
Marking algorithms for service differentiation of TCP traffic?

Nicolas Christin∗,1, Jörg Liebeherr
University of Virginia, Department of Computer Science, Charlottesville, VA 22904, USA

Abstract

Class-based service architectures for quality-of-service (QoS) differentiation typically provide loss, throughput, and delay
differentiation. However, proposals for class-based service differentiation generally do not account for the needs of TCP
traffic, which are characterized by a coupling of packet losses and achievable throughput. Ignoring this coupling may result
in poor service differentiation at the microflow level. This paper shows how Explicit Congestion Notification (ECN) can be
used to achieve service differentiation for TCP traffic classes at the microflow level. We present a traffic marking algorithm
for routers, which, if used in conjunction with ECN, regulates the transmission rate of TCP sources in such a way that packet
drops due to buffer overflows are avoided. We demonstrate how the algorithm can be integrated in a service architecture
with absolute and proportional QoS guarantees. Simulation results illustrate the effectiveness of the presented algorithms at
avoiding packet losses and regulating traffic for meeting service guarantees, and provide a comparison with other algorithms
proposed in the literature.

Key words: TCP, ECN, QoS, Packet Losses, Congestion Control

1. Introduction

Since the late 1990s, a significant amount of re-
search, e.g., [1–4], has been devoted to devising simple
and scalable architectures for quality-of-service (QoS)
differentiation between classes of traffic. These pro-
posals, mainly formulated in the context of the Differ-
entiated Services (DiffServ, [1]) framework, generally
provide loss, delay and throughput differentiation be-
tween classes of traffic.

However, the scheduling and/or buffer management
algorithms involved usually do not take into account
the sensitivity of TCP traffic to losses. TCP traffic,
which accounts for more than 90% of the total traf-
fic on the Internet [5], is a feedback-driven protocol
that uses losses as an indicator for congestion avoid-
ance and control [6]. Hence, TCP packet losses lead
to significant performance degradation of the through-

? This work is supported in part by the National Science Foun-
dation through grants ANI-9730103 and ANI-0085955.
∗ Corresponding author

Email address:christin@sims.berkeley.edu (Nicolas
Christin).
1 Present address: University of California Berkeley, School of
Information Management and Systems, Berkeley, CA 94709 USA

put of TCP sources. Furthermore, due to the relatively
complex relationship between packet losses and TCP
throughput [7] and the lack of discriminating mech-
anisms between flows belonging to the same service
class, quantitative loss differentiation on traffic aggre-
gates can result in unpredictable throughput differen-
tiation between individual TCP flows.

In an effort to reduce losses in TCP/IP networks,
Explicit Congestion Notification (ECN, [8]) has been
proposed as an additional congestion signal for TCP
flows. ECN allows to mark packets with a Congestion
Experienced (CE) codepoint. When a packet marked
with the CE codepoint is received by its destination,
the data is acknowledged with a packet containing the
CE-ECHO codepoint. When the CE-ECHO marked
acknowledgment reaches the sender, the sender re-
duces its throughput, as if a loss had happened in the
network.

The emergence of ECN has stimulated research on
appropriate marking algorithms that indicate conges-
tion to TCP sources to avoid packet losses resulting
from buffer overflows, e.g., [9–14]. The key idea be-
hind these algorithms is to mark packets proactively,
that is, before congestion occurs, to limit the amount of
lost traffic in the network. For instance, RED [11] and

Preprint submitted to Elsevier Science 20 October 2003

its extensions, e.g. [13], use a smoothed average of the
buffer occupancy,Q, to infer impending congestion.
If Q is between two thresholdsminTH andmaxTH ,
packets are marked with a probability increasing in
Q. Packets are only dropped ifQ > maxTH . Other
algorithms, e.g., Stochastic Fair Blue [10] use differ-
ent factors such as link utilization to infer conges-
tion, or, in the case of Random Exponential Marking
(REM, [9]), a price, depending on the queue occu-
pancy and the difference between aggregate input and
output rates. The PI algorithm [12] uses a feedback-
based model for TCP arrival rates [15] to let the buffer
occupancy converge to a target value, but assumes a
priori knowledge of the round-trip times and of the
number of flows traversing the router.

While all of the proactive marking algorithms dis-
cussed above can, to some extent, reduce the amount
of losses in the network, this paper tries to address
a broader question. Since ECN provides congestion
signals that can be conveyed before any traffic is
dropped, we are exploring if ECN can be integrated
with scheduling and buffer management into a service
differentiation scheme for TCP traffic.

We first explore if it is feasible to devise a marking
algorithm which can ensure that the traffic load at a
router remains at a level that entirely avoids losses due
to buffer overflows at routers without wasting avail-
able network bandwidth. The basic idea is to anticipate
the behavior of TCP sources at the routers, by track-
ing the window size and the round-trip time of flows
at the router, and to use ECN marking to have the
senders adjust the window size of the flows. More pre-
cisely, when a router predicts future losses, the router
sends congestion signals to the sources via ECN with
the goal of reducing the sources’ sending rates before
a loss occurs. To that effect, we present a reference
marking algorithm that tracks and controls all TCP
flows at a router to prevent impending buffer over-
flows. This reference algorithm can probably not be
implemented in routers with the hardware currently
available, due to the computational overhead of main-
taining per-flow information for all flows, but is useful
to assess the viability of our design. To address scal-
ability issues, we note that in practice, only a small
number of flows contribute to the majority of traffic
[16,17]. We conjecture that tracking and marking only
these “heavy-hitters” is sufficient for avoiding packet
drops. Based on this idea of filtering flows, we present
a heuristic approximation of the reference algorithm
that we expect to be computationally efficient enough
to be deployed in edge routers, where congestion is
most likely to occur [18]. Then, we examine if ECN
can be used to concurrently pursue both objectives of
avoiding losses and regulating traffic to meet per-class
service guarantees.

This paper is organized as follows. In Section 2,

Projected arrivals
(after packet marking)

Projected
Arrivals

t t’ time

tr
af

fi
c

Transmissions

B
uf

fe
r S

iz
e

Arrivals

Fig. 1. Overview of the algorithm. At time t of a packet arrival,
the router projects future arrivals, by inferring how the TCP source
will send traffic. When an impending buffer overflow is predicted,
at time t′ here, a packet is marked to reduce future arrivals.

we present the reference algorithm for avoiding buffer
overflows. In Section 3, we describe the heuristic algo-
rithm. In Section 4, we show how the proposed mark-
ing algorithms can be used for traffic regulation in
the context of class-based service differentiation. We
compare the performance of the reference and heuris-
tic algorithms to other algorithms in Section 5, and
draw brief conclusions in Section 6.

2. A reference marking algorithm for avoiding
losses

In this section, we describe a reference algorithm
for marking TCP traffic at network routers. The ob-
jective of the algorithm is to determine when to mark
TCP traffic and which flows to mark in order to com-
pletely avoid packet losses due to router buffer over-
flows, while maximizing the utilization of the network
capacity.

Throughout this section, we assume that all traf-
fic uses TCP. While in practice one can expect a mix
of flows using different protocols (e.g., TCP, UDP,
SCTP), we can make this assumption without loss
of generality, since one can always reserve fixed re-
sources at each router for TCP traffic such as a ded-
icated buffer and a fixed portion of the output link
capacity. Furthermore, we assume that ECN is avail-
able in the network. This assumption is realistic for
future networks, as ECN is being rapidly deployed on
the Internet: relatively recent operating systems such
as FreeBSD 4.5 or Linux 2.4 already support ECN.
For the description of the reference algorithm in the
remainder of this section, we assume that enough re-
sources are available to perform the needed computa-
tions.

We next describe the algorithm at a single router,
for a single greedy TCP flow, i.e., a TCP flow that al-

2

ways has data to transmit. For the time being, we as-
sume that there is no other traffic in the network, and
that the only cause of packet losses at the router is a
buffer overflow. The router estimates the congestion
window size and the round-trip time of the TCP flow.
With these estimates, future traffic arrivals are pro-
jected, and impending buffer overflows are inferred,
as illustrated in Fig. 1. In the case of Fig. 1, at timet,
a buffer overflow is projected for timet′. If a packet
loss is projected, the algorithm reduces the congestion
window size of the TCP source by marking packets
with ECN. By reducing the congestion window size,
the sending rate of the TCP source is reduced, and im-
pending packet losses can be avoided. Note that the
proposed algorithm does not require any changes to
TCP, and only relies on ECN to reduce the traffic load.

The remainder of this section describes the calcu-
lations at the router to project future packet losses.
We explain how to use the projections to mark traffic
and avoid packet losses using the simplified model of
a single TCP flow. We then generalize the proposed
technique to multiple TCP flows with different sources
and destinations crossing paths at a same router.

2.1. Projecting Traffic Arrivals to Prevent Losses

Let us assume for now that packet losses can only be
caused by a buffer overflow at the considered router,
and letBlim denote the size of the router’s buffer. We
refer to the input curve,Rin(t), as the total amount
of traffic that has entered the router until timet, ex-
cluding dropped traffic. We refer to the output curve,
Rout(t), as the total amount of traffic that has left the
router until timet. At any timet, the backlog at the
router is equal toRin(t) − Rout(t). Hence, we have
the following constraint:

∀t : Rin(t)−Rout(t) ≤ Blim . (1)

Assume that the output link capacity of the router has
a constant rateC, and that the router uses a work-
conserving scheduler. Thus, for anyt andτ > 0 such
that traffic is always backlogged over[t, t + τ],

Rout(t + τ) = Rout(t) + C · τ . (2)

Since Eqn. (2) characterizesRout whenever there is a
backlog, the algorithm only needs to inferRin(t + τ)
for τ > 0, to ensure Eqn. (1) holds att + τ , thereby
avoiding impending buffer overflows. To clearly dis-
tinguish between known, measured values and future,
projectedvalues of the arrivals and of the departures,
we defineR̃in

t (t + τ) as the value projected at timet
for the input curve at timet + τ .

To project future arrivals̃Rin
t (t + τ) for τ > 0, we

need to examine how traffic is sent at the source, so
that we can infer how much traffic is received by the
router. For this discussion, we consider “segments”

and “packets” as synonymous. Furthermore, we ig-
nore the slow-start phase of TCP, since the flow is
unlikely to send enough traffic to create a buffer over-
flow during slow-start, and only focus on the conges-
tion avoidance phase. Every time an acknowledgment
is received at the source, the source sends a number of
packets equal to the minimum of the receiver’s adver-
tised window size,adv(t), and the source’s congestion
window size,cwnd(t), minus the number of pack-
ets sent and not yet acknowledged.2 cwnd(t) is in-
creased by1/cwnd(t) every time an acknowledgment
is received, unless the acknowledgment is marked with
the CE-ECHO codepoint or a packet drop is inferred
by reception of a triple-duplicate acknowledgment, in
which casecwnd(t) is decreased tocwnd(t)/2. Last,
if the retransmission timer of the TCP source expires,
cwnd(t) is reset to one and the flow is back to slow-
start.

Sincecwnd(t) is conditioned by receiving acknowl-
edgments at the source, the round-trip time (RTT), that
is, the time difference between a packet is sent and
its acknowledgment is received at the source, is cen-
tral to the evolution ofcwnd(t). The RTT depends on
time, due to variable queueing delays, and/or chang-
ing routes. We denote byRTT (t) the value of the
RTT at timet, and define a series of “rounds” as fol-
lows. The first round starts when the first packet is
sent by the source, and ends when the acknowledg-
ment to the first packet sent in the first round is re-
ceived. The(k + 1)-th round starts immediately after
the k-th round ends. Therefore, denoting bysk the
start time of thek-th round at the source, thesi are
linked by the recursive equationsi+1 = si+RTT (si).
Now, within the i-th round, i.e., between timessi

and si+1, a TCP source sends at mostW (si) pack-
ets withW (si) = min{adv(si), cwnd(si)}. Further-
more, it can be shown (see [7], or the example in
[19], Chap. 21) that, in absence of retransmission timer
timeouts, and if the TCP source is not in slow-start
mode,W (si+1), the number of packets sent in the
(i + 1)-th round is bounded by

1
2
W (si) ≤ W (si+1) ≤ W (si) + 1 . (3)

The lower bound is given by the fact that at most
one ECN congestion signal is taken into account per
round [8], while the upper bound is reached only if
all packets sent in thei-th round are successfully ac-
knowledged by the destination. Note that Eqn. (3) is
general enough to capture the behavior of Delayed-
ACKs implementations, which issue on average only
one acknowledgment for each two data packets.

SinceW (t) andRTT (t) are not known by a router,
Eqn. (3) tells us that a router that wants to estimate

2 At the end hosts,cwnd(t) is internally expressed in bytes,
which does not affect our present discussion.

3

future traffic arrivals must be able to estimate, at any
time t, RTT (t), W (t), andsi for the current round.

We denote bŷW (t), R̂TT (t), andŝ(t) the estimates
at the considered router ofW (t), RTT (t), and ofsi,
respectively.

These estimates are computed as follows. The first
time a packet is received at the router, the current time,
T1, is recorded. When the second packet arrives at the
router, at timeT2, the value ofR̂TT (t) is initialized
to T2 −T1, 3 andŴ (t) is initialized to 1. At timeT2,
ŝ(t) is initialized toT2.

After time T2, the key idea to update the RTT es-
timates is to discriminate the rounds. Measurement
studies [21,22] show that the RTT of a flow is gen-
erally significantly larger than the time needed to re-
ceive all packets from a given round for that flow.4

Thus, monitoring the packets’ interarrival times at the
router can determine alone if a new round has started.
More specifically, if, for a constantK > 1, Ti−1 and
Ti satisfy

Ti − Ti−1 >
R̂TT (Ti−1)

K
, (4)

the router considers thatTi marks the start of a new
round.

If Eqn. (4) does not hold,Ti−1 andTi are part of the
same round, and̂RTT (t) is set equal tôRTT (Ti−1),
Ŵ (t) is set toŴ (Ti−1) + 1, and ŝ(t) is set equal
to ŝ(Ti−1). Conversely, if Eqn. (4) holds, the router
updates the estimates as follows:

ŝ(t) = Ti ,

Ŵ (t) = 1 ,

R̂TT (t) = α · R̂TT (ŝ(Ti−1))

+(1− α) · (ŝ(t)− ŝ(Ti−1)) ,

where0 ≤ α ≤ 1 is a constant. The round-trip time
estimator used at the TCP sources usesα = 0.9, which
has shown to provide reasonably accurate results [23].
We point out that except in rare cases of persistent link
failure, where packets end up being re-routed, the RTT
does not vary significantly over time, and thus, the
algorithm should be rather insensitive to the selection
of α.

With the estimates of the RTT and the window size,
the router can project future window sizes. Specifi-
cally, for any timet and any timeτ > 0, denoting by
W̃t(t + τ) the projection of the window size at time
t + τ , the router computes̃Wt(t + τ) as

3 This method is equivalent to the SYN-ACK algorithm of [20].
4 The same assumption is used in [7] for modeling the sending
rate of a TCP source, and has been confirmed in experimental
measurements.

W̃t(t+τ) =



Ŵ (t) if t + τ < ŝ(t) + R̂TT (t),
Ŵ (t) + 1 if t + τ ≥ ŝ(t) + R̂TT (t)

and no packet has been
marked (or dropped)
in [ŝ(t), t],

1
2Ŵ (t) if t + τ ≥ ŝ(t) + R̂TT (t)

and at least one packet
has been marked (or
dropped) in[ŝ(t), t].

(5)

The router can discover if a packet has been marked
(or dropped upstream) in[ŝ(t), t] by checking the ECN
bits and the TCP sequence numbers. From Eqn. (5), the
router projects that the window size does not change
until the end of the current round, and that its value at
the beginning of the next round depends on whether
or not a packet has been dropped or marked during the
current round. Thus, Eqn. (5) captures the fact that,
at the earliest, ECN signals have an effect only at the
beginning of thenextround.

We shall note that this projection is correct only
when all packets in a round have been received by
the router. This may seem a restriction, but since the
RTT is generally much larger than the time needed
to receive all packets in a given round [7,21,22], the
projection is generally accurate. With̃Wt(t+τ) given
by Eqn. (5), a router can project the input curve with
the following expression:

R̃in
t (t+τ) = Rin(t)+MSS ·γt(τ)·W̃t(t+τ) , (6)

whereMSS is the maximum segment size of the TCP
flow, and

γt(τ) =
{

1 if t + τ ≥ ŝ(t) + R̂TT (t),
0 otherwise.

That is, a router can assume that all traffic sent in the
next round arrives in a batch right at the start of the
next round. This projection thus assumes a “worst-
case scenario.” In practice, such bursts of traffic are
rarely observed.

Next, we discuss the marking algorithm. To deter-
mine if an arrival at timet must be marked, a router
checks that the flow has not already been marked (or
has experienced some losses) during the current round.
This test is necessary since at most one ECN-marked
packet per round has an impact on the arrivals. If the
flow has not experienced any losses or packet mark-
ing during[ŝ(t), t], the router verifies if the following
condition holds:

R̃in
t (t + τ)−Rout(t)− C · τ ≤ Blim . (7)

This condition tests if a buffer overflow is going to
occur at he beginning of the next round. Since ECN
feedback does not have any impact until the beginning
of the next round, the condition in Eqn. (7) is checked

4

for τ = ŝ(t)+R̂TT (t)−t. If the condition of Eqn. (7)
is violated, then the router marks the packet at the
head of the transmission queue with the CE codepoint.
Marking the packet at the head of the queue minimizes
the delay needed for the ECN feedback to reach the
source.

We conclude with a discussion on the robustness
of the above estimators. If the constantK in Eqn. (4)
is too small (e.g.,K ≈ 1), or if W (t) is extremely
large and data transmission appears continuous, the
test described in Eqn. (4) may not be able to discrimi-
nate between rounds. In the worst-case, the router may
never infer the start of a new round, and̂W grows un-
bounded. To address this problem, we use a safeguard,
based on Eqn. (3) as follows. If, at timeTi, we have5

Ŵ (Ti) > Ŵ (ŝ(Ti)−) + 1 ,

the router infers thatTi marks the start of a new round,
even if Eqn. (4) does not hold. Now, if K is too large
(e.g., K > 1000), the router incorrectly infers that
each packet arrival marks the start of a new round, and
thus,Ŵ andR̂TT underestimateW andRTT . In the
worst-case, when̂W → 0 andR̂TT → 0, no projec-
tion is performed, thus no traffic is marked, and the
algorithm degenerates to Drop-Tail. Our experiments
show that the algorithm is quite robust to changes of
the parameters. In fact, the experimental results gath-
ered in Section 5 withK = 10, α = 0.9 are almost
identical to those obtained with any value10 ≤ K <
100, and0.7 < α < 1.

2.2. Generalization to Multiple TCP Flows

We next consider a more general situation with
N greedy TCP flows. We usêRTT i(t), Ŵi(t), MSSi,
andŝi(t) to denote the estimated round-trip time, con-
gestion window size, maximum segment size and start
time of the current round for TCP flowi, respectively.
Let us assume, for the moment, that the router is able
to monitor allN TCP flows and can keep track of all
the R̂TT i(t), Ŵi(t), MSSi and ŝi(t).

Now, by defining for each flowi, at any timet,

τi = ŝi(t) + R̂TT i(t)− t , (8)

i.e.,τi is the (estimated) remaining time before the start
of the next round for TCP flowi, and by iterating the
projection technique of Section 2.1 for all flows, the
router first computes the projected congestion window
in the next round,̃Wi,t(t + τi) for each flowi, using
Eqn. (5). Then, for anyτ > 0, the projected arrivals
are

R̃in
t (t+τ) = Rin(t)+

∑
i

MSSi ·γi,t(τ)·W̃i,t(t+τ) , (9)

5 For any timet, we definet− as limε→0{t− ε}, with ε > 0.

where

γi,t(τ) =
{

1 if τ ≥ τi,
0 otherwise.

If the condition given in Eqn. (7) is violated for any of
the τi’s of Eqn. (8), the algorithm proactively marks
the oldest backlogged packet from flowj with

j = argmax{i | W̃i,t(t+ τi) = Ŵi(t)+1} , (10)

that is, the algorithm marks the flow with the largest
congestion window that has not yet been marked (or
experienced a packet drop) in its current round. As
soon as the oldest backlogged flow-j packet is marked,
W̃j,t(t + τj) is set toŴj(t)/2, and the condition of
Eqn. (7) is reevaluated. The marking process is re-
peated until Eqn. (7) does not hold for any of theτi’s,
or all flows have one packet marked in the current
round.

3. Emulating the reference algorithm with a
scalable heuristic

The per-flow information required by the algorithm
presented in Section 2 involves a significant amount of
overhead. We now present a heuristic approximation
of the reference algorithm, which uses flow filtering
to reduce the number of tracked TCP flows, and em-
ploys linear interpolation to reduce the computational
complexity of the projection algorithm. Our goal is to
design a heuristic algorithm that is deployable in an
edge or an access router.

3.1. Flow Filtering

As observed in measurement studies [16,17], only
a small percentage of flows (“heavy-hitters”) accounts
for a large percentage of traffic. These heavy-hitters
transmit at a high data rate due to (1) a large con-
gestion window, and (2) a relatively small round-trip
time. From the description of the reference algorithm
in Section 2, these are generally the only flows that
marked by the reference algorithm. Thus, by limiting
the tracking algorithm to the heavy-hitters we expect
that the reference algorithm can be closely approxi-
mated.

To identify the heavy-hitters, we use the serial mul-
tistage filter proposed in [24]. The objective of the
multistage filter is to identify, at any timet, the flows
that have sent more thanM bytes during the time in-
terval (bt/∆c · ∆, t), whereM is a given threshold,
∆ > 0 is a fixed time constant denoting the sampling
interval used for measurement. The serial multistage
filter proposed in [24] works as follows. Every time a
packet arrives at the router, a hash function is applied

5

to the source and destination IP addresses and port
numbers. Flows are then grouped into buckets depend-
ing on the value returned by the hash function. Then,
flows in the largest buckets are hashed by a second,
independent, hash function and grouped into second-
level buckets. The same type of hashing operation is
repeated a third time. Flows belonging to the largest
buckets after the third hash are recorded into memory.
The authors of [24] showed that the serial multistage
filter minimizes false positives (i.e., only a few flows
with a small sending rate are assumed to be heavy-
hitters) and avoids false negatives (i.e., all flows with
a large sending rate are tracked).

We implement flow filtering as follows. We use two
linked lists in the router’s memory,L1 for current sam-
pling, andL2 for flows previously recorded. Initially,
bothL1 andL2 are empty. In the first sampling inter-
val, flows are added toL1 only if they pass the multi-
stage filter, whileL2 remains empty. At timet = ∆,
L1 is copied intoL2 before being reset.6 The process
is iterated every∆ seconds. At any timet, the router
updates the estimateŝRTT , Ŵ , andŝ for all flows in
L1 andL2.

Only the flows inL2 are used for the projections,
and therefore, the projection of Eqn. (9) always under-
estimates the input curve. To alleviate this problem,
at any timet, we introduce a correction factor,ρ(t),
whose value is updated att = k∆, wherek is a posi-
tive integer, with

ρ(t) =
Rin(t)−Rin((k − 1) ·∆)∑

i∈L2

(
Rin

i (t)−Rin
i ((k − 1) ·∆)

) ,

whereRin
i (t) denotes the amount of flow-i traffic re-

ceived by the router by timet. That is, at any timet,
ρ(t) denotes the ratio of the total amount of traffic re-
ceived by the router in the previous sampling interval
over the amount of traffic that was identified in the
previous sampling interval. Note that we always have
ρ(t) ≥ 1. The caseρ(t) = 1 is the limit case where
all flows pass the filter during the previous sampling
interval. As an example, fort = 5.5 seconds, and
∆ = 1 second, ifρ(t) = 1.1, we know that 90.9 %
of all traffic received by the router in the time inter-
val (4 s, 5 s) has been identified. At any timet, the
projection of the input curve for the Class-n traffic ag-
gregate,R̃in

i,t is set equal to the sum of the projection
of the input curves of the flows inL2, multiplied by
the correction factorρ(t), that is

R̃in
t (t + τ) = ρ(t) ·

∑
i∈L2

R̃in
i,t(t + τ) .

Remark:We note that the selection of the parameters
∆ andM presents a trade-off between computational

6 This operation can be implemented efficiently by swapping the
two pointers onL1 andL2, and resetting the pointer onL1.

l (
t+

)τ

1E
xc

es
s

T
ra

ff
ic

B
lim

Projected Arrivals
(reference algorithm)

Linear Interpolation
(heuristic)

Transmissions

t

tr
af

fi
c

timeτiit+max ()

Fig. 2. Linear interpolation. In the heuristic, only the value
R̃in

t (t + maxi{τi}) is computed, and is used to determine the
excess traffic that will arrive at the router.

overhead and accuracy of the algorithm. With a larger
sampling interval∆, the updates to main memory,L2,
are performed less frequently, at the expense of using
possibly obsolete data. With a larger value forM , the
number of recorded flows,X, remains small, but the
accuracy of the projections may be poor. Thus, we
infer that bothM and∆ should be tuned according
to the computational power available. In particular,
routers at high-speed access points, and a large number
of flows, should be configured with relatively large
values forM and∆.

3.2. Linear Interpolation

Flow filtering limits the amount of state informa-
tion recorded at the router, but does not alleviate the
computational overhead for constructing the projected
input curve. We next describe a technique that reduces
the complexity of the projection of Eqn. (9).

First, instead of using individual values of the con-
gestion windows of all recorded flows in the construc-
tion of the projected input curve, we consider that
all recorded flows have a congestion window size (in
bytes) equal to the mean congestion window size (in
bytes),Ω̄, given byΩ̄(t) = 1

X

∑
i∈L2

MSSi · Ŵi(t).
Since we perform flow filtering and ignore flows with
small congestion windows, this approximation is rea-
sonably accurate.

Second, we use linear interpolation to reduce the
complexity of the construction of the projected input
curve and illustrate our method in Figure 2. Rather
than constructing the whole projected input curve,
only the valueR̃in

t (t+maxi{τi}) is computed. Inter-
mediary values̃Rin

t (t+ τ) for 0 < τ < maxi{τi} are
approximated using a linear interpolation, based on
the value obtained for̃Rin

t (t+maxi{τi}). The reason
for selectingmaxi{τi} as the basis for the linear inter-
polation, instead of, for instance,mini{τi}, is that the

6

projection can take into account all recorded flows.
Next, Eqn. (7) tells us that

l1(t) = R̃in
t (t+max

i
{τi})−Rout(t)−C ·max

i
{τi}−Blim

is the amount by which the traffic must be reduced
to prevent buffer overflows. Froml1(t) andΩ̄(t), the
algorithm can infer the number of flows that have to
be marked, and only update the projected input curve
once, which reduces the worst-case complexity of the
entire projection algorithm toO(1). If l1(t) > 0, the
marking process performs at mostO(Q) operations
whereQ is the number of backlogged packets. The
worst-case occurs when all packets backlogged have
to be marked at the same time. In practice however,
we only expect at most a couple of flows to be marked
upon each packet arrival, since projections are per-
formed over short time intervals, which makes this
heuristic efficient in practice.

4. Traffic regulation with ECN marking in
class-based service architectures

In this section, we build on the algorithms we de-
scribed in Sections 2 and 3 to describe how ECN
marking can be used to support class-based service
guarantees for TCP traffic. We consider a service ar-
chitecture that supports class-based service guarantees
at each router (on a hop-by-hop basis). Traffic in the
same class has the same service requirements. We as-
sume that there is no admission control and no sig-
naling, and the only method to control the traffic into
a router is by dropping or by notifying TCP sources
using ECN. Our goal is to design a novel approach,
solely relying on ECN, for traffic regulation in QoS
networks.

We consider a router in the network with output link
capacityC, and assume that each classn is transmitted
at timet with a service ratern(t), such that for anyt,∑

n rn(t) = C, wherern(t) > 0 only if there is a
positive backlog of Class-n packets.

Let us introduce the “Class-n delay”,Dn(t), as the
queueing delay experienced by the last Class-n packet
that has been transmitted before timet. Consider that
a given classn is offered a bounddn on the queueing
delay of all packets in Classn, i.e., for allt, Dn(t) ≤
dn, and a guaranteed throughputµn such that at all
times Classn traffic is backlogged,rn(t) ≥ µn. De-
noting byRin

n,∗(t) the Class-n input curve (i.e., the to-
tal amount of Class-n traffic to have arrived by timet)
and byRout

n,∗(t) the Class-n output curve, following
[2], a sufficient condition for all Class-n traffic to meet
its delay and throughput guarantees at any timet when
Classn is backlogged is

rn(t) ≥ rmin
n (t) = max

{
µn,

Rin
n,∗(t)−Rout

n,∗(t)
dn −Dn(t)

}
.

Thus, at any timet, we need to have∑
n

max

{
µn,

Rin
n,∗(t)−Rout

n,∗(t)
dn −Dn(t)

}
≤ C . (11)

If the condition of Eqn. (11) is violated, one can re-
duceRin

n,∗(t) by dropping traffic. Since our objective
is to avoid any traffic drops, we use the projections
described earlier to ensure that theRin

n,∗(t)’s always
satisfy Eqn. (11).

Assuming the throughput guarantees are appropri-
ately chosen, that is,

∑
n µn < C, we propose the

following approach. At timet, in addition to the pro-
jections on the input curve of all flowsi in Classn,
R̃in

n,i,t(t+τ), which is given by Eqn. (6), and the class-
n projected input curve, given by

R̃in
n,∗,t(t + τ) =

∑
i

R̃in
n,i,t(t + τ) .

We also project the Class-n output curve,̃Rout
n,∗,t(τ) by

R̃out
n,∗,t(t + τ) = Rout

n,∗(t) + τ · rn(t) ,

where τ > 0. If the rate allocationrn remains un-
changed betweent and t + τ , this projection of
R̃out

n,∗,t(t + τ) is exact. Since we only use the projec-
tion for small values ofτ (in the order of a round-trip
time) we can assume that the projection is reasonably
accurate, even ifrn changes betweent and t + τ .
Furthermore, let us assume that the delay of Classn
remains roughly constant during[t, t + τ]. With these
projections defined, we can project the minimum ser-
vice rates̃rmin

n,t (t+ τ) needed at timet+ τ , so that all
service guarantees on throughputs and delays are met:

r̃min
n,t (t+τ) = max

{
µn,

R̃in
n,∗,t(t + τ)− R̃out

n,∗,t(t + τ)

dn −Dn(t)

}
.

To ensure that the set of service rates required for
meeting service guarantees is always feasible, we must
enforce∑

n

r̃min
n,t (t + τi) ≤ C , (12)

for all τi’s defined by Eqn. (8). If Eqn. (12) does not
hold, the incoming traffic needs to be reduced. To that
effect, we propose to first identify the set of classes
wherer̃min

n,t (t + τ) > µn, which are the classes where
decreasing the traffic arrivals has an effect on the min-
imum service rate required. Since

∑
n µn < C, we

know that there is at least one class in that set.
Once the classes whose traffic need to be throttled

have been identified, the marking process is carried
out in the same manner as in the case of an impend-
ing buffer overflow, by merely replacing the condition
given in Eqn. (7) by the condition given in Eqn. (12).

7

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)

(a) Drop-Tail

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)

(b) RED

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)

(c) PI w/ approximate tuning

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)

(d) PI w/ exact tuning

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)

(e) Reference algorithm

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)

(f) Heuristic algorithm

Fig. 3. Loss rates. The figures compare the loss rates obtained with all six algorithms. The reference algorithm does not discard any traffic.

5. Evaluation

In this section, we evaluate our proposed algorithms
via simulation, using thens-2network simulator [25].
The evaluation has three objectives. First, we compare
the performance of the reference and heuristic algo-
rithms. Second, we compare the performance of our
proposed algorithms to state-of-the-art active queue
management algorithms. Third, we illustrate the po-
tential of the proposed approach for traffic regulation
in class-based service architectures. To that effect, we
propose two simulation experiments. The first experi-
ment evaluates the efficiency of the proposed approach
with respect to buffer management, while the second
experiment evaluates the performance of the heuristic
algorithm for traffic regulation when providing service
guarantees.

5.1. Experiment 1: Active Queue Management

In the first simulation experiment, we consider a
bottleneck link with capacityC = 10 Mbps, and buffer
size of B = 150,000 bytes. All traffic at this single
bottleneck link is TCP (NewReno), and is generated
by 60 greedy FTP flows, and 180 on-off flows, aiming
at emulating HTTP connections. The sources of the
on-off flows send on average 300 packets during an
“on” period, and pause on average for one second be-
tween two “on” periods. The actual number of packets
sent and the wait time between two transmissions are
exponentially distributed. All packets have a size of
500 bytes. In the absence of queueing and transmis-
sion delays in the network, the RTTs of all flows are
independent identically distributed random variables
uniformly distributed between 24 ms and 180 ms, and
to avoid synchronization effects, sources start trans-
mitting at different times, uniformly distributed be-

tween 0 s and 5 s. The experiment lasts for 70 seconds
of simulated time, and ECN is available in the entire
network. We compare the performance of six different
algorithms at the router governing the bottleneck link:
Drop-Tail. We use Drop-Tail to have an estimate of
the loss rates encountered without active queue man-
agement. With Drop-Tail, incoming packets are dis-
carded only when the buffer is full.
RED [11]. We use RED with thegentle variant
[26], with a minimum thresholdminTH = 37,500
bytes, and a maximum thresholdmaxTH = 75,000
bytes. The parametermaxP is set to 0.1, and the
weight used in the computation of the average queue
size is set towq = 0.002. While minTH andmaxTH

are chosen so that traffic is dropped with a probability
of one only if the buffer is full, other parameters are
the default RED parameters inns-2, and are therefore
expected to cover a large range of operating condi-
tions. RED is instructed to use ECN when needed.
PI [12] with approximate parameter tuning. To ac-
count for the uncertainty on estimates of the RTTs and
of the number of flows at router configuration time,
we configure here the PI algorithm with crude esti-
mates of the RTTs and of the number of flows. That
is, we use a lower bound on the number of flows of
N = 50, and a maximum RTTR+ = 300 ms, with
a sampling frequency of 160 Hz, yielding parameter
values ofa = 0.2395e− 4 andb = 0.2388e− 4. The
target queue length is set toQref =100,000 bytes.
PI with exact parameter tuning. We configure the PI
algorithm with the exact RTTs and number of flows
we use in our simulation. In other words, we use a
lower bound ofN = 60 on the number of flows, and
a tight upper bound on the round-trip timesR+ =
180 ms, with a sampling frequency of 160 Hz, and get
a = 1.643e− 4 andb = 1.628e− 4. The target queue
length Qref is set to 100,000 bytes. Note that such

8

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70

A
gg

re
ga

te
 (M

bp
s)

Simulation Time (s)

Throughput
Goodput

(a) Drop-Tail

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70

A
gg

re
ga

te
 (M

bp
s)

Simulation Time (s)

Throughput
Goodput

(b) RED

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70

A
gg

re
ga

te
 (M

bp
s)

Simulation Time (s)

Throughput
Goodput

(c) PI w/ approximate tuning

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70

A
gg

re
ga

te
 (M

bp
s)

Simulation Time (s)

Throughput
Goodput

(d) PI w/ exact tuning

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70

A
gg

re
ga

te
 (M

bp
s)

Simulation Time (s)

Throughput
Goodput

(e) Reference algorithm

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70

A
gg

re
ga

te
 (M

bp
s)

Simulation Time (s)

Throughput
Goodput

(f) Heuristic algorithm

Fig. 4. Measured throughput and goodput at the receivers. The figures compare the aggregate throughput and goodput seen at the
receivers with all six algorithms. All schemes are efficient at maximizing the utilization of the bottleneck link (10 Mbps). A perfectly tuned
PI, and both the reference and heuristic algorithm have a goodput (amount of traffic passed to the application layer at the destinations)
almost equal to the throughput (total amount of traffic received at the destinations) by avoiding packet drops.

an exact parameter tuning is unrealistic in practice,
since it imposes a priori knowledge of the number of
flows and of the round-trip times of the flows that will
traverse the router at router configuration time.
Reference algorithm.This is the reference algorithm
described in Section 2. Results are obtained forK =
10, α = 0.9. We achieved similar results with parame-
ter settings in the range10 ≤ K < 100 and0.7 < α <
1, which tends to show that our proposed algorithm is
relatively insensitive to the parameter selection.
Heuristic algorithm. This is the heuristic algorithm
described in Section 3. The multistage filter consists
of 3 stages of 8 buckets. The admission threshold is set
to M =200,000 bits and∆ = 1 s. For each algorithm,
we monitor the loss rates over a sliding window of size
0.25 s, and present our results in Fig. 3. We start moni-
toring at timet = 10 s to ignore transient effects linked
to the fact the network is initially empty. Fig. 3(a) tells
us that, without active queue management, one can ex-
pect loss rates in the order of 12 %. Fig. 3(b) and (c)
show that RED with the default parameters, which turn
out to be unsuitable for the traffic mix at hand, and a
crudely configured PI algorithm, drop almost as much
traffic as Drop-Tail. Conversely, a perfectly tuned PI
algorithm manages to avoid most packet drops. The
reference algorithm completely avoids packet losses,
and the heuristic rarely drops any packets. Thus, the
heuristic algorithm delivers results close to the refer-
ence algorithm.

Next, we monitor the aggregate throughput and
goodput observed at the receivers, averaged over a
moving window of size 0.25 s and present our re-
sults in Fig. 4. The throughput characterizes the total
amount of traffic received by the transport layer at
the destination, while the goodput characterizes the

amount of traffic that is passed by the transport layer
to the application layer. The main observation is that
all schemes manage to achieve an aggregate through-
put roughly equal to the capacity of the bottleneck
link. Furthermore, we note that, by avoiding packet
losses, an exactly tuned PI, and both the reference
and heuristic algorithms manage to achieve a goodput
close to the throughput.

Last, we monitor the queue size, averaged over a
moving window of size 0.25 s, and we present our re-
sults in Fig. 5. Not surprisingly, the Drop-Tail queue is
almost always full, which explains the relatively high
loss rates. RED manages to stabilize the queue length
aroundmaxTH = 75,000 bytes. (This observation
coupled with the result presented in Fig. 3 indicates
that RED drops some packets proactively even when
ECN is available.) With an approximate tuning of the
configuration parameters, PI does not manage to track
the desired queue lengthQref = 100,000 bytes, and
instead, the queue is almost always full. Conversely,
a properly tuned PI algorithm manages to achieve the
targetQref , albeit with some oscillations around the
target value. While stabilizing the queue length is not
the primary objective of our algorithms, the reference
algorithm manages to keep the queue length almost
constant around 120,000 bytes. The heuristic algo-
rithm keeps the queue length in the vicinity of 50,000
bytes, with oscillations of a magnitude comparable to
those of a well-configured PI controller. These oscil-
lations are mostly due to the fact that the sampling in-
terval is set to 1 s, and are reduced for higher sampling
frequencies, at the expense of a higher computational
overhead.

9

Max. buffer size

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70

Q
ue

ue
 L

en
gt

h
(K

B
)

Simulation Time (s)

(a) Drop-Tail

Max. buffer size

min th = 37.5 KB

max th = 75 KB

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70

Q
ue

ue
 L

en
gt

h
(K

B
)

Simulation Time (s)

(b) RED

Max. buffer size

Qref

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70

Q
ue

ue
 L

en
gt

h
(K

B
)

Simulation Time (s)

(c) PI w/ approximate tuning

Max. buffer size

Qref
 0

 50

 100

 150

 200

 10 20 30 40 50 60 70

Q
ue

ue
 L

en
gt

h
(K

B
)

Simulation Time (s)

(d) PI w/ exact tuning

Max. buffer size

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70

Q
ue

ue
 L

en
gt

h
(K

B
)

Simulation Time (s)

(e) Reference algorithm

Max. buffer size

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70

Q
ue

ue
 L

en
gt

h
(K

B
)

Simulation Time (s)

(f) Heuristic algorithm

Fig. 5. Queue lengths. The figures compare the queue lengths at the router for all six algorithms.

Number of Service Guarantees

Class on-off Delay Loss Throughput

flows Rate

1 5 ≤ 10 ms≤ 1 % ≥ 5 Mbps

2 10 ≈ 1
4
D3 ≈ 1

2
p3 –

3 15 ≈ 1
4
D4 ≈ 1

2
p4 –

4 20 – – –
Table 1
Traffic mix and service guarantees.The second column indicates
the number of on-off flows, and in the third and fourth rows,pn

denotes the loss rate of Classn over a busy period,Dn denotes
the delay of Classn.

5.2. Experiment 2: Providing Service Guarantees

Next, we assess the effectiveness of our algorithms
at regulating traffic for providing service guarantees.
To that effect, we run a second experiment, with a
bottleneck link with capacityC = 45 Mbps, and a
buffer size ofB = 250, 000 bytes. All traffic at the
bottleneck link is TCP (NewReno), and consists of 12
greedy TCP flows, and 50 on-off TCP flows, following
the same on-off pattern as in the first experiment. The
RTTs of all greedy TCP flows are equal to 44 ms,
and the RTTs of the on-off flows, in the absence of
propagation and transmission delays, are uniformly
distributed between 44 ms and 80 ms. All sources start
transmitting at timet = 0 for 70 seconds of simulated
time, and ECN is available.

We consider four classes of traffic, with the service
guarantees and traffic mix described in Table 1. In ad-
dition to the on-off flows, each class contains three
greedy TCP flows. We compare the performance of
two algorithms in this experiment. The first algorithm
is the algorithm described in [2], which can provide de-
lay and loss guarantees to traffic classes, but does not
regulate traffic. The second algorithm combines the al-
gorithm of [2] with the traffic regulation algorithm de-

scribed in Section 4 and the heuristic approximations
described in Section 3, using a multistage filter of 3
stages of 8 buckets,∆ = 0.1 s, M = 200, 000 bits.

We plot the delays encountered by each Class-1
packet at the bottleneck link in Fig. 6. Fig. 6(a) shows
that, given the traffic mix considered, about 11 % of
all Class-1 packets exceed the delay bound of 10 ms,
with queueing delays going as high as 100 ms. This is
due to the fact that, when a loss guarantee and a delay
bound conflict due to the absence of admission con-
trol, the algorithm of [2] gives precedence to the loss
guarantee and relaxes the delay bound. Conversely,
Fig. 6(b) shows that when the traffic regulation algo-
rithm we described in this paper is used, violations
rarely happen (< 2 %), and the delay does not exceed
20 ms.

Next, in Fig. 7, we plot the loss rates averaged over
the length of the current busy period. Fig. 7(a) show
that all loss guarantees are respected, notably the 1 %
bound on Class-1 losses. However, as we have seen
in Fig. 6(a), the loss rate bound is respected at the
expense of the delay bound. Fig. 7(b) shows that, with
the addition of the algorithm of Section 4, no packets
are lost, and therefore, the objective of completely
avoiding packet drops to meet service guarantees is
met.

Finally, in Fig. 8 we present the throughput obtained
by each class at the bottleneck link. Fig. 8(a) shows
that in the absence of traffic regulation, severe oscil-
lations of the throughput can be observed. Worse, the
throughput bound on Class-1 is sometimes violated,
due to the fact that there is not enough Class-1 traffic
present in the router. Fig. 8(b) shows that traffic reg-
ulation stabilizes these oscillations in throughput, and
that the throughput guarantee on Class 1 is always re-
spected. We also note that both algorithms manage to
achieve an aggregate throughput equal to the capac-

10

0

Delay Bound

10 20 30 40 50 60 70

20

40

60

80

100

C
la

ss
−1

 D
el

ay
s

(m
s)

Simulation Time (s)

(a) without traffic regulation

0

Delay Bound

10 20 30 40 50 60 70

20

40

60

80

100

C
la

ss
−1

 D
el

ay
s

(m
s)

Simulation Time (s)

(b) with traffic regulation

Fig. 6. Class-1 packet delays.The number of violations is lower with traffic regulation, and the violations are much smaller in magnitude.

10 20 30 40 50 60 70
0

0.5

1

1.5

2

Simulation Time (s)

L
os

s
R

at
e

(%
) Class 4

Class 3
Class 2
Class 1

(a) without traffic regulation

10 20 30 40 50 60 70
0

0.5

1

1.5

2

Simulation Time (s)

L
os

s
R

at
e

(%
) Class 4

Class 3
Class 2
Class 1

(b) with traffic regulation

Fig. 7. Loss rates.The traffic regulation algorithm prevents any traffic from being dropped.

10 20 30 40 50 60 70
0

10
20
30
40
50
60
70
80

T
hr

ou
gh

pu
t (

M
bp

s)

Aggregate
Class 4
Class 3
Class 2
Class 1

Simulation Time (s)

(a) without traffic regulation

10 20 30 40 50 60 70
0

10
20
30
40
50
60
70
80

T
hr

ou
gh

pu
t (

M
bp

s)

Aggregate
Class 4
Class 3
Class 2
Class 1

Simulation Time (s)

(b) with traffic regulation

Fig. 8. Per-class throughputs. Without traffic regulation, we observe oscillations and sporadic violations of the Class-1 throughput
guarantee. The traffic regulation algorithm stabilizes these oscillations and ensures the throughput guarantees are respected.

ity of the bottleneck link, meaning that the stabiliza-
tion in the throughputs provided by the traffic regula-
tion algorithm does not come at the expense of under-
utilization.

6. Conclusions and discussion

We investigated whether marking algorithms for
ECN can be used for regulating traffic in the context
of class-based service architectures, while avoiding
packet losses due to buffer overflows. To that effect,
we first described two packet marking algorithms for
IP routers, which attempt to eliminate packet losses in
TCP flows. The proposed approach infers how traffic

is sent by TCP sources, by tracking the window size
and RTT of large flows, and accordingly makes the
marking decisions. We then showed how the proposed
algorithms can be used for traffic regulation in the con-
text of QoS architectures, in lieu of traffic policing or
admission control. Experimental results illustrated the
potential of the approach.

We note that the techniques used in the algorithms
can be further improved by more accurate and robust
estimators of the RTT values, e.g., [20], and of the
congestion window sizes. Another area for improve-
ment resides in the type of filter used in the heuristic
algorithm. While the serial multistage filter [24] we
use in this paper appears to exhibit good performance,
a follow-up work described in [27], indicates that par-

11

allel multistage filters typically perform better than se-
rial multistage filters, and are more amenable to math-
ematical analysis of their properties, such as proba-
bilities of false negatives. Using a parallel multistage
filter could therefore open the door for an analytical
evaluation of our proposed algorithms, and help quan-
tify the trade-offs in parameter selection. Furthermore,
our current approach assumes TCP Reno or NewReno;
extending it to other flavors of TCP such as SACK
or Vegas is left for future research. Last, the heuris-
tic algorithm proposed is probably efficient enough to
be deployed at relatively low-speed links, such as the
links at the edges of the network, where the speed is
in the order of a few hundred megabits per second, but
it is our belief that the proposed heuristic might still
have a computational overhead too important to con-
sider deployment in core routers operating at speeds
in the order of tens of gigabits per second. Hence,
further work is probably needed to propose heuristics
that can also be deployed in the core of the network.

Acknowledgments

We wish to thank Cristian Estan for providing us
with his implementation of the multistage filters used
in the heuristic algorithm.

References

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss,
An architecture for differentiated services, IETF RFC 2475,
December 1998.

[2] N. Christin, J. Liebeherr, T. F. Abdelzaher, A quantitative
assured forwarding service, in: Proceedings of IEEE
INFOCOM 2002, Vol. 2, New York, NY, 2002, pp. 864–873.

[3] C. Dovrolis, P. Ramanathan, A Case for Relative
Differentiated Services and the Proportional Differentiation
Model, IEEE Networks 13 (5) (1999) 26–34, special issue
on Integrated and Differentiated Services on the Internet.

[4] P. Hurley, J.-Y. Le Boudec, P. Thiran, M. Kara, ABE:
providing low delay service within best effort, IEEE
Networks 15 (3) (2001) 60–69, see alsohttp://www.
abeservice.org .

[5] K. Claffy, G. Miller, K. Thompson, The nature of the beast:
recent traffic measurement from an Internet backbone, in:
Proceedings of INET ’98, Geneva, Switzerland, 1998.

[6] M. Allman, V. Paxson, W. Stevens, TCP congestion control,
IETF RFC 2581, April 1999.

[7] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling TCP
throughput: A simple model and its empirical validation,
Proceedings of ACM SIGCOMM ’98 (1998) 303–314.

[8] K. Ramakrishnan, S. Floyd, D. Black, The addition of
explicit congestion notification (ECN) to IP, IETF RFC 3168,
September 2001.

[9] S. Athuraliya, D. Lapsley, S. Low, An enhanced random early
marking algorithm for internet flow control, in: Proceedings
of IEEE INFOCOM 2000, Tel-Aviv, Israel, 2000, pp. 1425–
1434.

[10] W.-C. Feng, D. Kandlur, D. Saha, K. Shin, Stochastic fair
blue: a queue management algorithm for enforcing fairness,
in: Proceedings of IEEE INFOCOM 2001, Vol. 3, Anchorage,
AK, 2001, pp. 1520–1529.

[11] S. Floyd, V. Jacobson, Random early detection for congestion
avoidance, IEEE/ACM Transactions on Networking 1 (4)
(1993) 397–413.

[12] C. V. Hollot, V. Misra, D. Towsley, W. Gong, On designing
improved controllers for AQM routers supporting TCP flows,
in: Proceedings of IEEE INFOCOM 2001, Vol. 3, Anchorage,
AK, 2001, pp. 1726–1734.

[13] D. Lin, R. Morris, Dynamics of random early detection, in:
Proceedings of ACM SIGCOMM ’97, Cannes, France, 1997,
pp. 127–137.

[14] S. Kunniyur, R. Srikant, Analysis and design of an adaptive
virtual queue (AVQ) algorithm for active queue management,
in: Proceedings of ACM SIGCOMM 2001, San Diego, CA,
2001, pp. 123–134.

[15] V. Misra, W. Gong, D. Towsley, A fluid-based analysis of
a network of AQM routers supporting TCP flows with an
application to RED, in: Proceedings of ACM SIGCOMM
2000, Stockholm, Sweden, 2000, pp. 151–162.

[16] W. Fang, L. Peterson, Inter-AS traffic patterns and their
implications, in: Proceedings of IEEE GLOBECOM ’99,
Vol. 3, Rio de Janeiro, Brazil, 1999, pp. 1859–1868.

[17] A. Feldmann, A. Greenberg, C. Lund, N. Reingold,
J. Rexford, F. True, Deriving traffic demands for operational
IP networks: methodology and experience, in: Proceedings
of ACM SIGCOMM 2000, Stockholm, Sweden, 2000, pp.
257–270.

[18] C. Fraleigh, S. Moon, C. Diot, B. Lyles, F. Tobagi, Packet-
level traffic measurements from a tier-1 IP backbone, Tech.
Rep. TR-01-ATL-110101, Sprint ATL (Nov. 2001).

[19] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols,
Addison-Wesley, Reading, MA, 1998.

[20] H. Jiang, C. Dovrolis, Passive estimation of TCP round-trip
times, ACM Computer Communication Review (2002) 75–
88.

[21] K. Fall, S. Floyd, Simulation-based comparisons of Tahoe,
Reno, and SACK TCP, ACM Computer Communications
Review 26 (3) (1996) 5–21.

[22] V. Paxson, Automated packet trace analysis of TCP
implementations, in: Proceedings of ACM SIGCOMM ’97,
Cannes, France, 1997, pp. 167–179.

[23] V. Jacobson, Congestion avoidance and control, in:
Proceedings of ACM SIGCOMM ’88, Stanford, CA, 1988,
pp. 314–329.

[24] C. Estan, G. Varghese, New directions in traffic measurement
and accounting, in: Proceedings of the 2001 ACM SIGCOMM
Internet Measurement Workshop, San Francisco, CA, 2001,
pp. 75–80.

[25] ns-2network simulator,http://www.isi.edu/nsnam/
ns/ .

[26] S. Floyd, Recommendation on using thegentle variant
of RED, see http://www.icir.org/floyd/red/
gentle.html (Mar. 2000).

[27] C. Estan, G. Varghese, New directions in traffic measurement
and accounting, in: Proceedings of ACM SIGCOMM 2002,
Pittsburgh, PA, 2002, pp. 323–336.

12

