
1

An API for Scalable Reliable Multicast

Jim Gemmell Jörg Liebeherr Dave Bassett

Microsoft Research
301 Howard St, #830

San Francisco, CA 94105
jgemmell@microsoft.com

Polytechnic University
Department of Electrical Engineering

6 MetroTech Center
Brooklyn, NY 11201
jorg@catt.poly.edu

Computer Science Department
University of Virginia

Charlottesville, VA 22903
dgb2n@cs.virginia.edu

Abstract

Most approaches to scalable reliable multicast
utilize receiver-oriented retransmissions. Defining
an API for receiver-oriented reliable multicast is
difficult because it is not clear how to manage the
sender’s cache and to schedule repairs. We outline
an approach to defining an API based on logical
cache persistence that addresses these problems.

1 Introduction

There are many scenarios in which the same data
must be delivered over a packet switched network to
a large set of receivers. The Internet enables efficient
multi-point multicast transmissions through IP
multicast by allowing data transmission to all
receivers with a single send. IP multicast provides an
unreliable, connectionless, datagram service, without
guarantees for correct delivery, in-order delivery, or
delivery without duplication. While an unreliable
service is adequate for many applications, for
example, audio and video, many other applications
require, or can benefit from, retransmission of lost
packets. Examples of such applications include slide
shows, file-transfer, multi-party shared document
editing and electronic whiteboards. Common to these
applications is that any transmitted application-level
data is relevant (“persistent”) for long time periods
relative to the time required for recovering lost data.

Since the inception of IP multicast, various proposals
have been made for reliability mechanisms that
provide delivery guarantees on top of IP multicast. In
this paper we explore the issues involved in defining
an API for reliable multicast protocol for the Internet
that can scale to millions of receivers.

Some would argue that scalable reliable multicast
must be implemented at the application level, i.e.,
that it is not possible to offer multicast reliability as a
separate service that is not integrated into the
application [FLO95]. To a certain extent this
argument has merit. The widely varying requirements

of different applications for a scalable reliable
multicast service are broad enough to prohibit a
general-purpose solution. However, we will show
that it is possible to provide a service that is useful to
a sizeable category of applications. In this paper, we
define an API for reliable, scalable multicast, while
only making minimal assumptions about the protocol.
Our goal is to have an API that is useful for
experimenting with different scalable protocols. The
API that we propose could equally use another
protocol to achieve reliable multicast. Defining an
“on the wire” protocol for scalable reliable multicast
is beyond the scope of this paper.

2 Scalable Reliable Multicast

Since the early 1980’s, many protocols have been
introduced for reliable multicast communications
[BIR91, CHA84, FLO95, HOL95, PAU97, TAL95,
WHE95, YAV95]. There are many ways to
implement a reliable multicast protocol. Protocols are
referred to as sender-oriented if the sender of a
packet is responsible for ensuring that all receivers
have obtained a copy of the packet. Protocols are
called receiver-oriented if the responsibilities for
detecting missing packets lie with the receivers. A
protocol with unordered delivery does not make
guarantees on the order in which packets are
delivered to the receiver. The delivery is called
source-ordered if the protocol maintains the order of
transmission for each sender, i.e., a receiver obtains
the packets from a specific sender in the same order
in which the packets were transmitted by that sender.
A totally-ordered protocol ensures that all packets are
received by all receivers in the same order. Examples
of protocols that employ source and/or total ordering
are RMP [WHE95] and SCE [TAL95].

Typically, with a sender-initiated approach, the
receivers acknowledge (ACK) each packet they
receive. It is up to the sender to keep track which
packets have been ACKed, and to resent if they are
not ACKed within a certain time interval. This means

2

that the sender must keep state information and
timers for each receiver. Receiver-oriented schemes
shift the burden to the receiver. It is up the receiver to
detect a lost packet and request retransmission; the
sender need not keep state for each receiver.
Typically, to achieve this the sender puts a sequence
number in each packet transmitted. When it has no
packets to transmit, it sends a heartbeat packet
containing the last sequence number. By looking at
the sequence number, the receiver can detect if it has
missed any packets and request for them to be
retransmitted by sending a negative acknowledgment
(NACK) back to the sender.

Sender-initiated schemes have difficulty with
scalability. Keeping state for each receiver becomes
infeasible as the number of receivers stretches up into
the millions. Furthermore, the volume of ACK
messages may overwhelm the sender, referred to as
the Implosion Problem [CRO88, DAN89, JON91].
Figure 1 shows a sender keeping state for each
receiver and suffering from NACK implosion.

. . .

state infostate info

R1 R2R2 R3R3 RnRn

 Sender R1 R2 Rn. . .

ACKs

state

Figure 1 - State implosion with sender-
initiatedreliability.

Receiver-oriented schemes solve the problem of
keeping state information at the sender, but still may
suffer from NACK implosions. One approach to
avoiding NACK implosions is to organize the
participants into a tree, thereby bounding NACKs
according to the order of the tree (e.g. TMTP
[YAV95], LBRM [HOL95]). Another approach is to
employ NACK Suppression, originally proposed in
[RAM87]. NACK suppression works as follows:
whenever a receiver detects a lost packet, it waits for
a random amount of time and then multicasts its
NACK to the whole group and sets a timer. If it
receives another NACK for the same packet while it
is waiting, it will back off and not send the NACK,
but will set its timer as if it had sent the NACK.
Essentially, the NACK is delayed in the hope that
someone else will generate it. If the timer expires
without receiving the corresponding packet, then it
repeats the process of randomly backing off and
sending a NACK. The SRM framework [FLO95] is

an example of a scheme utilizing NACK suppression.
NACK suppression can also be used in conjunction
with hierarchy, as in TMTP [YAV95].

Basic receiver-based reliable multicast has the source
generating sequence numbers in each packet. When it
is not sending data packets, it sends heartbeat
packets (containing the last sequence number) at a
regular rate. The receiver can detect a loss when it
does not receive a data or heartbeat packet within a
given interval.

The discussion in this chapter has exemplified that
sender-oriented protocols introduce severe scalability
problems. Also, the overhead introduced by a
requirement for totally-ordered delivery is
prohibitive. For the remainder of the paper, we
assume that reliable multicast is achieved via
receiver-oriented protocol. Using mechanisms such
as NACK suppression, heartbeat packets, etc., one
can contain the volume of control traffic and support
very large receiver sets.

3 Defining a Receiver-Oriented API -
The Problems

When designing a sender-oriented reliable multicast
transport protocol, there are a number of options,
such as ordering, as discussed above. However, the
basic semantics of the protocol are well defined and
easily understood: for each receiver, the sender must
ensure that it gets a copy of each packet sent. In
contrast, the semantics of a receiver-oriented reliable
multicast are not so obvious. In particular, sender
cache persistence and scheduling of re-sends pose
difficulties.Since a sender in a multicast group cannot
store a packet forever, a protocol must specify rules
that define how long a sender must hold on to a
transmitted packe; this is referred to as cache
persistence. The problem with cache persistence is
exposed by asking the following questions:

• When can a packet be deleted from the sender’s
cache?

• When should NACKs be withheld since the
corresponding data is no longer cached?

Clearly, the questions are related. There is no point
NACKing a packet that is no longer cached, and
there is no point in caching something that will never
be sent again. The issue at stake is determining when
the protocol is finished with a given packet.

With receiver-oriented reliability, the answers to the
above questions are application dependent. For some
applications it is desirable to store all packets
persistently, i.e., cache packets forever, and never
withhold a NACK for a missing packet. However,

3

other applications may allow withholding the
transmission of NACKs. As an example of the latter
group, consider a multicast transmission of a set of
slides; this slide-show application could decide to
conserve bandwidth by only transmitting data from
the current slide. NACKs for previously transmitted
slides should be withheld, since they are not currently
being viewed. Or, consider an application that
transmits on stock quotes with updates at least daily.
In this application, only packets that are less than 24
hours old need to be cached; NACKs for packets that
are older than 24 hours are superfluous.

The second problem concerns scheduling of
retransmissions and is embodied in the following
question:

• Following a NACK reception, when should the
retransmission of a packet (A.K.A. repair) be
scheduled?

Again, the answer is application dependent. For
example, repairs may be considered highest priority
and sent immediately, prior to any new data. Or
repairs may be considered lowest priority and need to
wait for an empty transmission queue. Disregarding
new data, there is also the question of scheduling
repairs when several repairs are outstanding. The
most obvious approach is to schedule them first-
come-first-serve, but applications may desire a
different order.

We should note that TCP answers repair scheduling
questions on behalf of applications, and transmits
repairs ahead of new data. However, TCP only deals
with a single receiver. Applied to a large receiver set,
a repairs-first policy allows one poor receiver to hold
up the transmission for millions of other receivers in
a reliable multicast.

4 Defining a Receiver-Oriented API -
The Solution

From our discussions in the previous sections it
should become clear that a one-size-fits-all service to
provide scalable reliable multicast is not possible.
However, it is possible to design a “one-size-fits-
many” service, with the ability to accommodate some
important caching strategies and to schedule repairs,
which can be exploited by a large variety of
applications. Such a service can be limited to
relieving the applications from the burden of caching
data and performing repairs. With such a service all
senders can perform transmission of packets without
concerning themselves with reliable delivery;
reliability is provided by the multicast protocol.
Similarly, after initializing the service, every receiver

can accept packets without concern regarding
transmission of NACKs, NACK suppression, etc.

As discussed above, one of the key questions is how
to manage caching of packets at the receiver. Two
obvious caching strategies are:

• Caching with Spatial Persistence: Cache the
most recent N packets, where N is a dynamically
tunable parameter.

• Caching with Temporal Persistence: Cache
packets for time T, where T is dynamically
tunable parameter.

If N and T are static values over the course of a
session, then these schemes are unlikely to match the
needs of a real application. By making them
dynamic, they become more useful, but are still
awkward because applications must track the number
of packets sent or time sent. A more useful scheme
than spatial or temporal persistence is given as
follows:

• Give each packet a non-decreasing “epoch”
value, which is transmitted in its header. Cache
for E epochs, where E is a parameter that may be
updated with each packet sent.

In [BAS96], the above scheme was referred to as
logical persistence. Clearly, using an epoch-based
cache deletion strategy is not general because it only
allows variations on a least-recently-used (LRU)
cache deletion strategy. It could not satisfy the
application that, say, wanted to cache even packets
for a minute and odd packets for a day. To extend the
usefulness of this scheme, the service should also
support packets being sent which remain in the cache
for the duration of the session. In our example API,
this is accomplished by sending with an epoch of
EPOCH_PERSISTENT.

While not being completely general, combining
epoch-based deletion with session-persistent packets
enables us to define a service that is useful for a large
class of applications. In particular, network shows
(e.g. presentations, dramas, etc.) tend to have scenes,
slides, or sections that naturally break up in a way
that lend themselves to epoch-based cache deletion.
The Multicast PowerPoint application discussed
below illustrates this. File distribution applications
would seem at first glance to not be suited to epoch-
based caching. By sending file A, and then start
sending file B, file A does not necessarily become
stale immediately. However, in some cases, using
epoch-based caching for file transfer does make
sense. For example, the policy may be to only
multicast repairs for the most recent file

4

transmissions, and to require all older repairs to be
accomplished by (unicast) retrieval from a server.

The epoch-based scheme makes the assumption that
the underlying protocol somehow communicates
information about caching (i.e. the current epoch
number and the number of epochs to cache, E). Note
that the way in which this is communicated need not
be static in the protocol; the session announcement
could indicate how this is to be done. In particular,
the number of bits used to represent the epoch and
Ecould be different for different sessions.

For scheduling repairs, our API supports three simple
strategies: repairs first, new data first, and first-come-
first-serve.

5 The API

Figure 2 shows a prototypes for the proposed API.
We show only the calls related to reliable multicast.
Naturally, there must be a way to join and drop a
multicast group, set the TTL, etc. Furthermore, rate
control should be performed at a lower level so that
NACK and repair traffic does not violate the rate
policies.

The Send() call sends a packet and returns an error
status. If the send is successful, then the sequence
number pointed to by pSequence is updated to the
sequence number assigned to the packet. It is the
responsibility of the application to save this value if it
wants to retransmit the packet. SetEpoch() sets
the epoch number to be used for subsequent sends,
and the value E– the number of epochs to be cached.
SetScheduleOption() is used to indicate how
to schedules repairs. NumOutstandingNACKs()
returns the number of NACKs which have been
received for which no repair has been sent yet. This
gives senders an indication as to whether any
receivers are still missing data before terminating a
session (when it returns zero there still may be
unsatisfied receivers whose NACKs are being lost).

SetHeartBeat() is used to control the heartbeats
of the underlying protocol. It sets a payload to be
used for the heartbeat packets so that the heartbeats
can contain application specific data. It also sets the
minimum and maximum heartbeat rate (some
protocols, like LBRM [HOL95] have variable
heartbeat rates).

//client can use EPOCH_FIRST or higher.
Lower epoch values are reserved
#define EPOCH_PERSISTENT 4 //use for
items that never become stale
#define EPOCH_FIRST 5 //1st valid user
epoch

//Set scheduling strategy, return error

status

// Opt must be one of: FCFS,
REPAIRS_1ST, or DATA_1ST
int SetScheduleOption (tSchOpt Opt);
//IN option

// sends a packet unreliably – return
error status
int SendUnRel(char* pPacket, //IN
packet to send

long lLen
); //IN length of
packet

// Sets the payload for heartbeat
packets and the
// rate to send heartbeats when the
session is idle
int SetHeartBeat(char *pPayLoad,
//IN payload for heartbeat

long lLen, //IN
length of payload

long lMinRate, //IN
min rate per hour

long lMaxRate);
//IN max rate per hour

//set the current epoch and number of
epochs to cache
int SetEpoch(

tEpoch Epoch, //IN
current epoch number
tEpoch E); //IN

epochs to cache

//send a packet, return error status
int Send(

char *pPacket,
//IN packet to send

long lLen, //IN
length of the packet

tSeq*
pSequence);//OUT sequence
number assigned

// Returns the number of NACKs received
for which a repair has not yet been
sent
int NumOutstandingNACKs(void);

// Reliable multicast receive
int Recv(char* pBuffer, //OUT
buffer to put packet in

int pnBufferLen, //IN
size of buffer

tEpoch* pEpoch, //OUT
epoch of packet received

5

tSeq* pSeq); //OUT
sequence number of packet
received

Figure 2 - Prototype Definition of the API.

6 Experience and Conclusion

The Multicast PowerPoint project at Microsoft
Research made use of a reliable multicast software
library based on the calls described above. Multicast
PowerPoint is a modification to PowerPoint
conferencing that allows PowerPoint slides to be
multicast. It uses a modified form of SRM to achieve
reliability. Multicast PowerPoint was demonstrated in
the Microsoft booth at the ACM 97 Conference in
San Jose, California, and was also used to transmit
some ACM 97 presentations (those that used
PowerPoint) to desktops on the Microsoft corporate
network. The API design discussed in this paper was
also used at the University of Virginia for
implementing the Tunable Multicast Protocol (TMP)
[BAS96]. TMP exploited the notion of logical
persistence based on user-defined epochs. For
example, in a multicast file transfer application that
was implemented with TMP, each transmitted file
constitutes a separate epoch.

It is infeasible to create a scalable reliable multicast
protocol that will suit all applications. The biggest
roadblock lies in the choice of caching strategy. Since
there is no single caching strategy that suits all
applications, there is a widespread belief that the only
way to arrive at a general purpose protocol is to
leave caching up to the application. In this paper we
have proposed an epoch-based caching strategy that
is useful to a wide range of applications. We have
outlined an API based on epoch-based caching which
allows application developers to easily harness the
power of scalable reliable multicast.

7 References
[ARM92] Armstrong, S., Freier, A. and Marzullo, K.,

“Multicast Transport Protocol”, RFC 1301,
Internet Engineering Task Force, February
1992.

[BAS96] Bassett, D. G., “Reliable Multicast Services For
Tele-Collaboration”, Masters Thesis, University
of Virginia, 1996.

[BIR91] Birman, K., Schiper, A., and Stephenson, P.,
“Lightweight Causal and Atomic Group
Multicast”, ACM Transaction on Computer
Systems. 9(3): 272-314. August 1991.

[CHA84] Chang, J. M., and Maxemchuck, N. F., “Reliable
Broadcast Protocols”, ACM Transactions on
Computing Systems, 2(3):251-273. August
1984.

[CLA90] Clark, D. D., and Tennenhouse, D. L.,
“Architectural Considerations for a New
Generation of Protocols”, Proc. of ACM
SIGCOMM ’90, Pages 201-208, September
1990.

[CRO88] Crowcroft, J., and Paliwoda, K., “A Multicast
Transport Protocol”, Proc. of ACM SIGCOMM
’88, pp. 247-256, 1988.

[DAN89] Danzig, P., “Finite Buffers and Fast Multicast”,
ACM Sigmetrics `89, Performance Evaluation
Review, Vol. 17, pp. 108-117, May 1989.

[FLO95] Floyd, S., Jacobson, V., Liu, C., McCanne, S.,
and Zhang, L., “A Reliable Multicast
Framework for Light-weight Sessions and
Application Level Framing”, Proc. of ACM
SIGCOMM ‘95, Cambridge, MA, August 1995.

[HOL95] Holbrook, H.W., Singhal, S.K., and Cheriton,
D.R., “Log-based Receiver-Reliable Multicast
for Distributed Interactive Simulation”, Proc. of
SIGCOMM '95, Cambridge, MA, August 1995.

[JON91] Jones, M.G.W., Sorensen, S. A., and Wilbur, S.,
“Protocol Design for Large Group Multicasting:
The Message Distribution Protocol”, Computer
Communications, 14(5):287-297, 1991.

[PAU97] Paul, S., Sabnani, K. K., Lin, J. C.-H., and
Bhattacharyya, S., “Reliable Multicast Transport
Protocol (RMTP), , IEEE Journal on Selected
Areas in Communications, Vol. 15, No. 3, pp.
407 – 421, April 1997.

[RAM87] Ramakrishnan, S. and Jain, B. N., “A Negative
Acknowledgement With Periodic Polling
Protocol for Multicast over LANs”, Proc. of
IEEE Infocom ’87, pp. 502-511, March/April
1987.

[TAL95] Talpade, R., Ammar, M. H., “Single Connection
Emulation: An Architecture for Providing a
Reliable Multicast Transport Service”, Proc. of
15th IEEE Intl. Conf. on Distributed Computing
Systems, Vancouver, June 1995.

[WHE95] Whetten, B., Montgomery, T., and Kaplan, S.,
“A High Performance Totally Ordered Multicast
Protocol”, International Workshop on Theory
and Practice in Distributed Systems, 5-9 Sept.
1994, Springer-Verlag, pp.33-57.

[YAV95] Yavatkar, R, Griffioen, J, Sudan, M, “A Reliable
Dissemination Protocol for Interactive
Collaborative Applications”, Proc. of ACM
Multimedia 95, Pages 333-343, November
1995.

