The first term expresses
the changes to the service rate allocation and the sec-
ond term expresses the losses at times. Note that,
at times, ri(s) is part of the optimization variable,
while ri(s�) is a known value. In Eqn. (15) we need
to use the quadratic form(ri(s) � ri(s

�))2, sinceP
i(ri(s) � ri(s

�)) = 0 for a workconserving link
with a backlog at times. The scaling factorC2 in
front of the second sum of Eqn. (15) ensures that
traffic drops are the dominating term in the objective
function.

This concludes the description of the optimization
process in JoBS. The structure of constraints and ob-
jective function makes this anon-linear optimization
problem, which can be solved with available numer-
ical algorithms [19].

106

V. HEURISTIC APPROXIMATION OFJOBS

We next present a heuristic that approximates the
JoBS algorithm, yet, which has significantly lower
computational complexity. Our goal is not to present
an algorithm that is readily implementable and can
operate at current line rates. Instead, we want to
demonstrate that it is feasible to find relatively sim-
ple algorithms that can closely approximate the ide-
alized JoBS system. The presented heuristic can be
thought of as the first step towards a router imple-
mentation.

Remark: The translation of the fluid-flow ser-
vice model of JoBS into a packet-level architecture
is done using the well-known technique of assign-
ing virtual deadlines to packets which are computed
from the current rate allocation [17], [20]. Note that
a change to the service rate of a class may require to
update the virtual deadlines of already queued pack-
ets.

Our heuristic algorithm completely avoids run-
ning the optimization from Section IV. Instead, the
heuristic maintains the current rate allocation until
a buffer overflow occurs or a delay violation is pre-
dicted. At that time, the heuristic picks a new feasi-
ble rate allocation. Unless there is a buffer overflow,
the tests for violations of ADCs and RDCs3 are not
performed for every packet arrival, but only periodi-
cally.

A set of constraints, which contains absolute con-
straints (ALCs or ADCs), may be infeasible at cer-
tain times. Then, some constraints need to be re-
laxed. In our heuristic algorithm, the constraints are
prioritized in the following order: system constraints
have priority over absolute constraints, which in turn
have priority over relative constraints. If the system
of constraints becomes infeasible, the heuristic re-
laxes the relative constraints (RLCs or RDCs). If
this does not yield a feasible solution, the heuristic
relaxes one or more absolute constraints.

A high-level overview of the heuristic algorithm
is presented in Figure 3. The algorithm is broken up
into a number of small computations.
BUFFER OVERFLOW: If an arrival at times causes
a buffer overflow, one can either drop the arriving

3Recall:ADC= absolute delay constraint,RDC= relative de-
lay constraint,ALC = absolute loss constraint, andRLC= rela-
tive loss constraint.

Find li(s), ri(s)
subject to:
- ADCs
- ALCs
- ignore RDCs
 and RLCs

Done

Buffer
overflow ?

N packets
arrived since

last test?

ADCs
violated?

(*) If necessary relax the RLCs (RDCs) to
 obtain a feasible solution fo r the li(s) or ri(s)

No

No

Packet Arrival

Yes

Yes

RDCs
violated? No

Find li(s)
subject to:
- ALCs
- RLCs
- Eqn. (16) (*)

Buffer Overflow

Yes

Yes

No

ADC violation

Find ri(s)
subject to:
- ADCs
- RDCs

RDC violation

Fig. 3. Outline of the Heuristic algorithm .

packet or free enough buffer space to accommodate
the arriving packets. Both cases are satisfied if

X
i

`i(s) = Size of arriving packet: (16)

The heuristic picks a solution for thèi(s) which sat-
isfies Eqn. (16) and the RLCs in Eqn. (14), where"0

is set to zero to simplify the search for a solution. If
the solution violates an ALC, the RLCs are relaxed
until all ALCs are satisfied. Once thèi(s)’s are de-
termined the algorithm continues with a test for de-
lay constraint violations, as shown in Figure 3.

If there are no buffer overflows, the algorithm
makes projections for delay violations (ADC and
RDC) only once for everyN packets. The tests use
the current service rate allocation to predict future vi-
olations. For delay constraint violations, the heuris-
tic distinguishes the following three cases:
NO VIOLATION : In this case, the service rate allo-
cation remains unchanged.
RDC VIOLATION : If some RDC (but no ADC)
is violated, the heuristic algorithm determines new
rate values. Here, the RDCs as defined in Eqn. (11)
are transformed into equations by setting" =
0. Together with the workconserving property
(
P

i ri(s) = C), one obtains a system of equations,
for which the algorithm picks a solution. If the solu-
tion violates an ADC, the RDCs are relaxed until the
ADCs are satisfied.

107

ADC VIOLATION : Resolving an ADC violation is
not entirely trivial as it requires to recalculate the
ri(s)’s, and, if traffic needs to be dropped to meet the
ADCs, theli(s)’s. To simplify the task, our heuristic
simply ignores all relative QoS constraints (RLCs,
RDCs) when an ADC violation occurs, and only tries
to satisfy ALCs and ADCs.

The heuristic starts with a conservative estimate
of the worst-case delay for the class-i backlog at
time s. For this the heuristic uses the following
bound, which is easily verified by referring to Fig-
ures 1 and 2.

max
s<x<s+~Ti;s

~Di;s(x) � Di(s) +
Bi(s)

ri(s)
: (17)

Then, usingBi(s) = Bi(s
�) + ai(s) � li(s), the

following is a sufficient condition for satisfying the
ADC of classi with delay bounddi at times.

1

ri(s)

Bi(s
�) + ai(s)� li(s)

di �Di(s)| {z }
�i

� 1 : (18)

The heuristic algorithm will select theri(s) andli(s)
such that Eqn. (18) is satisfied for alli. Initially,
rates and traffic drops are set tori(s) = ri(s

�) and
li(s) = 0. Since at least one ADC is violated, there
is at least one class with�i > 1, where�i is defined
in Eqn.(18). Now, we apply a greedy method which
tries to redistribute the rate allocations until�i � 1
for all classes. This is done by reducingri(s) for
classes with�i < 1, and increasingri(s) for classes
with �i > 1. If, after the redistribution of rates, there
are still classesi with �i > 1, we increaseli(s) until
�i < 1 for those classes. To minimize the number of
dropped packets,li(s) is never increased to a point
where an ALC is violated.

VI. EVALUATION

We present an evaluation of the JoBS algorithm
via simulation. Our goals are (1) to determine if and
how well JoBS provides the desired service differen-
tiation; (2) to determine how well the heuristic algo-
rithm from Section V approximates the optimization
of JoBS; and (3) to compare JoBS with existing pro-
posals for proportional differentiated services.

In the simulations, we compare the performance
of the following three schemes.

4 62

140

120

100

80

60

40

20

0
Simulation Time (s)

20181614121080O
ff

er
ed

 lo
ad

 in
 %

 o
f

lin
k

ca
pa

ci
ty

Fig. 4. Offered Load.

� JOBS (OPTIMIZATION): This is the optimization
described in Section IV.
� JOBS (HEURISTIC): This is the heuristic algo-
rithm discussed in Section V. The rates are recalcu-
lated everyN = 100 packets, unless there is a buffer
overflow.
� WTP/PLR(1) [7]: Among the considered
schemes for relative service differentiation (for
scheduling: MDP [14], WTP [7], BPR [7], for drop-
ping: PLR(M), PLR(1) [6], Drop-Tail), we found
that WTP/PLR(1) provided uniformly the best re-
sults. Thus, we use this scheme to represent the
state-of-the-art.

We present two simulation experiments. In the
first experiment, we compare and contrast the rela-
tive differentiation provided of JoBS (optimization),
JoBS (heuristic), and WTP/PLR(1) without speci-
fying absolute constraints. In the second experiment,
we augment the set of constraints by absolute delay
constraints on the highest priority class, and show
that JoBS can effectively provide both relative and
absolute differentiation.

A. Experimental Setup

We consider a single output link with capacity
C = 1 Gbps and a buffer size of 6.25 MByte. We
haveQ = 4 classes. We use the same load curve
in all experiments. The length of each experiment is
20 seconds of simulated time, starting at time0 with
an empty system.

The incoming traffic is composed of a superposi-
tion of Pareto sources with a parameter� = 1:2 and
an average interarrival time of 300�s. These sources
generate packets with a fixed size of 125 Byte. As
offered load, we generate a time-varying load curve,
where the number of active sources follows a sinu-
soidal pattern with periodT = 10s. The offered

108

0

1

2

3

4

5
Class-2 Delay / Class-1 Delay

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

6
R

el
at

iv
e

D
el

ay

(a) JoBS (optimization).

0

1

2

3

4

5
Class-2 Delay / Class-1 Delay

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

6

R
el

at
iv

e
D

el
ay

(b) JoBS (heuristic).

0

1

2

3

4

5
Class-2 Delay / Class-1 Delay

Class-4 Delay / Class-3 Delay
Class-3 Delay / Class-2 Delay

Simulation Time (s)
0 2 4 6 8 10 12 14 16 18 20

6

R
el

at
iv

e
D

el
ay

(c) WTP/PLR(1).

Fig. 5. Experiment 1: Relative Delay Differentiation. The graphs show the ratios of the delays for successive classes. The
target value isk = 4.

0

1

2

3

4

5

Simulation Time (s)
20 4 6 8 10 12 14 16 18 20

p4/p3
p3/p2
p2/p1

R
el

at
iv

e
L

os
s

(a) JoBS (optimization).

0

1

2

3

4

5

Simulation Time (s)
20 4 6 8 10 12 14 16 18 20

p4/p3
p3/p2
p2/p1

R
el

at
iv

e
L

os
s

(b) JoBS (heuristic).

0

1

2

3

4

5

Simulation Time (s)
20 4 6 8 10 12 14 16 18 20

p4/p3
p3/p2
p2/p1

R
el

at
iv

e
L

os
s

(c) WTP/PLR(1).

Fig. 6. Experiment 1: Relative Loss Differentiation. The graphs show the ratios of loss rates for successive classes. The target
value isk0 = 2.

load used in our experiments is plotted in Figure 4.
Between 200 and 550 sources are active at the same
time, resulting in an offered load comprised between
75% and 145% of the link capacity. The load from
the classes is symmetric, that is, at each time, each
class generates 25% of the aggregate load.

B. Experiment 1: Relative Differentiation Only

The first experiment focuses on relative service
differentiation, and does not include absolute con-
straints. The objective for the relative differentiation
are

Delay of Class(i+ 1)=Delay of Classi � 4 ;

Class-(i+ 1) Loss Rate=Class-i Loss Rate� 2 :

Thus, for JoBS, the parameters in the RDCs and
RLCs are set toki = 4 andk0i = 2 for all i. The
tolerance levels are set to" = 0:001 in JoBS (opti-
mization)," = 0:01 in JoBS (heuristic),"0 = 0:05
in JoBS (heuristic) and JoBS (optimization). The re-
sults of the experiment are presented in Figures 5 and
6, where we graph the ratios of delays and loss rates,
respectively, of successive classes for JoBS (opti-
mization), JoBS (heuristic), and WTP/PLR(1). The
plotted delay and loss values present averages over
moving time windows of size 0.1 s (This measure is
adopted from [6]).

When the link load is above 90% of the link capac-
ity, that is, in time intervals[0 s; 6 s] and[10 s; 15 s],

all methods provide the desired service differenti-
ation. The oscillations around the target values in
JoBS (optimization) and JoBS (heuristic) are mostly
due to the tolerance values" and"0. Note that the
selection of the tolerance values" and "0 in JoBS
presents a tradeoff: smaller values for" and"0 reduce
oscillations, but incur more work for the algorithm.

When the system load is low, that is, in time in-
tervals[6 s; 10 s] and [16 s; 20 s], JoBS (heuristic)
is not effective for providing delay differentiations.
Here, JoBS (optimization) and WTP/PLR(1) still
manage to achieve some delay differentiation, albeit
far from the target values. One should note, however,
that, at an underloaded link, the absolute values of
the delays are very small for all classes. In Figure 6,
we observe that both WTP/PLR(1) and JoBS (op-
timization) show some transient oscillations in the
time interval[5 s; 6 s], while JoBS (heuristic) does
not seem to suffer from this problem as much.

We have not presented graphs for the total loss
rate in the simulations. Note that the total loss rate
is of interest, as a scheme may provide excellent
proportional loss differentiation, but have an overall
high loss rate. Without presenting additional plots,
we state that, in the simulations, the loss rate of all
schemes are very similar. Likewise, the absolute val-
ues for the delays are comparable in all schemes.

109

Simulation Time (s)

4
3
2
1

Classes:

20

10

0 2 4 6 8 10 12 14 16 18

D
el

ay
 (

us
)

1e5

100

1

1e4

1e3

(a) With ADC, all RDCs.
Simulation Time (s)

2
1

4
Classes:

3

20

10

0 2 4 6 8 10 12 14 16 18

D
el

ay
 (

us
)

1e5

100

1

1e4

1e3

(b) With ADC, one RDC removed.
Simulation Time (s)

4
Classes:

3
2
1

20

10

0 2 4 6 8 10 12 14 16 18

D
el

ay
 (

us
)

1e5

100

1

1e4

1e3

(c) No ADC, all RDCs.

Fig. 7. Experiment 2: Absolute Delay Differentiation. The graphs show the delays of all packets. All results are for JoBS
(heuristic).

0

1

2

3

4

5

Simulation Time (s)
20 4 6 8 10 12 14 16 18 20

p4/p3
p3/p2
p2/p1

R
el

at
iv

e
L

os
s

(a) With ADC, all RDCs.

0

1

2

3

4

5

Simulation Time (s)
20 4 6 8 10 12 14 16 18 20

p4/p3
p3/p2
p2/p1

R
el

at
iv

e
L

os
s

(b) With ADC, one RDC removed.

0

1

2

3

4

5

Simulation Time (s)
20 4 6 8 10 12 14 16 18 20

p4/p3
p3/p2
p2/p1

R
el

at
iv

e
L

os
s

(c) No ADC, all RDCs.

Fig. 8. Relative Loss Differentiation. The graphs show the ratios of loss rates for successive classes. The target value isk0 = 2.
All results are for JoBS (heuristic).

C. Experiment 2: Relative and Absolute Differenti-
ation

In this experiment, we evaluate how well JoBS
can satisfy a mix of absolute and relative delay con-
straints. In this experiment, we only present results
for JoBS (heuristic). Note that WTP/PLR(1), or
other schemes from the literature, do not support
both relative and absolute guarantees.

We consider the same simulation setup and the
same relative constraints (RDCs and RLCs) as in
Experiment 1, but add an absolute delay constraint
(ADC) for Class 1 with a delay bound of

d1 = 1; 000�s.
We call this scenario “with ADC, all RDCs”. Note
that, with the given relative delay constraints from
Experiment 1, the other classes have implicit ab-
solute delay constraints, which are approximately4

4,000�s for Class 2, 16,000�s for Class 3, and
64,000�s for Class 4.

These ‘implicit’ absolute constraints can be
avoided, by removing the RDC which governs the
ratio of the delays between Class2 and Class1. We
present results for such a constraint system as well,
and denote this constraint set as “with ADC, one
RDC removed”. For reference purposes, we also in-
clude the results for JoBS (heuristic) from Experi-
ment 1. We refer to this constraint set as “no ADC,

4Due to the tolerance value" the exact values are multiples of
1,000.

all RDCs”.

In Figure 7 we plot the absolute delays of all pack-
ets, and in Figure 8 we plot the ratios of the rates for
successive classes. The plotted ratios of loss rates
are time averages over intervals of length 0.1 s.

Our discussion will focus on the delay values in
Figure 7. Figures 7(a) and 7(b) show that the abso-
lute delay constraint ofd1 = 1000 is enforced in
both cases. Figure 7(a) also shows that the JoBS
heuristic maintains the relative delay differentiation
for the other classes, thus, enforcing the ‘implicit’
delay constraints of (approximately) 4,000, 16,000,
and 64,000�s for Classes 2, 3, and 4, respectively. A
problem with having a large number of absolute de-
lay constraints is that the system of constraints easily
becomes infeasible. Indeed, the delay fluctuations in
Figure 7(a) and the violations of the RLCs in Fig-
ure 8(a) are due to an infeasible set of constraints.

In the constraint set ‘with ADC, one RDC re-
moved’, we remove the RDC for the delay ratio
between Class 2 and Class 1, thereby, removing
the ‘implicit’ bounds on the worst case delays for
Classes 2, 3, and 4. Figure 7(b) shows that the JoBS
heuristic handles this set of constraints as one would
expect. The ADC for Class 1 is enforced, as are the
RDCs for Classes 2, 3, and 4. Note that no propor-
tional delay differentiation is enforced for Class 1.
In fact the ratio of Class 2 delays and Class 1 delays
exceeds a factor of 10 at high loads.

110

For reference purposes, we present the results for
the constraint system from Experiment 1, that is,
without having any ADCs. Figure 7(c) shows that,
without the ADC, the delays for Class 1 are as high
as5; 000�s. 5

VII. D ISCUSSION ANDCONCLUSIONS

The main contribution of this paper is a new
framework, referred to as JoBS (Joint Buffer Man-
agement and Scheduling), for reasoning about rel-
ative and absolute per-class service differentiation
in a network without information on traffic arrivals.
JoBS reconciles scheduling and buffer management
into a single algorithm, thus, acknowledging that
scheduling and buffer management are not orthog-
onal issues, but should be dealt with in concert.
JoBS makes predictions on the delays of backlogged
traffic, and uses the predictions to update the ser-
vice rates of classes and the amount of traffic to be
dropped. A unique capability of JoBS is its ability to
provide relative and absolute per-class service differ-
entiation for delays and loss rate. We have demon-
strated the effectiveness of JoBS in a set of simula-
tion experiments.

As future work, we are interested in extending the
JoBS approach to support TCP congestion control.
As a point of departure, we conjecture that many ac-
tive queue management algorithms, e.g., RED [8]
and RIO [4], can be expressed within the JoBS
framework. We are also working towards an imple-
mentation of JoBS-style algorithms on PC-based IP
routers.

REFERENCES

[1] S. Athuraliya, D. Lapsley, and S. Low. An enhanced ran-
dom early marking algorithm for internet flow control. In
Proceedings of IEEE INFOCOM 2000, pages 1425–1434,
Tel-Aviv, Israel, April 2000.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. RFC 2475: An architecture for differentiated
services, December 1998.

[3] R. Braden, D. Clark, and S. Shenker. RFC 1633: Inte-
grated services in the internet architecture: an overview,
July 1994.

[4] D. Clark and W. Fang. Explicit allocation of best-effort
packet delivery service.IEEE/ACM Transactions on Net-
working, 6(4):362–373, August 1998.

5The delay values for Classes 2, 3, and 4 in Figures 7(b) and
(c) appear similar, especially, since we use a log-scale. We em-
phasize that the values are consistent.

[5] R. Cruz, H. Sariowan, and G. Polyzos. Scheduling for
quality of service guarantees via service curves. InPro-
ceedings of the International Conference on Computer
Communications and Networks (ICCCN), pages 512–520,
Las Vegas, NV, September 1995.

[6] C. Dovrolis and P. Ramanathan. Proportional differenti-
ated services, part II: Loss rate differentiation and packet
dropping. InProceedings of IWQoS, Pittsburgh, PA., June
2000.

[7] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional
differentiated services: Delay differentiation and packet
scheduling. InProceedings of ACM SIGCOMM ’99, pages
109–120, Boston, MA., August 1999.

[8] S. Floyd and V. Jacobson. Random early detection for con-
gestion avoidance.IEEE/ACM Transactions on Network-
ing, 1(4):397–413, July 1993.

[9] S. Floyd and V. Jacobson. Link-sharing and resource man-
agement models for packet networks.IEEE/ACM Trans-
actions on Networking, 3(4):365–386, August 1995.

[10] L. Kleinrock. Queueing Systems. Volume II: Computer Ap-
plications. John Wiley & Sons, New York, NY, 1976.

[11] M. A. Labrador and S. Banerjee. Packet drop-
ping policies for ATM and IP networks. IEEE
Communications Surveys, 2(3), 3rd Quarter 1999.
http://www.comsoc.org/pubs/surveys.

[12] D. Lin and R. Morris. Dynamics of random early detec-
tion. In Proceedings of ACM SIGCOMM ’97, pages 127–
137, Cannes, France, September 1997.

[13] Y. Moret and S. Fdida. A proportional queue control mech-
anism to provide differentiated services. InProceedings of
the International Symposium on Computer and Informa-
tion Systems (ISCIS), pages 17–24, Belek, Turkey, October
1998.

[14] T. Nandagopal, N. Venkitaraman, R. Sivakumar, and
V. Barghavan. Delay differentiation and adaptation in core
stateless networks. InProceedings of IEEE INFOCOM
2000, pages 421–430, Tel-Aviv, Israel, April 2000.

[15] K. Nichols, S. Blake, F. Baker, and D. Black. RFC 2474:
Definition of the differentiated services field (DS field) in
the IPv4 and IPv6 headers, December 1998.

[16] K. Nichols, V. Jacobson, and L. Zhang. RFC 2638: Two-
bit differentiated services architecture for the Internet, July
1999.

[17] A. K. Parekh and R. G. Gallagher. A generalized proces-
sor sharing approach to flow control in integrated services
networks: The single-node case.IEEE/ACM Transactions
on Networking, 1(3):344–357, June 1993.

[18] S. Sahu, P. Nain, D. Towsley, C. Diot, and V. Fioroiu. On
achievable service differentiation with token bucket mark-
ing for TCP. InProceedings of ACM SIGMETRICS 2000,
pages 23–33, Santa Clara, CA, June 2000.

[19] K. Schittkowski. NLPQL: A FORTRAN subroutine solv-
ing constrained nonlinear programming problems.An-
nals of Operations Research, 5:485–500, 1986. Edited by
Clyde L. Monma.

[20] L. Zhang. Virtual clock: A new traffic control algorithm
for packet switched networks.IEEE/ACM Trans. Comput.
Syst., 9(2):101–125, May 1991.

