
HyperCast:

A Protocol for Maintaining Multicast Group

Members in a Logical Hypercube Topology*

 Jörg Liebeherr# Tyler K. Beam ♦

Computer Science Department
University of Virginia
Charlottesville, VA 22903

Microsoft Corporation
Redmond, WA 98052

Abstract

To efficiently support large-scale multicast applications with many thousand si-
multaneous members, it is essential that protocol mechanisms be available which
support efficient exchange of control information between the members of a
multicast group. Recently, we proposed the use of a control topology, which or-
ganizes multicast group members in a logical n-dimensional hypercube, and
transmits all control information along the edges of the hypercube. In this paper,
we present the design, verification, and implementation of a protocol, called Hy-
perCast, which maintains members of a large multicast group in a logical hyper-
cube. We use measurement experiments of an implementation of the protocol on
a networked computer cluster to quantitatively assess the performance of the
protocol for multicast group sizes up to 1024 members.

* This work is supported in part by the National Science Foundation under grants ANI-9870336 and NCR-
9624106 (CAREER).
Corresponding Author: J. Liebeherr, jorg@cs.virginia.edu, Tel: +1-804-982-2228, Fax: +1-804-982-
2214.
♦ Tyler Beam’s work described in this paper was performed while he was with the University of Virginia.

1

1 Introduction
A major impediment for scalability of multicast applications is the need of multicast group members

to exchange control information with each other. Consider, for example, the implementation of a
reliable multicast service. A unicast protocol with a single sender and a single receiver requires the
receiver to send positive (ACK) or negative (NACK) acknowledgment packets to indicate reception or
loss of data. If the same mechanism is applied to large groups, the sender would soon be flooded by the
number of incoming ACK or NACK packets; this is referred to as the ACK implosion problem [7]. Even
though many techniques and protocol mechanisms have been proposed to improve the scalability of
multicast applications by solving the ACK implosion problem (e.g., [8][21][25]), the problem of
protocol support for large-scale multicast applications, especially with a large number of senders, is not
solved, and scalability to thousands of users is currently not feasible [26].

We are pursuing a novel approach to the problem of scalable multicasting in packet-switched
networks. The key to our approach is to organize members of a multicast group in a logical n-
dimensional hypercube. By exploiting the symmetry properties in a hypercube, operations, which
require an exchange of feedback information between multicast group members, can be efficiently
implemented.

Note: We do not consider that the hypercube is used for data transmissions, even though this is
feasible. The main use of the hypercube is to channel the transmission of control information, such as
acknowledgments, to avoid the ACK implosion problem.

In a previous paper [19], we have shown that by labeling multicast group members as the nodes of a
hypercube, we can almost trivially build so-called acknowledgment trees [33], which can avoid ACK
implosion even in very large multicast groups. We also performed an analysis of the load-balancing
properties of tree embeddings in a hypercube, and demonstrated that the trees embedded in a hypercube
have excellent load-balancing properties.

 In this paper, we will present protocol mechanisms needed to maintain a hypercube in a
connectionless wide-area network, such as the Internet. We discuss the design of the protocol, called
HyperCast, which organizes the members of a multicast group in a logical hypercube. We will show an
evaluation of the scalability properties of the HyperCast protocol through measurements of a prototype
implementation. We will demonstrate that the HyperCast protocol is able to maintain a hypercube in a
multicast group with dynamically changing group membership. The protocol achieves scalability
through a distributed soft-state implementation. No entity in the network has knowledge of the entire
group. The protocol is capable to repair a hypercube which has become inconsistent through failures of
group members, network faults and packet losses.

The approach presented in this paper is intended for many-to-many multicast applications where
each group member can transmit information. There are many multicast applications where only one or
few multicast group members actually transmit information, e.g., multicast web servers or electronic
software upgrades. We do not claim that, in these situations, our approach presents any significant
advantages over currently available solutions.

2 Control Topologies for Multicast Groups
In recent years, many protocol mechanisms have been proposed to solve the ACK implosion problem

mostly in the context of providing a reliable multicast service (e.g., [1][2][5][6][7][9][10][11][13]
[14][16][17][18][22][23][24][29][30][31][32][33]). In packet-switching networks, we find two main
approaches to limit the volume of control information which causes ACK implosion. In one approach,
control information is broadcast to all or a subgroup of multicast group members, and a backoff
algorithm [3][9] or a predefined bound on the volume of control traffic [28] is used is to avoid ACK

2

implosion. In the second approach, multicast group members are organized in a logical graph, henceforth
called control topology, and every group member exchanges control information only with its neighbors
in the logical graph. Control topologies that have been considered include rings [5][31] and trees
[11][16][17][24][33].

Tree topologies have emerged as the most often proposed control topology. In a (proto-)typical tree
topology, the members of a multicast group are organized as a rooted spanning tree, and all control
information is transmitted along the edges of the tree. Tree topologies achieve scalability by exploiting
the hierarchical structure of the tree. For example, by “merging” acknowledgments at the internal nodes
of a tree, the number of acknowledgments received by a group member is limited to the number of
children, thus, avoiding ACK implosion. In multicast applications with multiple senders, one tree is
needed for each sender. Since maintaining a separate tree for each sender introduces substantial
overhead, several protocols propose to use a single spanning tree, so-called shared tree [16][24] and
“rehang” the tree with different nodes as root node.

2

54

1

3

(a) Node 1 is root

2

14

5

3

(b) Node 5 is root
Figure 1. Re-hanging a shared tree with different nodes as root.

In Figure 1-a we show a binary tree control topology with node 1 as root. Figure 1-b depicts the
same tree, “rehung” with node 5 as root node. Among the currently considered topologies, tree-based
topologies seem to be most suited to support large multicast groups. In [19] we showed that, in multicast
groups with a large number of senders, rehanging shared trees may not balance the load for processing
control information across group members. We showed that a hypercube and tree-embedding algorithms
in a hypercube (as shown in the next section) improve the load balancing properties.

3 Group Communication with Hypercubes
In this section, we describe the underpinnings of the proposed approach of using logical hypercubes

to support group communications from [19]. An n-dimensional hypercube is a graph with N = 2n nodes.
Each node is labeled by a bit string kn…k1, where ki ∈ {0, 1}. Nodes in a hypercube are connected by an
edge if and only if their bit strings differ in exactly one position. A hypercube of dimension n = 3 is
shown in Figure 2.

We organize multicast group members as the nodes of a logical n-dimensional hypercube. By
imposing a particular ordering on the nodes, we can efficiently embed spanning trees into the hypercube
topology. By enforcing that control information between multicast group members can only be
transmitted to the parent node in the spanning tree, the ACK implosion problem can be avoided. Since
spanning trees serve the function of filtering acknowledgments transmitted to the root of the tree, the
trees are referred to as acknowledgment trees.

Since, in an actual multicast group, the number of group members will not be a power of 2, we need
to be able to work with hypercubes where certain positions are not occupied. We refer to a hypercube

3

with N nodes and N < 2n as an incomplete hypercube. For incomplete hypercubes we will try to maintain
the following properties:

110

010

000 001

011

111

100 101

Figure 2. 3-dimensional hypercube with node labels.

Compactness: The dimension of the hypercube should be kept as small as possible,
n = log2 N.

Complete Containment of Trees: If we compute a spanning tree (acknowledgment tree) for an
incomplete hypercube, we want to ensure that all nodes of the tree are present in the incomplete
hypercube. (No node should be part of an acknowledgement tree if the node is not present in the cube.)

In a dynamic hypercube, compactness can be achieved by properly relabeling nodes whenever a node
leaves the hypercube. Maintaining complete containment, however, is difficult to achieve, if the
acknowledgment trees are computed in a distributed fashion and without global state information.

In [19], we presented a simple algorithm which guarantees complete containment of embedded trees.
A key idea that leads to the algorithm is to use a Gray code [27] for ordering node labels of a hypercube
and to add nodes to the hypercube in the order given by the Gray code. As an example, consider the
labels of the 3-dimensional hypercube in Figure 2. If we add nodes to the hypercube, we need to have a
rule for the order in which node labels are added. If we use the order of a binary encoding, we would add
nodes in the order: 000 → 001 → 010 → 011 → … → 111. A Gray code would add node labels in the
following order: 000 → 001 → 011 → 010 → … → 100. In Table 1, we show the ordering of labels
according to a binary code and a Gray code. It is worth noting that consecutive node labels using a Gray
code differ in exactly one bit position.

Table 1: Comparison of Binary Code and Gray codes.
Index i = 0 1 2 3 4 5 6 7
Binary code: Bin(i) = 000 001 010 011 100 101 110 111
Gray code: G(i)= 000 001 011 010 110 111 101 100

Using a Gray code, we can devise a simple algorithm, which embeds a spanning tree
(acknowledgment tree) into an incomplete hypercube. The algorithm, given in Figure 3, is implemented
in a distributed fashion: A node with label G(i) calculates the label of its parent node in the tree with a
root label G(r), by only using the labels G(i) and G(r) as input. The algorithm consists of flipping a
single bit.

The trees constructed by our algorithm have the following properties:

• Property 1. The path length between a node and a root is given by the Hamming distance of
their labels.

• Property 2. If N=2n then the embedding results in a binomial tree.

• Property 3. In an incomplete and compact hypercube, the trees obtained by the algorithm are
completely contained.

4

In Figure 8, we show two spanning trees generated by the algorithm for an incomplete hypercube
with 7 nodes, for root nodes 000 and 111.

Input: Label of the i-th node in the Gray encoding: G(i) := I = In…I2I1,

and the label of the r-th node (≠ i) in the Gray encoding: G(r) := R = Rn…R2R1.

Output: Label of the parent node of node I in the embedded tree rooted at R.
Procedure Parent(I, R)
 If (G−1(I) < G−1(R)) {
 // Flip the least significant bit where I and R differ.
 Parent := InIn-1…Ik+1(1 − Ik)Ik-1…I2I1 with k = mini(Ii ≠ Ri)
 }
 Else { // (G−1(I) > G−1(R))
 // Flip the most significant bit where I and R differ.
 Parent := InIn-1…Ik+1(1 − Ik)Ik-1…I2I1 with k = maxi(Ii ≠ Ri)
 }
 EndIf
End

Figure 3: Tree Embedding Algorithm [19].
(G−1(.) is the inverse function of G() which assigns a number to a bit label, that is, G−1(G(k)) = k.)

In [19] we performed an analytical comparison of the acknowledgment trees generated by the
algorithm in Figure 3 and the acknowledgement trees generated in a shared tree approach (see Section
2). For both the hypercube and the shared tree, we assumed that spanning trees rooted at the sender are
used for aggregation of control information. For the analysis, we made the simplifying assumptions, that
(a) group communication is symmetric, that is, on the average each member of the group generates the
same amount of control information, (b) the physical network topology is not considered, (c) the
hypercube is complete, that is, N = 2n, and (d) the number of nodes in the hypercube is constant. Under
these assumptions, the hypercube was shown to have better load-balancing properties than a shared tree.1

The analytical results have encouraged us to pursue the design and implementation of a protocol which
maintains a hypercube control topology. We call this protocol HyperCast.

110

010

000 001

011

111

101

a) Embedded in hypercube

110

010

000

001

011

111

101

b) Resulting tree
Figure 4: Embedded Tree with 000 as Root.

110

010

000 001

011

111

101

010

011

111

101

001

000

110

1 Due to space considerations, the results from the analysis are not included in this manuscript.

5

a) Embedded in hypercube b) Resulting tree
Figure 5: Embedded Tree with 111 as Root.

4 The HyperCast Protocol
The goal of the HyperCast protocol is to maintain members of a multicast group as the nodes of a

logical hypercube structure so that services, such as reliable multicast, can be implemented on top of the
logical structure. It is emphasized that the HyperCast protocol is not concerned with transmission of
data, nor does HyperCast provide any application-level services. The HyperCast protocol has
mechanisms that allow new nodes to enter the hypercube, and it has procedures for repairing the
hypercube in case of one or multiple failures.

The key to reach scalability of the logical hypercube to very large group sizes is that every node is
aware of only a few nodes in the hypercube. No entity in the multicast group has complete state
information.

4.1 Overview

The HyperCast protocol presented here takes advantage of the IP multicast service. A multicast group
member, henceforth simply called a node, that wishes to participate in the hypercube structure joins a
single IP Multicast group address, referred to as the control channel. Every node can both send and
receive messages on this control channel. Obviously, scalability requirements demand that the traffic on
this channel be kept minimal. We will see that only a few stations transmit to the control channel at a
time.2

Nodes in the hypercube have a physical and a logical address. The physical address consists of the IP
address of the host on which a node resides, and the UDP port used by the node for HyperCast unicast
messages. Each node has a unique physical address. The logical address of a node is a bit string label,
which uniquely indicates the position of the node in the hypercube (as discussed in Section 3). For an m-
dimensional hypercube, m bits are needed for the logical address of a node. In the HyperCast protocol,
logical addresses are represented as 32-bit integers, with one bit reserved to designate an invalid logical
address. Therefore the protocol allows for hypercubes of up to 231 (approximately two billion) nodes.

The hypercube is in a stable state if it satisfies the following three criteria:

Consistent: No two nodes share the same logical address.

Compact: In a multicast group with N nodes, the nodes have bit string labels equal to G(0) through
G(N − 1).

Connected: Every node knows the physical address of each of its neighbors in the hypercube.

Nodes joining the hypercube, nodes leaving the hypercube, and network faults can cause a hypercube
to violate one or more of the above conditions, leading to an unstable state. The task of the HyperCast
protocol is to continuously return the hypercube to a stable state in a reliable and efficient manner.

4.2 Basic Data Structures

The neighbors of a node in a hypercube are those nodes with logical addresses that differ from the
logical address of the node in exactly one bit location. In an m-dimensional hypercube, every node has a
maximum number of m neighbors. Every node maintains a table with the logical addresses of all its
neighbors, the so-called neighborhood table. The fields for a single entry in the neighborhood table
consist of:

• The neighbor’s logical address,

2 The protocol can be revised so that only a small subset of nodes is listening on the control channel at any given
point of time. But, currently, we will assume that every member of the group is listening to the control channel.

6

• the neighbor’s physical address, if it is known,3 and

• the time elapsed since the node last received a message from the neighbor.

Given any node, its successor in the Gray's ordering is defined to be its ancestor. In a stable
hypercube, every node except the one with the largest logical address has one ancestor. A node
without an ancestor is defined to be a Hypercube Root (HRoot). In the HyperCast protocol, every node
keeps track of the currently highest logical address in the hypercube (according to the Gray ordering),
and assumes that this node is the HRoot (Note that this assumption may be incorrect in certain
situations). The address of the highest known logical address is used by a node to determine which of its
neighbors should be present in its neighborhood table. If, based on the highest address, a node
determines that a neighbor should be present in the node’s neighborhood table, but is not, the node is
said to have an incomplete neighborhood. Each node keeps the following information on the node with
the highest logical address: the logical address, the physical address, the time elapsed since it last
received a message from this node, together with the last received sequence number from this node.4

In an instable hypercube, multiple nodes may consider themselves to be an HRoot. Also, different
nodes in the hypercube may have different assumptions of who the HRoot is. In a stable hypercube,
however, the hypercube has only one HRoot.

4.3 HyperCast Timers and Periodic Operations

Four time parameters are used in the HyperCast protocol. These parameters and their uses are
defined below and listed with their default values:

theartbeat (default = 2s): Nodes send messages to each of their neighbors in the neighborhood table
periodically every theartbeat milliseconds.

ttimeout (default = 10s): When the time elapsed since a node last received a message from a neighbor
exceeds ttimeout milliseconds, the neighbor’s entry is said to be stale and the neighborhood table is said to
be incomplete. A missing neighbor is referred to as a tear in the hypercube. In addition to the
neighborhood table entries, the information about the highest known node in the hypercube also becomes
stale after ttimeout.

tmissing (default = 20s): As will be discussed in Section 4.4, after a neighbor’s entry becomes stale, a
node begins multicasting on the control channel to contact the missing neighbor. If the missing neighbor
fails to respond for another tmissing milliseconds, the node removes the missing neighbor’s entry from the
neighborhood table and proceeds under the assumption that the neighbor has failed.

tjoining (default = 6s): Nodes that are in the process of joining the hypercube send multicast messages
to announce their presence to the entire group. To prevent a large number of joining nodes from
saturating the control channel with multicast messages, a joining node that receives a multicast message
from another joining node backs-off from its attempt to join the hypercube for a period of time tjoining,
before retrying to join.

4.4 Message Types

There are a total of four message types that are used by the HyperCast protocol. All messages are
sent as short UDP datagrams. A node transmits a message, either by unicasting to one or all of its
neighbors, or by multicasting on the control channel. We do not assume transmissions of basic messages
to be reliable.

3 If the physical address of neighbor is known at a node, we say that the neighbor is present in the neighborhood.
4 The node with the highest logical address attaches sequence numbers to the multicast messages it sends, as will be
discussed in Section 4.4. Nodes store this sequence number so that they can determine if they have received recent
or outdated information.

7

Beacon Message: The beacon message is a message that is multicast on the control channel. A
beacon contains the logical/physical address pair of the sender, as well as the logical address of the
currently known HRoot. A node transmits a beacon message only (1) if the node considers itself to be
the HRoot, or (2) if the node determines that it has an incomplete neighborhood, or (3) if the node is in
the process of joining the hypercube.

By construction of the hypercube, there is always at least one HRoot, and, therefore, at least one
node is sending out beacons on the multicast channel. In a stable hypercube, there is only one HRoot,
and, thus, only one node sends out beacons onto the multicast channel. Every node uses the beacon
messages sent by HRoot(s) to form an estimate of the largest logical address in the hypercube. This
information is sufficient to determine whether it has a complete neighborhood.

Each beacon message contains a sequence number, SeqNo, which is used to resolve conflicts if
beacons are received from multiple nodes. The HRoot’s sequence number begins at 0. Whenever the
HRoot sends a beacon message, SeqNo is incremented by one. Whenever a new HRoot is chosen, the
sequence number is also incremented (SeqNo of new HRoot = SeqNo of current HRoot + 1). Since each
node keeps track of the current HRoot, the sequence number tracks the timeliness of the information on
the HRoot. When information at a node is not consistent, the information tagged with the lower
sequence number is ignored.

The last group of nodes which send beacon messages are joining nodes which periodically send
beacons to advertise their presence to the group.

Ping Message: Every node periodically sends a ping to all of its neighbors listed in its neighborhood
table. A ping informs the receiver that the node is still present in the hypercube. A ping is a short
unicast message, containing the logical and physical addresses of both the sender and the receiver of the
message, as well as the logical address and sequence number of the currently known HRoot. If a node
has not received a ping from a neighbor for an extended period of time (ttimeout), the node considers its
neighborhood incomplete and begins sending beacons as described above. If it still has not received a
ping from its neighbor after another period of time (tmissing), it assumes that its neighbor has failed and
removes the missing neighbor from its neighborhood list. Ping messages are also used as the only
mechanism to assign a new logical address to the receiver of a ping message.

Leave Message: When a node wishes to leave the hypercube, it sends a leave message to its
neighbors. Nodes receiving this leave message remove the leaving node from their neighborhood tables.
Since a leave message is not reliable, a neighbor may not receive a leave message. In this case, a
neighbor will notice the absence of a neighbor through missing responses to its ping messages. Even
without sending leave messages, a former neighbor eventually realizes that a node has left the
neighborhood since no ping messages arrive for this neighbor.

Kill Message: A kill message is used to eliminate a node from the hypercube. More specifically, a kill
message is used to eliminate nodes with duplicate logical addresses. A node which receives a kill
message immediately sends a leave message to all its neighbors, and tries to rejoin the hypercube as a
new node

4.5 Protocol Mechanisms

The HyperCast protocol implements two mechanisms for maintaining a stable hypercube. Recall
from Subsection 4.1 that a stable hypercube satisfies the criteria for being consistent, compact, and
connected.

Duplicate Elimination (Duel): The Duplicate Elimination (Duel) mechanism enforces consistency
by ensuring that duplicate logical addresses are removed from the hypercube. If a node detects that
another node has the same logical address, it compares its own physical address with the physical

8

address of the conflicting node. If the node’s physical address is numerically greater than the conflicting
node’s physical address (according to the Gray ordering), the node with the greater physical address
issues a kill message to the other node. Otherwise, it sends leave messages to all of its neighbors and
rejoins the hypercube.

Address Minimization (Admin): The Address Minimization (Admin) mechanism is used to
maintain compactness of the hypercube. On a conceptual level, the Admin mechanism attempts to move
nodes into lower logical addresses whenever opportunities arise. To see how Admin reconstitutes
compactness, recall first that a hypercube which violates compactness must have a tear in the hypercube
fabric (that is, some node has an incomplete neighborhood table). The Admin mechanism enforces that a
node with a logical address higher than the logical address of a tear lowers its logical addresses to repair
the tear. (Note: In a compact hypercube no node can move to a lower address).

The Admin mechanism at a node consists of an active and a passive part. The active part is executed,
when a node receives a beacon message from the HRoot and the node realizes that it is missing a
neighbor in its own neighborhood table which has a lower logical address than the HRoot. In such a
situation, the node sends a ping with the missing lower logical address to the HRoot. The passive part is
activated if the HRoot receives such a ping message with a destination logical address lower than its
current logical address. In this case, the HRoot sets its logical address to the value given in the ping.

The Admin mechanism also governs the process of nodes joining the hypercube. Initially, the logical
address of a newly joining node is marked as an invalid logical address. The invalid address is assumed
to be larger than any valid address in the hypercube. Since a joining node sends beacons to announce its
presence to the group, other nodes check to see if they can find a “lower” (valid) logical address for the
new node in the hypercube. If there is node with an incomplete neighborhood, this node sends a ping to
the new node with the address of the vacant position. The new node assumes the (lower) address given in
the ping message and occupies the vacant address. If there is no tear in the hypercube, the new node is
placed as a neighbor of the HRoot. More precisely, the HRoot sends a ping to the new node containing
the logical address which corresponds to the successor of the HRoot in the Gray ordering. Therefore, a
node which joins a stable hypercube becomes the new HRoot.

The Duel and Admin mechanisms, respectively, enforce consistency and compactness of a hypercube.
The last criterion for a stable hypercube, connectedness, is maintained by the following process:
whenever a node A receives a message from another node B with a logical address that designates it as a
neighbor in the hypercube, the logical/physical address pair of node B is added into node A’s
neighborhood table. If a neighbor does not send pings for an extended period of time, it is assumed that
the neighbor has dropped out of the hypercube and its entry in the neighborhood table is removed.
Actions taken by the Admin mechanism then repair the tear in the neighborhood table.

4.6 States and State Transitions

In the HyperCast protocol, each node in the hypercube is in one of eleven different states. Based on
events that occur and HyperCast control messages that are received, nodes transition between states.

In Figure 6, we show the state transition diagram of the HyperCast protocol. The states are indicated
as circles. State transitions are indicated as arcs; each arc is labeled with a condition which triggers the
transition. We refer to [20] for a more detailed description of the state transitions.

With the state definitions, we can give a precise definition of a stable hypercube. A hypercube with
N nodes is stable if all of its nodes have unique logical addresses, ranging from G(0) to G(N-1) (where
G(.) indicates the Gray code discussed in Section 3), and all nodes are in state Stable, with the exception
of the node with a logical address G(N-1) which is in state HRoot.

9

Table 2: Node state definitions.

Outside: Not yet participating in the group.

Joining: Wishes to join the hypercube, but does not yet have any information about
the rest of the hypercube. Its logical address is marked as invalid.

JoiningWait: A Joining node that has received a beacon from another Joining node within
the last tjoining.

StartHypercube
:

Has determined that it is the only node in the multicast group since it has not
received any control messages for a period of time ttimeout, and it starts its
own stable hypercube of size one.

Stable: Knows all of its neighbors’ physical addresses.

Incomplete: Does not know one or more of its neighbors’ physical addresses, or a
neighbor is assumed to have left the hypercube after not receiving pings
from that neighbor for ttimeout.

Repair: Has been Incomplete for a period of time tmissing and it begins to take
actions to attempt to repair its neighborhood.

HRoot/Stable: Stable node which also believes that it has the highest logical address in the
hypercube.

HRoot/
Incomplete:

Incomplete node which believes that it has the highest logical address in the
entire hypercube.

HRoot/Repair: Repair node which also believes that it has the highest logical address in the
hypercube.

Leaving: Node that wishes to leave the hypercube.

Joining/
Joining

Wait

Incomplete

Start
Hypercube

Stable

HRoot/
Stable

HRoot/
Incomplete

Node
becomes

HRoot
New HRoot

Timeout for finding
any neighbor

Has ancestor

Neighborhood
becomes complete

Neighborhood
becomes incomplete

NIL

Has no ancestor

Node
becomes

HRoot

Timeout
for finding an HRoot

Neighborhood
becomes complete

Neighborhood
becomes incomplete

Any State

OutsideNode wants
to join

Leaving Node
leaves

New HRoot

Rejoin Depart

Timeout for
finding an HRoot

HRoot/
Repair

Joining
Wait

Beacon from
Joining node

received

Timeout for beacons
from Joining nodes

Repair

Timeout while
attempting to contact

neighbor

Timeout while
attempting to contact

neighbor

Neighborhood
becomes complete

Neighborhood
becomes complete

Node
becomes

HRoot
New HRoot

Joining

Figure 6: Node State Transition Diagram

10

4.7 Examples

We next illustrate the operations of the protocol in simple examples. In the examples, we use a small
number of nodes and we assume that there are no packet losses.

110

010

000 001

011

beacon

(a)

110

010

000 001

011

pin
gpin

g

ping
ping

pingpi
ng

pin
gpin

g

ping
ping

(b)
Figure 7: Stable hypercube.

4.7.1 The Stable Hypercube

 Figure 7 shows a hypercube with five nodes, represented as circles. We use arrows to represent
unicast messages. Circles around a node indicate a multicast message. In Figure 7-a, we show a stable
hypercube. Here, the HRoot, node 110, multicasts beacons periodically. The beacon is received by all
nodes and keeps all nodes informed of the logical address of the HRoot. Therefore, the nodes know
which of their neighbors should be present in their neighborhood tables. Every node periodically sends
ping messages to its neighbors in the neighborhood table (Figure 7-b).

New

110

010

000 001

011

(a)

110

010

000 001

011

111

ping (as 111)

(b)

110

010

000 001

011

111
ping

(c)

110

010

000 001

011

111

(d)

110

010

000 001

011

111

pi
ng

(e)

110

010

000 001

011

111

ping

(f)
Figure 8: Joining node.

4.7.2 Adding a Node

In Figure 8-a, we show a node in state Joining, labeled “New”, which wants to join the hypercube.
The node periodically sends beacon messages, thus, making its presence known to the group. The
HRoot places the Joining node as its neighbor at the next successive position in the hypercube according

11

to the Gray ordering, and pings the new node with the new logical address (111) (Figure 8-b). The new
node takes on the new logical address and replies with a ping back to the original HRoot (Figure 8-c).

The new node determines from the ping packet that it is the HRoot, since its own logical address is
equal to its highest known logical address. It begins sending beacons as an HRoot (Figure 8-d). If node
011 receives the beacon from the new HRoot, it realizes that 111 should be its neighbor. Thus, node 011
sends a ping message to 111 (Figure 8-e). Once node 111 receives the ping message, it responds with a
ping itself (Figure 8-f). At this time, all nodes in the hypercube have complete neighborhood tables and
know all their neighbors, so the hypercube is stable.

4.7.3 Repairing a Tear

We next describe the operations performed when a single nodes fails. Suppose, that node 001 in our
example fails, i.e., it ceases to send messages or respond to messages (Figure 9-a). The neighbors of 001
detect the failure, since the neighbors do not receive ping messages from the failed node (Figure 9-b).
After a time ttimeout, the neighbors of the failed node, 000 and 011, start sending beacons to indicate that
they have detected a missing neighbor (Figure 9-c). (If the failed node resumes operation, the beacons
from its neighbors are used to reestablish the logical connections in its neighborhood table.) If, after
sending beacons for a period of time tmissing, the failed node is still not responding, the neighbors assume
that node 001 does not return and start trying to find a replacement. Then, the Admin mechanism is
activated at nodes 000 and 011, and the nodes try to make the current HRoot their neighbor. In Figure 9-
d, we show that node 011 sends a ping to the current node 111; the ping identifies node 111 as 001.
When 111 receives this ping messages, it realizes that it can reduce its logical address by assuming the
label 001. With the Admin mechanism, node 111 now leaves its current position in the cube, and fills the
tear in position 001.

After receiving the ping from node 011, node 111 sends leave messages to its neighbors to notify the
neighbors that it will leave its current neighborhood, and assumes the logical position 001 (Figure 9-e).
Then 001 responds to 011 with a ping of its own (Figure 9-f). In Figure 9-g, we show the resulting state
of the cube. Node 110 realizes that, after the departure of 111, it has the highest logical address, assumes
that it is the HRoot, and starts sending beacons. Nodes 000 and 001 realize that they are missing a node
(actually, each other) in their respective neighborhood tables, and also sent beacon messages.
Eventually, nodes 000 and 001 pick up each others’ beacons and send pings to each other (Figure 9-h).
This completes the repair procedure, and the hypercube has returned to a stable state.

5 Verification and Implementation
We used the Spin protocol verification tool [12] to aid in the development of the HyperCast

Protocol. Spin checks the logical consistency of a protocol specification by searching for deadlocks,
non-progress cycles, and any kind of violation of user-specified assertions. To verify the HyperCast
design in Spin, the entire HyperCast protocol specification, as well as a system for simulating multiple
hypercube nodes was encoded using the Process Meta Language (PROMELA). In addition to checking
for deadlocks and non-progress cycles, Spin was used to ensure that every execution path resulted in a
stable hypercube.

Due to the unavoidable state space explosion when using a tool such as Spin, we are only able to
analyze hypercubes with at most 6 nodes. While verification cannot be used to prove results for large
hypercube sizes, we assert that, for the purposes of verification, there is little qualitative difference
between a hypercube of six nodes and a hypercube of several thousand nodes. It is unlikely that non-
progress cycles and deadlocks exist in large hypercubes, which do not have analogous fault modes in a
6-node hypercube. We wish to emphasize, however, that our verification with Spin is not equivalent to a
formal verification of the protocol.

12

110

010

000

011

111

(a)

110

010

000

011

111

!!

pi
ng

ping

pingpi
ng

pi
ngpin

g

ping
ping

pingpi
ng

ping
ping

(b)

110

010

000

011

111

(c)
110

010

000

011

111

pi
ng

 (
as

 0
01

)

(d)

110

010

000

011

111leave

leave

001

(e)

110

010

000

011

001

ping

(f)

110

010

000 001

011

(g)

110

010

000 001

011

ping
ping

(h)

Figure 9: Repairing a tear.

The HyperCast protocol was implemented using the Java programming language. The total size of
the implementation is about 5,000 lines of code. Java was chosen for its portability to multiple platforms
and its easy-to-use threading constructs [4]. The implementation was an exact port of the code written in
PROMELA. Two sockets are used for each hypercube node, one for unicast packets, and one for
multicast packets on the control channel.

6 HyperCast Experimental Validation
To determine the scalability properties of the HyperCast protocol, we have tested the Java

implementation in a testbed environment. The protocol testbed used is the Centurion computer cluster at
the University of Virginia, a cluster used primarily as a platform for distributed computing research and
for computational tasks such as large-scale simulations. The part of the cluster used for this experiment
consists of 64 computers, each a 533 MHz DEC Alpha with 256 MB of RAM running Linux 2.0.35 [15].
The Centurion cluster machines are connected with a 100 Mbit/s switched Ethernet network. Up to 32
logical hypercube nodes are run on a single machine.5

The goal of the experiments is to find answers to the following questions.

What is the overhead of the protocol, and how does the overhead scale with increased size of the
hypercube? The overhead of the protocol consists of the (unicast and multicast) control messages ping,

This node
fails

13

beacon, kill, leave. Of particular importance for scalability is that the volume of beacon messages be
low. Note that, in the current implementation, beacon messages are sent to all nodes of the hypercube via
IP multicast.

How much time does the protocol require to return a hypercube to a stable state? To assert
scalability, the time needed to return the hypercube to a stable state should not depend on the size of the
hypercube. The time to reconstitute stability gives an indication to how quickly the HyperCast protocol
can adapt to dynamic changes in the group membership.

We attempt to answer these questions in a set of experiments where we add or delete a large number
of nodes, and measure the time and the amount of control traffic transmitted until the hypercube reaches
a steady state.6 The performance measures in the experiments are as follows:

• The number of packets (unicast and multicast) transmitted.

• The number of bytes (unicast and multicast) transmitted.

• The time needed to return the hypercube to a stable state. (Time is measured in multiples of
theartbeat.)

6.1 Experiment 1: Multiple Nodes Joining the Hypercube

In Experiment 1, we examine a scenario where multiple nodes want to simultaneously join the
hypercube. We measure the time until the HyperCast protocol establishes a stable hypercube. In the
experiment, we vary the number N of nodes that are already present in the hypercube (N = 2i/2, where i
ranges from 0 to 18), and the number J of nodes which want to join the hypercube when the experiment
begins (J = 2i/2, where i ranges from 0 to 16).

At the start of each experiment, there is a stable hypercube with N nodes, and J nodes want to join
the multicast node (All J nodes are in state Joining). An experiment is completed when the hypercube
contains N + J nodes and is in a stable state. We measure the time until stability is reached, as well as
the unicast and multicast traffic which is transmitted over the duration of the run. Figure 10(a) shows for
all (N, J) pairs, the time until the hypercube stabilizes. Note that the plotted graph is constant as a
function of N. Also, the plot indicates that there is little correlation between the number of nodes present
in the hypercube and the time to attain a stable hypercube. The increase in time with respect to the
number of joining nodes J (on the logarithmic axis) indicates a linear relation between the number of
joining nodes and the time needed. This behavior is expected, since the process of adding one node to
the hypercube should take a constant amount of time.

Figure 10(b) shows the average number of unicast packets sent or received by a station per thearbeat

time units. The values are averaged over the entire duration of the experiment. The data indicates that the
unicast traffic at a node grows on a logarithmic scale. Since unicast transmissions are primarily ping
messages between neighbors, the behavior is as expected, as the average number of neighbors of a node
is approximately equal to the dimension of the hypercube, which is close to log2(N + J).

Figure 10(c) shows the average rate of multicast transmissions sent and received at each node during
the time of the join operation. The data indicates that there is no strong correlation between multicast
traffic and the number of nodes present in the hypercube. There is, however, a correlation between the
multicast traffic and the number of nodes joining the hypercube. This correlation is due to the beacons
sent by newly joining nodes.

5 IPC processing in the Java Virtual Machine (JVM) is the bottleneck when running multiple hypercube nodes on a
single machine. The limit of 32 nodes per machine is a result of the restriction on the maximum number of sockets
that can be handled by the JVM.
6 We refer to [20] for additional experiments, and for a more extensive description of the experimental setup.

14

0
2

4
6

8
10

0

2

4

6

8

10
0

200

400

600

800

1000

1200

1400

1600

1800

(a) Time until the Hypercube reaches a stable state.

0
2

4
6

8
10

0

2

4

6

8

10
0

2

4

6

8

10

12

14

16

(b) Average number of unicast packets sent and re-
ceived per node and per time unit over the duration of
the experiment.

0
2

4
6

8
10

0

2

4

6

8

10
0

1

2

3

4

5

6

7

(c) Average number of multicast packets sent and received
per node and per time unit over the duration of the experiment.

Figure 10: Results from Experiment 1.

Overall, Experiment 1 shows that the process of adding nodes to the hypercube scales well to larger
group sizes. For applications, which require low latency in join operations can use a lower value of
theartbeat, thereby reducing the time needed to add a node to the hypercube.

6.2 Experiment 2: Multiple Node Failures

This experiment examines a scenario where multiple nodes in a stable hypercube fail simultaneously.
The setup is similar to that in Experiment 1. At the beginning of the experiment, N nodes are present in
the hypercube (N = 2i/2, where i ranges from 0 to 18), and immediately after the experiment is started, F
nodes fail (F = 2i/2, where i ranges from 0 to 16). The experiment, for a pair of values (N, F) terminates
when the hypercube with N - F node has reached a stable state. As before, we measure the time until
stability is reached, as well as the unicast and multicast traffic over the duration of the experiment.

Figure 11(a) shows the relationship between the time needed to reach achieve stability of the
hypercube and the parameters N and F. (Note that pairs (N, F) with F > N are infeasible points). The
graph shows that the time to repair a cube does not increase significantly with N, when F is small.

T
im

e,
 in

 m
ul

tip
le

s
of

 t he
ar

tb
ea

t

Log2(N
umber of Joining Nodes J)

Log
2 (Number of Nodes N

Present in Hypercube)

Log2(N
umber of Joining Nodes J)

A
ve

ra
ge

 #
 p

ac
ke

ts
 s

en
t/r

ec
ei

ve
d

at
 e

ac
h

no
de

 p
er

 t he
ar

tb
ea

t

Log
2 (Number of Nodes N

Present in Hypercube)

Log2(N
umber of Joining Nodes J)

A
ve

ra
ge

 #
 p

ac
ke

ts
 s

en
t/r

ec
ei

ve
d

at
 e

ac
h

no
de

 p
er

 t he
ar

tb
ea

t

Log
2 (Number of Nodes N

Present in Hypercube)

15

0
2

4
6

8
10

0

2

4

6

8

10
0

200

400

600

800

1000

(a) Time until the Hypercube reaches a stable state.

0
2

4
6

8
10

0

2

4

6

8

10
0

5

10

15

20

(b) Average number of unicast packets sent and re-
ceived per node and per time unit over the duration of
the experiment.

0
2

4
6

8
10

0

2

4

6

8

10
0

20

40

60

80

100

(c) Average number of multicast packets sent and received
per node and per time unit over the duration of the experiment.

Figure 11: Results from Experiment 2.

 However, for large number of failures, the time to repair the cube grows linearly with the number of
failed nodes.

Note that, as F approaches values close to N, the time to repair the hypercube decreases. This is
explained as follows. If the number of failed nodes is close to the number of nodes in the initial
hypercube, the hypercube is rather small, hence, requiring less time to reach a stable state.

Figure 11(b) shows the average rate of unicast packet transmissions during the repair operations.
Since unicast transmissions are primarily ping transmissions, the number of transmitted pings is
proportional to the number of neighbors of nodes in the hypercube. In this case, the hypercube contains
N – F nodes, therefore the average number of neighbors is approximately log2(N – F). The data in
Figure 11(b) confirms this relation.

Figure 11(c) shows the average rate of multicast transmissions sent and received at each node in the
hypercube during the time of the repair operation. The rate of multicast transmissions is approximately
linear with respect to the number of failed nodes, since the number of failed nodes is proportional to the

T
im

e,
 in

 m
ul

tip
le

s
of

 t he
ar

tb
ea

t

Log
2 (Number of Nodes N

Present in Hypercube)

A
ve

ra
ge

 #
 p

ac
ke

t s
 s

en
t/

re
ce

iv
ed

at
 e

ac
h

no
de

 p
er

 t he
ar

tb
ea

t

Log
2 (Number of Nodes N

Present in Hypercube)

A
ve

ra
ge

 #
 p

ac
ke

ts
 s

en
t/r

ec
ei

ve
d

at
 e

ac
h

no
de

 p
er

 t he
ar

tb
ea

t

Log
2 (Number of Nodes N

Present in Hypercube)
Log2(N

umber of Failed Nodes F)

Log2(N
umber of Failed Nodes F)

Log2(N
umber of Failed Nodes F)

16

number of tears in the hypercube that are created. For each tear in the hypercube, neighbors with
incomplete neighborhood tables periodically send beacon messages, thereby contributing to the rate of
multicast transmissions. The rate of multicast transmissions is also logarithmically related to the size of
the hypercube. This relation is present because hypercubes of higher dimensions have more neighbors
per node, and all the neighbors of a failed node send beacons.

7 Conclusions
We are pursuing a novel approach to the problem of scalable multicast in packet-switched networks.

The key to our approach is to organize members of a multicast group in a logical n-dimensional
hypercube. By exploiting the symmetry properties in a hypercube, operations that require an exchange of
feedback information between multicast group members can be efficiently implemented.

In this paper, we presented the design, specification, verification, and evaluation of the HyperCast
protocol, which maintains members of a dynamically changing multicast group in a logical hypercube
topology. The implementation has been tested for group sizes of up to 1024 nodes. The data indicates
that larger group sizes may be reached.

The HyperCast protocol organizes nodes into a hypercube topology and has been tested thoroughly
with that goal in mind. However, at present, the hypercube protocol is not supporting any applications.
The next step of our work is to build protocol mechanisms which use the symmetrical hypercube
topology to support applications. For example, we plan to use the tree embedding algorithm from
Section 3 to provide ARQ error control.

References

[1] M. Ammar and L. Wu. Improving the Performance of Point to Multi-Point ARQ Protocols
through Destination Set Splitting. In: Proc. IEEE Infocom ’92, pp. 262-271, May 1992.

[2] S. Armstrong, A. Freier, and K. Marzullo. Multicast Transport Protocol. Request for Com-
ments RFC 1301, Internet Engineering Task Force, February 1992.

[3] J. Bolot. End-to-End Packet Delay and Loss Behavior in the Internet. In: Proc. ACM Sig-
comm '93, 23(4):289-298, September 1993.

[4] M. Campione, K. Walrath. The Java Tutorial: Object-Oriented Programming for the Inter-
net (Java Series). Addison-Wesley Publishing, March 1998.

[5] J.M. Chang and N.F. Maxemchuck. Reliable Broadcast Protocols. ACM Transactions on
Computing Systems, 2(3):251-273, August 1984.

[6] D. Chiu, S. Hurst, M. Kadansky, J. Wesley. TRAM: A Tree-based Reliable Multicast Proto-
col. Sun Microsystems Laboratories, July 1998.

[7] J. Crowcroft and K. Paliwoda. A Multicast Transport Protocol. In Proc. ACM Sigcomm '88,
pages 247-256, August 1988.

[8] C. Diot, W. Dabbous, and J. Crowcroft. Multipoint Communications: A Survey of Protocols,
Functions, and Mechanisms. IEEE Journal on Selected Areas in Communications. Special Is-
sue for Multipoint Communications, 15(3): 277- 290, April 1997.

[9] S. Floyd, V. Jacobson, S. McCanne, C.G. Liu, and L. Zhang. A Reliable Framework for
Light-Weight Sessions and Application Level Framing. In: Proc. ACM Sigcomm’95, August
1995.

[10] A. Frier and K. Marzullo. MTP: An Atomic Multicast Transport Protocol. Technical Report,
Cornell University, 1990.

[11] H. W. Holbrook, S.K. Singhal, and D.E. Cheriton. Log-based Receiver-Reliable Multicast for
Distributed Interactive Simulation. In: Proc. ACM Sigcomm '95, August 1995.

[12] G. J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineering
Vol. 23, No. 5, May 1997.

17

[13] M. G. W. Jones, S. A. Sorensen, and S. Wilbur. Protocol Design for Large Group Multicast-
ing: The Message Distribution Protocol. Computer Communications, 14(5):287--297, 1991.

[14] S. Kasera, J. Kurose, and D. Towsley. Scalable Reliable Multicast Using Multiple Multicast
Groups. UMass CMPSCI Technical Report 96-73, October 1996.

[15] The Legion Group, University of Virginia (legion@virginia.edu). Legion: A Worldwide
Virtual Computer. http://legion.virginia.edu/.

[16] B.N. Levine, D.B. Lavo and J.J. Garcia-Luna-Aceves. The Case for Reliable Concurrent
Multicasting Using Shared Ack Trees. In: Proc. ACM Multimedia ‘96, November 1996.

[17] B. N. Levine and R. Rom. Supporting Reliable Concast with ATM Networks. Technical Re-
port, Sun Research Labs SDS-96-0517, January 1997.

[18] D. Li and D. R. Cheriton. OTERS (On-Tree Efficient Recovery using Subcasting): A Reli-
able Multicast Protocol. In: Proceedings of 6th IEEE International Conference on Network
Protocols (ICNP’98), October 1998.

[19] J. Liebeherr and B. S. Sethi. A Scalable Control Topology for Multicast Communications.
In: Proc. IEEE Infocom `98, March 1998.

[20] J. Liebeherr and T.K. Beam, HyperCast Protocol: Design and Evaluation, Technical Report,
University of Virginia, July 1999 (in preparation).

[21] C. K. Miller, Multicast Networking and Applications, Addison-Wesley, 1998
[22] J. Nonnenmacher and E. W. Biersack. Reliable Multicast: Where to use FEC. Proc. of IFIP

5th International Workshop on Protocols for High Speed Networks, October 1996.
[23] C. Papadopoulus, G. Parulkar, and G. Varghese. An Error Control Scheme for large-Scale

Multicast Applications. 1997.
[24] S. Paul, K.K. Sabnani, J.C.-H. Lin, and S.Bhattacharyya. Reliable Multicast Transport Proto-

col (RMTP). IEEE Journal on Selected Areas in Communications. Special Issue for Multi-
point Communications, 15(3):407 - 421, April 1997.

[25] S. Paul, Multicasting on the Internet and Its Applications, Kluwer Academic Publishers,
1998.

[26] M. Pullen, M. Myjak, and C. Bouwens. Limitations of Internet Protocol Suite for Distributed
Simulation in the Large Multicast Environment. IETF Internet-Draft, March 1997.

[27] M.J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, New York, 2nd edi-
tion, 1994.

[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. Request For Comments RFC 1889, Internet Engineering Task
Force, January 1996.

[29] W. Strayer, B. Dempsey, and A. Weaver. XTP: The Xpress Transfer Protocol. Addison-
Wesley Publishing, July 1992.

[30] R. Talpade and M. H. Ammar. Single Connection Emulation (SCE): An Architecture for
Providing a Reliable Multicast Transport Service. In: Proc. of the IEEE International Con-
ference on Distributed Computing Systems, June 1995.

[31] B. Whetten, S. Kaplan, and T. Montgomery. A High Performance Totally Ordered Multicast
Protocol. In: Proc. IEEE Infocom '95, 1995.

[32] X. R. Xu, A. C. Myers, H. Zhang, and R. Yavatkar. Resilient Multicast Support for Continu-
ous-Media Applications. In: Proc. NOSSDAV 1997, 1997.

[33] R. Yavatkar, J. Friffioen, and M. Sudan. A Reliable Dissemination Protocol for Interactive
Collaborative Applications. In: ACM Multimedia 1995, pp. 333-343. November 1995.

