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Abstract

Scalable Routing for Networks of Dynamic Substrates

Boris Drazic

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2014

The ever-increasing number of devices capable of, not only connecting to existing communication

networks, but also, independently creating new ones is defining a new communication network, in which

the Internet is only one of the substrate networks providing connectivity between diverse devices. This is

a network with many interconnected mobile devices connecting to infrastructure networks and creating

their own dynamic substrate networks.

We present a novel routing scheme for diverse collections of substrate networks with a mix of mobile

and static nodes. A key element of the routing scheme is to utilize the exiting routing paths in substrate

networks, and set up routing paths between substrate networks. We use sets of nodes as landmarks

and define locators that describe node position in the network relative to landmarks. This allows our

routing scheme to scale to a large number of nodes, as only information about landmarks needs to be

propagated throughout the network.
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Chapter 1

Introduction

Since its inception the Internet has continually grown and has become a global medium to interconnect

people, share ideas, and conduct business. The Internet has evolved to not only support the ever

increasing amount of data carried over it, but also to provide new and improved services to users.

The growth of the number of users that connect to the Internet, the types of devices they use to

connect, and the number of services the Internet offers has raised concerns in the networking community

that the original design principles of the Internet are inadequate to support the requirements for the

future Internet. Limitations of the current Internet in security, mobility, reliability, and scalability have

prompted some Internet researchers to suggest that the evolutionary approach to the development of the

Internet should be replaced with a more radical rethinking of the Internet, called “clean-slate design”

[1, 2, 3, 4].

The original design of the Internet envisioned a packet switched communication medium that in-

terconnects existing independent networks [5]. The Internet architecture makes minimal assumptions

about the functions that member networks provide and delegates the implementation of advanced ser-

vices to nodes that want to use them. The end-to-end principle [6] argues that the benefits of providing

functionality at the network layer, instead of at nodes, are small compared to the cost of providing

them and has been a key tenet of the Internet design. However, as Blumenthal and Clark note in [7], a

growing number of Internet users wants to access advanced network services without carrying the burden

of managing them and expects the network to provide these services. The gap between user demand

and the functionality offered by the Internet can be bridged by overlay networks that meet specific user

demands, such as distributed lookup [8], resilient routing [9], and peer-to-peer data sharing [10]. Overlay

networks are build on top of the Internet as new networks that provide additional functionality to users

without the need to change the Internet it self.

As identified in Clark et al. [11], innovation is happening at the edge of the Internet, where networks

using novel communication protocols are deployed, e.g., sensor networks, Bluetooth networks, Mobile

Ad-hoc Networks (MANETs), and cellular networks. Many of these networks are designed for mobile

nodes and characterized by frequent change of connectivity, e.g., Vehicular Ad-hoc Networks (VANETs),

or entire networks are mobile, e.g., Personal Area Networks (PANs). Generally these networks are

assumed to connect to the Internet, leading to a view of connectivity between networks illustrated in

Fig. 1.1(a). The Internet is a central network; all other networks connect to the Internet, but not to each

other. Communication between networks is established via communication paths set up in the Internet.

1
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The Internet

Network 1

Network 2
Network 3

Network 4

Network 5

Network 6

Network 7

(a) Internet as the central network.

The Internet

Network 1

Network 2

Network 3

Network 4
Network 5

Network 6

Network 7

(b) Internet as one of the networks.

Figure 1.1: Interconnected collection of networks.

However, in an environment where many networks are mobile and have only intermittent connectivity

the assumption of permanent connectivity to the Internet can be limiting. Instead, we envision an

interconnected collection of networks, where the Internet is connected to some but not all networks, as

illustrated in Fig. 1.1(b). In such a collection of networks, networks must establish communication paths

without support of the Internet.

In the remainder of this introduction, we discuss difficulties for providing communication in a collec-

tion of networks and also provide a short overview of the existing approaches. We then briefly describe

our proposed routing scheme, which enables communication between interconnected networks, without

relying on the existence of the Internet, or any other central network. Finally, we outline the organization
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of the rest of the thesis.

1.1 Substrate and Multi-Substrate Networks

A network consists of devices with one or more attachment points (network interfaces) per device.

Network attachment points may reside at or above the data link layer and can have different types, e.g.,

WiFi or Bluetooth interfaces, IP interfaces, TCP server ports, or even application-defined interfaces.

We refer to attachment points of the same type, which implement the same protocol and use the same

configuration, as compatible attachment points. For example, WiFi attachment points implementing

IEEE 802.11 are compatible if they use the same service set identifier (SSID), and IP interfaces are

compatible if they use the same version of IP and addresses from the same IP address space.

Communication is enabled when compatible attachment points at two different devices are linked

by a bidirectional communication channel. The communication channel may be a point-to-point link, a

shared broadcast link, a switched network, or an inter-network. We refer in general to communication

channels as links, and assume that all links are bidirectional. When devices are connected by a link,

we say that the devices are one-hop connected. Devices that are one-hop connected are referred to as

neighbours.

Private IPv4 address space

Public IPv4 address space

SSID1

SSID2

Substrate network S1

Substrate network S2

Substrate network S3

Substrate network S4

Substrate network S5

NAT

Wireless 
Router

Router

Switch

Switch

Router Router

Router

Figure 1.2: Example of substrate networks.
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We define a substrate network as a collection of devices with compatible attachment points and links

between one-hop connected devices. For illustration, Fig. 1.2 shows five substrate networks labelled S1

through S5. Substrate networks S1 and S2 are defined at the network later and the attachment points

implement IPv4. Attachment points of devices in S1 and S2 differ, since, in S1, addresses from the

public IP address space are used and in S2 addresses from a private IP address space are used. S3 is

defined at the data link layer, with attachment points implementing IEEE 802.3. Attachment points in

S4 and S5 implement IEEE 802.11, but are using different SSIDs.

We refer to routing as the ability to set up a multi-hop path of devices, where adjacent devices on the

path are one-hop connected. Devices that are not one-hop connected can establish communication by

having data forwarded along multi-hop paths set up by routing. A protocol that sets up communication

paths is referred to as a routing protocol. We refer to intra-substrate routing as the routing within a

substrate network. For example, intra-substrate routing may be realized with Spanning Tree Protocol

(SPT) in a data link layer substrate network, Open Shortest Path First (OSPF) in an IP substrate

network, or Ad-hoc On-Demand Distance Vector (AODV) in a wireless ad-hoc substrate network. Some

substrate networks may not provide intra-substrate routing, for example, a collection of devices with

WiFi attachment points not implementing routing. In this substrate network, a device can forward

messages only to its neighbours.

A device that has at least two attachment points connected to different substrate networks is called

a multi-homed device. Connections between substrate networks are realized by multi-homed devices

attached to more than one substrate network. We refer to a multi-substrate network as a collection of

interconnected substrate networks.

B

D

E

F

G

S1

S2

S3C

A B

D

E

F

G

S1

S2

S3C

A

(a) External change of connectivity.

B

D

E

F

G

S1

S2

S3C

A
B

D

E

F

G

S1

S2

S3C

A

(b) Internal change of connectivity.

Figure 1.3: Dynamic substrates.

Substrate networks with mobile nodes may become dynamic. Dynamic substrate networks are char-

acterized by exhibiting two types of changes of connectivity between devices: (1) external changes to the

connectivity between substrate networks, and internal changes to the availability of end-to-end paths
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between devices in the same substrate network.

For illustration, Fig. 1.3(a) shows an external change of connectivity for a multi-substrate network

composed of three substrate networks (S1, S2, and S3). Initially, node B is attached to substrate

networks S1 and S2, creating a connection between S1 and S2. After node B loses its attachment to

substrate network S2, substrate networks S1 and S2 are no longer connected.

Internal changes of connectivity occur due to changes of connectivity between devices within the same

substrate network, which may cause partitions of substrate networks. A substrate network is partitioned

if an end-to-end path of one-hop connected devices is not available between all nodes attached to the

substrate network. For illustration, Fig. 1.3(b) shows an internal change of connectivity in substrate

network S1, when one-hop connectivity between nodes A an C is lost. Substrate S1 is partitioned since

there is no end-to-end path from nodes A and B to nodes C and D. Substrate networks S2 and S3 are

still connected to substrate network S1. However, since S1 is partitioned, messages cannot be forwarded

form S2 to S3 via S1.

1.2 Routing in a Dynamic Multi-Substrate Network

We view substrate networks as communication channels, which use intra-substrate routing to enable

communication between nodes in the substrate networks. Therefore, when routing in a multi-substrate

network, we consider nodes that can communicate in a substrate network as one-hop connected. For

illustration, Fig. 1.4(a) shows a multi-substrate network with six substrate networks, labelled S1 through

S6. Fig. 1.4(b) show nodes and one-hop connections between nodes from Fig. 1.4(a). We assume that

all substrate networks provide intra-substrate routing. In unpartitioned substrate networks, S2, S3, S4,

S5, and S6, all nodes can communicate, and thus all nodes are one-hop connected. Substrate network

S1 is partitioned, and nodes B, C, and D cannot communicate with nodes A, E, and F . Nodes B, C,

and D are one-hop connected, but none of them is one-hop connected to nodes A, E, or F . One-hop

connections do not exist between nodes that are not in a same substrate network.

Routing in a multi-substrate network enables communication between nodes by setting up multi-hop

paths of nodes, where adjacent nodes are in the same substrate network. Routing in a multi-substrate

network can be done as: (1) flat routing, or (2) two-level routing.

1.2.1 Flat Routing

Flat routing views the multi-substrate network as a flat network of nodes and links. The flat network view

captures connectivity between nodes, without information about substrate networks that provide the

connectivity. The multi-substrate network from Fig. 1.4 viewed as a flat network is illustrated in Fig. 1.5.

Shortest paths routing protocols can be used to realize flat routing for a multi-substrate network. In

this case, the routing table of each node stores information about paths to all other nodes. However, for

large multi-substrate networks, with many nodes, the size of routing tables may become prohibitively

large. The problem of routing table sizes can be mitigated if nodes do not store information about

paths to all other nodes. Nodes may be organized into groups of nodes, which are further organized into

groups, and implement a hierarchical routing scheme. For illustration, Fig. 1.6 shows the flat network

from Fig. 1.5 with two groups, labelled group A and group B. Group A contains groups A.A and A.B,

and group B contains groups B.A, B.B, and B.C Nodes store information about shortest paths to other

nodes in the same group, and shortest paths from their group of nodes to other groups, for each level
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(a) Multi-substrate network.
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(b) One-hop connections between nodes in a multi-substrate network.

Figure 1.4: Multi-substrate network and one-hop connections.

of the hierarchy. For instance, in Fig. 1.6 node L is in Group B.C and thus stores information about

shortest paths to nodes K, N , and O; to groups B.A and B.B; ant to group A. Messages are forwarded

following the hierarchy of groups, that is, a message is first forwarded to the lowest common ancestor

group of the sender and destination node. A message is next forwarded to lower level groups, which
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A
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Figure 1.5: Flat network view.

contain the destination node, and finally forwarded to the destination node in the lowest level group.

However, a path taken by a hierarchical routing scheme may be longer than the shortest path to the

destination node. For illustration, Fig. 1.6 shows the shortest path from source node L to destination

node S, with dashed arrows. Path taken by hierarchical routing is shown with solid arrows.

We refer to path stretch as the average ratio of lengths of paths set up by a routing protocol and

shortest paths. The smallest path stretch of one is achieved by shortest path routing. Routing table

sizes and path stretch present a trade-off for routing, i.e., to reduce routing tables size a protocol has to

increase path stretch.

1.2.2 Two-level Routing

Two-level routing groups nodes together based on their ability to communicate in substrate networks.

A multi-substrate network is viewed as a two-level network. The top level consists of interconnected

substrate network. At the bottom level, each substrate network is composed of one-hop connected

nodes. For partitioned substrate networks, each group of nodes that can communicate is represented as a

separate substrate network at the top level. For substrate networks that do not implement intra-substrate

routing, each pair of one-hop connected nodes is represented as a separate substrate network at the top

level. Thus, at the bottom level, all pairs of nodes in a substrate network can communicate and are

one-hop connected. For illustration, the multi-substrate network from Fig. 1.4 viewed as a two-level

network is shown in Fig. 1.7. The top level contains substrate networks, which are connected if they

share a multi-homed node. For example, substrate networks S2 and S3 are connected by node H.

Partitioned substrate network S1 is represented as two separate substrate networks labelled S′1 and S′′1 .

At the bottom level, there are no connections between nodes from different substrate networks. Nodes

attached to more than one substrate network are represented in each substrate network. For instance,

node H is at the bottom level both in substrate networks S2 and S3.
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On the bottom level, the nodes in a substrate network are one-hop connected, and routing for a

multi-substrate network does not need to set up any additional paths. On the top level, routing sets up

paths between substrate networks. The routing table of each node stores information about paths to
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substrate networks and not individual nodes. To forward a message to a destination node, the source

node thus needs to know a substrate network to which the destination nodes are attached. Therefore,

routing needs to identify substrate networks and associate nodes with substrate networks. Since two-level

routing sets up shortest paths to substrate networks and not individual nodes, two-level routing may

produce path stretch larger than one. On the other hand, the size of routing tables is proportional to

the number of substrate networks and not to the number of nodes, as in shortest path routing.

1.3 Problem Statement and Contributions

This thesis addresses the problem of designing two-level routing for multi-substrate networks, in which

substrate networks provide intra-substrate routing. A challenge for routing is to leverage the existing

intra-substrate routing, by avoiding setting up paths between nodes that can already communicate in

substrate networks. Another challenge for routing is to be able to scale to multi-substrate networks of

any size.

We propose to identify subsets of nodes, which can communicate via paths set up by intra-substrate

routing, and refer to them as reachability domains. Further, we present landmark domains routing,

which sets up paths between reachability domains and uses paths set up by intra-substrate routing

within reachability domains. To achieve scalability of the proposed routing scheme, we designate a

subset of reachability domains as landmark domains. Nodes store information only about paths to

landmark domains, and not to all reachability domains. Each node has a locator that describes a path

from a landmark domain to the node. Messages are forwarded first to a landmark domain and then

using a locator to the destination node.

We show that the proposed landmark domains routing scales to large multi-substrate networks and

most of the set up paths have length close to the length of shortest paths. Through simulations we verify

the correct operation of landmark domains routing and show its performance is comparable to or better

than a compact routing scheme Disco [12] and two overlay based routing schemes: UIP [13] and VRR

[14].

1.4 Thesis Organization

Chapter 2 presents research related to our routing scheme. Chapter 3 presents the concepts that build

up landmark domains routing Here we discuss how are reachability domains detected and managed. We

also describe what is a node locator and how it is constructed and used in message forwarding. Chapter

4 gives the implementation of the presented routing, with the evaluation presented in Chapter 5. Chapter

5 also details the generation of test network topologies and the setup of simulations. Finally, Chapter 6

provides the conclusion and gives some directions on future work.



Chapter 2

Related Work

In this chapter we review the related work in routing for multi-substrate networks. We start by dis-

cussing the idea of identifier/locator separation, which is common to many proposals for routing in

multi-substrate networks. Next, we discuss approaches to flat routing, focusing on compact routing and

greedy routing. In the last section we present approaches to two-level routing.

2.1 Identifier/Locator Separation

Differences between node identity (or a name) and location (or an address) have been expressed in 1978

by Shoch [15] and his ideas further expanded by Saltzer in [16]. Shoch states that:

• “the name of a resource indicates what we seek,

• an address indicates where it is, and

• a route tells us how to get there”.

Further, addresses must be meaningful through the network and drawn from an uniform address space.

Many authors (e.g., [17, 18, 19]) argue that the identity of a node should be separated from its location.

Using a single entity to express both identity and location (e.g., the IPv4 address in the Internet)

complicates support for network features such as mobility and multi-homing. For example, as a mobile

node moves through a multi-substrate network, the mobile node changes its locator. If identifier and

locator functionalities are coupled in a single entity, the node is forced to change its identity every

time it changes its location. As a result, all references to the node need to be updated throughout the

multi-substrate network. Another example is a multi-homed node, which has a separate locator in each

substrate network. If locators are used as identifiers, a multi-homed node has multiple identifiers, all of

which refer to its single identity, thus loosing the one-to-one mapping from identifiers to nodes.

Pip [20], designed by Francis, is an early adoption of an identifier/locator separation in a datagram

based Internet protocol, which was intended to replace IPv4. In Pip, nodes are uniquely identified by

64-bit numbers drawn from a flat name-space, refereed to as Pip Identifiers (Pip IDs). Pip assumes

a hierarchy of substrate networks created by the provider-customer relation between Internet service

providers. A Pip Address is encoded as a sequence of separate numbers, one number for each level of the

hierarchy, and is used as a locator. The last part of a Pip Address is a Pip ID of the destination node,

which is only used to deliver a message once the message reaches the destination substrate network.

10
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When identifier/locator separation is used, nodes are referred to by their identifiers. That is, a

node sending a message knows the identifier of the destination node and not the locator. Routing that

uses identifier/locator separation needs an additional mechanism to obtaining node locators from node

identifiers, referred to as identifier resolution service. Identifier resolution service may be implemented

by different distributed directory services (e.g., Domain Name System (DNS) or Distributed Hash Table

(DHT)). Every node is responsible to register a mapping from its identifier to locator(s) with the identifier

resolution service. When a locator of a node changes, e.g., due to a link failure or node movement, the

node updates the mapping from its identifier to locator(s).

Andreas et al. [21], argue that the identifier resolution service should be a part of the network layer.

The authors divide the network layer into two layers: (1) the naming layer and (2) the forwarding

layer. The naming layer resolves the identifier of the destination into a locator, and then the forwarding

layer delivers messages to the destination using a locator. The naming layer is realized as an overlay

network, which can deliver messages based on identifiers. Identifier of a node is resolved into a locator

by forwarding a locator query message, in the overlay network, to the node. The node replies with

a message containing the locator of the node. The authors argue that since identifier resolution is a

one-time action, messages in the naming layer can take longer paths than messages in the forwarding

layer.

Bless et al. [22] present a routing scheme that implementing the ideas of Andreas et al. [21] for a

multi-substrate network. The authors assume that substrate networks are connected by relay devices,

i.e., NAT devices and protocol translators. Each node is responsible to create its own locator, called

Endpoint Descriptor. An Endpoint Descriptor contains addresses of a node and relay devices, which can

be used to contact the node. The authors propose using two layers: (1) Base Overlay layer as the naming

layer and (2) Base Communication layer as a forwarding layer. The Base Overlay layer is realized as a

distributed hash table, which stores mappings from node identifiers to Endpoint Descriptors. The Base

Communications layer forwards messages based on Endpoint Descriptors. The work of Bless et al. is

extended by Mies et al. [23] who introduce a protocol for discovery and management of connectivity

domains, using a gossiping mechanism. A connectivity domain is a set of nodes in a substrate network

that can communicate without using relay devices. Connectivity domains are used to detect relay devices,

which are used by nodes in their Endpoint Descriptors.

2.2 Flat Routing

Destination Next-hop Description

1.1.2 1.1.2
Nodes in Level 1 group

1.1.3 1.1.3
1.2 1.1.3 Level 1 groups in Level 2 group
2 1.1.2

Level 2 groups in Level 3 group
3 1.1.3

Table 2.1: Routing table of node A from Fig. 2.1.

Recall from Section 1.2.1 that flat routing may be realized as shortest path routing, with routing

table sizes proportional to the number of nodes in the multi-substrate network. The idea of a trade-off

between path lengths and routing table sizes is presented by Kleinrock and Kamoun [24] as hierarchical
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Figure 2.1: A three-level hierarchy for hierarchical routing.

routing. Nodes are organized into groups and groups of nodes are further grouped together to form a

hierarchical structure. A node address encodes the groups to which the node belongs at each level of the

hierarchy. For illustration, Fig. 2.1 shows a three-level hierarchy of groups, with addresses shown next to

the nodes. A node stores the information about the next-hop nodes on the shortest paths to other nodes

in the same lowest level (Level 1) group and to one node in each Level i group in the same Level (i+ 1)

group as the node. For example, routing table of node A from Fig. 2.1 is shown in Table 2.1. Node A

has routing table entries for nodes in Group 1.1 (at Level 1), Group 1.2 in Group 1 (at Level 2), and

Group 2 and Group 3 (at Level 3). A message is delivered to a destination by forwarding the message

to groups, in order specified in the address of the destination.

Kleinrock and Kamoun show that in a network with n nodes the minimum number of routing entries

a node needs to stores is e ln(n). However, the paths set up by hierarchical routing are longer than the

shortest paths. For example, consider a path from node E to node L in Fig. 2.1. The shortest path is

E,Q,R,L and is three hops long. Since node L has address 3.2.3, the path taken by hierarchical routing

goes first to Group 3, then to Group 3.2, and finally to node L. This path is E,D, I,H, J, L and is five

hops long.

Tsuchiya [25] presents hierarchical routing, called landmark hierarchy, better suited for dynamically

changing networks. A landmark is a node whose neighbours within a certain radius (i.e., a number of

hops away) store information about shortest paths to the node. A hierarchy of landmarks is created by

assigning larger radii to subsets of landmarks, in such a way that each landmark at level i has at least
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one landmark of level i + 1 in its radius. The radius of a landmark at the top level of the hierarchy

must be larger than the diameter of the network. This means that all nodes store information about the

shortest paths to landmarks at the top level of the hierarchy. A node address is a sequence of addresses

of landmarks, one for each level of the hierarchy, starting at the highest level. Messages are delivered to a

destination by forwarding them between landmarks in the address of the destination. By construction of

the landmark hierarchy, each landmark represented in an address stores information about the shortest

path to the next landmark in the address. Tsuchiya shows that path lengths and the size of the stored

state are less sensitive to placement of landmarks than to the placement of node groups in the routing

hierarchy of Kleinrock and Kamoun.

Hierarchical routing and landmark routing try to reduce the size of routing tables to create a scalable

routing scheme. A routing scheme is said to be scalable if the size of routing tables grows slower than

linearly with the number of nodes in a network. The trade-off between the routing table sizes and path

lengths in designing scalable routing is formalized in the compact routing research, described in the next

section. Research in the greedy routing explores scalable routing that does not set up routing paths,

rather, nodes make forwarding decisions using only the local information about their neighbours. We

describe the research in greedy routing after the research in compact routing.

2.2.1 Compact Routing

The research in compact routing explores the theoretical limits of routing scalability and also provides

concrete routing schemes that satisfy the limits. The increase in the path length produced by a routing

algorithm, compared to the shortest path, is referred to as path stretch. Path stretch of a routing scheme

is defined as the maximum ratio of the length of a path produced by a routing scheme and the shortest

path, between any pair of nodes, for any substrate network that the scheme can operate on. A routing

scheme operating on a network with n nodes is said to be compact if the scheme:

(1) uses addresses and headers with the size that is logarithmic to n,

(2) produces routing tables with the size sub-linear to n, and

(3) guarantees path stretch bounded by a constant.

Compact routing schemes are classified into: name-depend and name-independent. A name-dependent

routing scheme defines addresses for nodes and encodes some topological information in the addresses.

In the name-independent routing scheme nodes can be assigned arbitrary addresses, i.e., addresses drawn

from a flat name-space. Thus, name-dependent addresses are comparable to locators and name-independent

addresses are comparable to identifiers.

Compact routing schemes follow a basic idea of hierarchical routing: a node knows optimal paths to

nodes that are close and sub-optimal paths to nodes that are further away. Using the idea of landmarks

from Tuschiya [25], a compact routing scheme designates a subset of nodes as landmarks. Nodes that

are close to some node N are referred to as the vicinity of node N . Landmarks and vicinities are selected

in such a way that the vicinity of each node contains at least one landmark. A node stores information

about shortest paths to all landmarks and the nodes in its vicinity. An address of a node, say N , consists

of the landmark, say L, closest to node N and information necessary to forward a message from the

selected landmark L to node N . The information may be a source route from L to N . Or, if nodes

on a path from L to N store routing entries for N , the information can be the identifier of node N . A
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node forwards messages to destinations in its vicinity using shortest paths. For a destination outside of

vicinity (faraway node) messages are forwarded to the landmark closest to the destination and from the

landmark to the destination.

An early work in the compact routing by Peleg and Upfal [26] establishes a lower bound of Ω(n
1

2kPU+4 )

bits of memory per node in a network with n nodes, to guarantee path stretch of kPU ≥ 1. Further work

by Gavoille and Gengler [27] proofs that for any network with n nodes all routing schemes with path

stretch strictly below 3 (“stretch<3 routing”) require at least Ω(n) bits of memory per node. Thus, a

compact routing scheme cannot exist for a path stretch strictly less than 3, since the minimum routing

table size is not sub-linear. Thorup and Zwick [28] show that all “stretch<5 routing” schemes require

at least Ω(n1/2) bits of memory per node on any n node network.

Cowen [29] presents the first compact routing scheme with the minimum possible path stretch of 3, the

size of the routing tables bounded by O(n
2
3 log

4
3 n) at every node, and node names of size log(n). For each

node, its vicinity consists of the set of nαC nodes closest to the node. At most O(n1−αC log n) landmarks

are selected in such a way that each node’s vicinity contains at least one landmark. Up to O(n
1+αC

2 )

additional landmarks are selected among the nodes that are in more than n
1+αC

2 vicinities. Nodes are

assigned topologically significant locators (i.e., the routing scheme is name-dependent) consisting of three

parts: (1) a name of a node; (2) a name of a landmark; and (3) a name of the first link on the shortest

path from the chosen landmark to the node (“output port”). Nodes select the closest landmark for their

address and store next-hop nodes on shortest paths to all the landmarks. Every node N also stores the

information about the next-hop nodes on the shortest paths to nodes closer to N than any landmark

node. By setting αC = 1
3 + 2 log logn

3 logn the number of entries in a routing table is bounded by O(n
2
3 log

4
3 n).

Cowen’s bound on the routing table size of Õ(n
2
3 ) bits per node for stretch=3 compact routing was

improved by Thorup and Zwick [?] to Õ(n
1
2 ) bits per node.1 Since the same authors proved earlier in [28]

that any stretch<5 compact routing scheme has the routing table size of at least Ω(n1/2) bits per node,

this results is optimal up to logarithmic factors. The proposed compact routing scheme, refereed to as

TZ, is similar to Cowen’s, however it differs in the landmark selection. TZ defines a node’s vicinity as

the set of all nodes closer to the node than any landmark and randomly selects sTZ nodes as landmarks.

The authors prove that all resulting vicinities have size bounded by Õ( n
sTZ

). A routing table of a node

N , holds one entry for each landmark in the network, and one entry for each node in the vicinity of

node N , resulting in the routing table size bounded by sTZ + Õ( n
sTZ

). By setting sTZ =
(

n
logn

) 1
2

the

authors prove that the size of the routing tables is bounded by Õ(n
1
2 ).

Compact routing schemes presented by Peleg and Upfal [26], Cowen [29], and Thorup and Zwick [?]

are name-dependent, i.e., the routing scheme can select the identifiers for nodes. Awerbuch et al. [30]

argue that name-independent routing is more difficult to implement than name-dependent routing, since

it requires mapping from identifiers to locators. However, the authors argue, name-independent routing

is more appropriate for networks where node connectivity changes frequently, since name-independent

routing does not require changing node identifiers as their connectivity changes.

A name-independent compact routing scheme proposed by Arias et al. [31] includes name resolution

as a part of routing. The authors achieve path stretch of 5, while bounding the stored state at any node

to Õ(n
1
2 ). Similarly to name-dependent schemes, vicinities are defined as the n

1
2 neighbours closes to a

node. Up to O(n
1
2 log n) nodes are selected as landmarks in such a way that each vicinity contains at

1Õ(·) is used for O(·) notation that ignores logarithmic factors, i.e., f(n) = Õ(g(n)) is shorthand for f(n) =
O(g(n) logk g(n)) for some k.
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least one landmark. The namespace, from which node names are drawn, is divided into n
1
2 blocks. A

subset of nodes is selected to store name to address mappings in such a way that: (1) no node stores

mappings for more than O(log n) blocks and (2) each vicinity contains nodes responsible for all blocks.

A node stores information about the neighbours, in its vicinity, which store name to address mappings.

Message destinations are given as names, and name resolution is performed before forwarding. If the

destination is in the vicinity of the sending node or is a landmark, the sending node has a mapping for the

name, and sends the message directly to the destination using its routing table. Otherwise, the message

is sent to the node in the vicinity, which stores mappings for the block of names that includes the name

of the destination. From the node that stores name to address mapping the message is forwarded to a

landmark and finally to the destination node.

DN
X

Y

L

Figure 2.2: Path to a node in a neighbouring vicinity

Abraham et al. [32] present a name-independent compact routing scheme with Õ(n
1
2 ) storage re-

quirement, which reduces path stretch to 3, making this scheme optimal up to logarithmical factors.

Their routing scheme is similar to the scheme of Arias et al. [31], with a node storing the shortest paths

to the nodes in its vicinity and additionally to the nodes in neighbouring vicinities. For illustration,

Fig. 2.2 shows a source node N and a destination node D with their vicinities indicated with grey

circles. Node L is a landmark closes to destination D. Vicinities of nodes N and D are neighbouring

vicinities if neighbour nodes X and Y exist, such that X is in the vicinity of N and Y is in the vicinity

of D. The authors show that the path from N to D, using nodes X and Y is shorter than the path

using node L, and can be used to create a routing scheme with path stretch 3.

Westphal and Kempf [33] are the first to propose a compact routing scheme for a network with mobile

nodes. They explore a specific model of a dynamic network where a limited number of mobile nodes is

attached to a network of static nodes. Mobile nodes cannot communicate directly to other mobile nodes

and a mobile node can attach only to one static node (parent static node). The authors apply the TZ

compact routing scheme [?] to the static part of the network. Forwarding is the same as in TZ, with

two rules added for mobile nodes: (1) messages for mobile nodes are forwarded to their parent static

nodes, which pass messages to destinations, and (2) all messages originating at mobile nodes are passed

to parent static nodes for forwarding. Westphal and Kempf achieve path stretch of 3 and routing table

sizes bounded by O(
√
n log(n)).

The first compact routing scheme for an unrestricted dynamic network is presented by Singla et al.
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[12] and is called Disco. In Disco, landmarks are selected uniform-randomly, with each node indepen-

dently deciding if it should become a landmark, to produce Θ(
√
n log n) landmarks with high probability.

A node’s vicinity is defined as the Θ(
√
n log n) nodes closest to the node, and each node stores routing

table entries for shortest paths to all nodes in its vicinity. A node’s address is composed of the identifier

of the closest landmark and a source route from this landmark to the node. Forwarding is done first to

the landmark in the address of the destination, by using the routing tables, and them to the destination

by using the source route in the address. This routing scheme guarantees path stretch of 3, while the

state per node is bounded by Õ(rSn
1
2 ), where rS is the maximal size of a source route.

2.2.2 Greedy Routing

1 2 3 4 5 6 7

1

2

3

4

A

B

C

D

E

(1,1)

(1,4)

(2,2)

(3,4)

(6,1)

Figure 2.3: Greedy routing.

The research in greedy routing shows that the setup of routing paths can be completely avoided. In

greedy routing, node addresses are coordinates from a metric space equipped with a distance function.

A node forwards a message by sending it to the neighbour node closest to the destination, measured

by the distance function. Each time a message is passed from one node to another, the distance to the

destination decreases. For illustration, Fig. 2.3 shows five nodes positioned in a Cartesian coordinate

system, with distance function δ measuring Euclidean distance. Node A forwards a message for desti-

nation D by comparing distances of its neighbour nodes to node D. Since δ(B,D) < δ(E,D), node A

forwards the message to node B, which has a link to destination D.

Research on greedy routing starts with geographical routing, where node’s coordinates are its geo-

graphical coordinates (e.g., obtained from a GPS device). A node stores routing table entries with the

coordinates of each neighbour node and the information how to reach the neighbour (e.g., an output

port or an address in a substrate network). To forward a message, a node compares the coordinates

of the destination to the coordinates of all its neighbours, and forwards the message to the neighbour

geographically closest to the destination. In geographical routing, since the routing table size is equal to

the number of node’s neighbours, as long as the number of neighbours grows sub-linearly with the size
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of the network, so does the routing table size.

Using geographical routing does not guarantee that all messages will be delivered to their destinations

due to the existence of local minima. A node that is closer to a destination than any of its neighbours is

a local minimum for the destination. For example, in Fig. 2.3 node A is a local minimum for destination

C: δ(A,C) < δ(B,C) < δ(E,C). That is, node A cannot forward a message for node C to a neighbour

that is closer to C than node A. Greedy routing deals with the problem of local minima by using special

routing rules to forward a message away from the local minima, e.g., perform an expanding ring search

until a closer node is found [34], perform scoped flooding with a scope derived from coordinates [35],

or send the message to a parent node in a global embedded tree [36]. After Rao et al. [34] proposed

using coordinates drawn from a virtual metric space, instead of the geographical coordinates, another

way of dealing with local minima became possible. By carefully assigning virtual coordinates to nodes,

existence of local minima can be completely avoided. Such an assignment is called a greedy embedding.

Rao et al. [34] propose assigning virtual coordinates to nodes to avoid the need for GPS devices.

Two nodes are preselected to be beacon nodes, designated first and second beacon. Beacon nodes flood

the network with HELLO messages, which are forwarded by other nodes to their neighbours, only the

first time the message is received. HELLO messages have a hop count field, and every time a node

forwards a HELLO message, the node increases the hop count field. The distance of a node to a beacon

node is defined as the minimum hop count in the HELLO messages the node received from a beacon.

Any node further away from the first beacon than any of its two-hop neighbours becomes a perimeter

node. Next, all perimeter nodes flood the network with HELLO messages to enable all nodes to compute

their distances from all perimeter nodes. The perimeter nodes again flood the network, this time with

messages carrying their distances from other perimeter nodes, and as a result each perimeter node knows

distances between every pair of perimeter nodes. The perimeter nodes chose their virtual coordinates to

minimize: ∑

I,J∈perimeter set
(measured dist(I, J)− dist(I, J))

2
,

where perimeter set is the set of all perimeter nodes, measured dist is distance between nodes measured

in the number of hops, and dist is Euclidean distance between the virtual coordinates. Non-perimeter

nodes calculate their virtual coordinates through an iterative relaxation procedure. Each non-perimeter

node periodically updates its coordinates, such that the x coordinate of the node is the average of the

x coordinates of all neighbours of the node, and the same for the y coordinate. The constructed virtual

coordinates are used in greedy routing in the same way as geographical coordinates are used.

Newsome and Song [36] present an assignment of virtual coordinates that does not use flooding. The

authors construct a tree with additional cross-links between nodes at the same height forming a ring,

refereed to as a ringed tree. All nodes are assigned coordinates in a virtual polar coordinate space with

the origin at the root node. A coordinate of a node is a pair containing the distance from the root of

the tree to the node (i.e., the tree level), and a virtual angle range, which uniquely identifies a node

within a level. A node is assigned virtual angle range by the parent of the node, with root node having

virtual angle range 2π. A parent assigns each child a part of its virtual angle range, proportional to the

number of nodes in the sub-tree rooted at the child node. Angles are assigned to children in such a way

that they monotonically increase along the ring of nodes created by cross-links on a particular level of

the tree. A node forwarding a message sends the message to the neighbour with the angle range closest

to the angle range of the destination node, and if the node is local minimum, the message is sent to
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the parent of the node. The ringed tree contains all nodes that are present in the network, but only a

subset of the links between nodes. When forwarding a message, a node considers only neighbours in the

constructed ringed tree and not all of its neighbours in the substrate network.

Fonseca et al. propose Beacon Vector Routing (BVR) [35], that follows the ideas presented by

Newsome and Song [36]. BVR also uses trees to assign virtual coordinates to nodes. However, when

forwarding all neighbour nodes are considered and not only neighbours contained in the built trees. A

small number of nodes in the network are selected to be beacons. Each beacon becomes a root of a

spanning tree. Using the spanning trees, every node computes its distance to all beacons, where the

distance from a node to a beacon is the level of the tree on which the node resides. A virtual coordinate

of a node is a vector of distances from the node to all the beacons.

Herzen et al. [37] use spanning trees to create virtual coordinates for nodes that do not result in local

minima, i.e., the authors achieve greedy embedding. The spanning trees are constructed and maintained

only to determine virtual coordinates for nodes, and are not used for greedy routing. Distance between

two nodes is measured as the smallest length of a shortest path between the nodes in any spanning

tree. The authors prove properties of their routing scheme for a class of substrate networks with n

nodes, where the number of neighbours a node has follows a power law distribution with parameter

2 < γ < 3. In these networks, the proposed scheme achieves polylogarithmic scalability and the path

stretch is bounded by O(log(n)).
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Figure 2.4: Greedy embedding.
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The scheme of Herzen et al. achieves greedy embedding by selecting node coordinates. As illustrated

in Fig. 2.4(a), the scheme starts by computing a spanning tree (links highlighted red) for a substrate

network. Using the computed spanning tree, the scheme assigns coordinates to nodes to achieve greedy

embedding. Greedy embedding can also be achieved by selecting links between nodes, instead of node

coordinates, as illustrated in Fig. 2.4(b). We start with a substrate network, where nodes are already

assigned coordinates. Greedy embedding is achieved by creating links between nodes, in such a way

that no node is local minimum for any destination. Links between nodes are created as overlay links.

Every overlay link is realized as a path of links in the substrate network. For a single substrate network,

an overlay link can be realized as a path set up by the intra-substrate routing. In a multi-substrate

network, a greedy routing scheme needs to set up and maintain paths that realize overlay links.

Routing schemes based on DHTs, such as Chord [8], Tapestry [38], and Pastry [10], are examples of

greedy routing for a single substrate network, which accomplishes greedy embedding by creating overlay

links between nodes.

Stoica et al. [8] propose a routing scheme called Chord. All nodes are assigned unique, m-bit long

numerical identifiers drawn from a flat name-space, which are used as virtual coordinates. Identifiers

are wrapped in a Chord ring, with every node storing addresses of its successor and predecessor. A node

also has a finger table, which stores m entries. The first entry is for a node with identifier larger than

the identifier of the owner of the finger table by at least one, i.e., the successor node. Second entry is for

a node with identifier larger by at least two, and ith entry is for a node with identifier larger by at least

2i−1 than the identifier of the node storing the finger table. For any two nodes A and B, with identifiers

id(A) and id(B), the distance function is defined as δ(A,B) = |id(A)− id(B)|. Messages are forwarded

greedily, i.e., a node forwarding a message sends the message to the node from its finger table closest

to the destination. The finger table provides possibilities to forward a message across the Chord ring,

without traversing all the nodes on the ring in between. The authors prove that, for a network with

n nodes, the number of nodes traversed when a message is forward is bounded by O(log n) with high

probability, and the stored state per node is bounded by O(log n).

Chord creates links between nodes based only on node identifiers, without regard for the links in

the substrate network. Zhao et al. [38] propose Tapestry as a greedy routing scheme, which considers

the distance between nodes in the substrate network when creating overlay links between nodes. In

Tapestry, every node is assigned a numerical identifier, which is a binary number with m digits. A

routing table has m levels, and at ith level stores pointers to nodes with identifiers that match the owner

node’s identifier in the last i digits (suffix), but have a different digit immediately preceding the suffix.

Distance between two nodes is defined as the length of the longest common suffix of node identifiers. A

node forwards a message to the node in the routing table closest to the destination. Pastry [10] proposed

by Rowstron and Druschel operates similarly to Tapestry. Nodes are assigned 128-bit identifiers, viewed

as sequences of digits in base 2b. A node N keeps a routing table, with one row for each digit of the

identifier and with 2b entries in a row. Entries in row i are for nodes that have the same first i digits

(prefix) as node N , and there is one entry for each of the 2b possible digits at position i + 1. Node N

also stores a leaf set of LPastry nodes with numerically closest identifiers to N , and a neighbourhood set

of MPastry nodes that are closest to N in the substrate network. Distance between nodes is defined as

the length of the longest common prefix of node identifiers.

The size of routing tables in Chord, Tapestry, and Pastry is bounded by O(log n) per node. The

number of intermediate nodes traversed when routing a message is bounded by O(log n). In Chord, the
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rules for filling finger tables define the exact node for which a finger table entry is created. In Tapestry

and Pastry, there is more than one node that can be used to fill a routing table entry. Thus, when

creating routing table entries, a node picks the node that is closest to it in the substrate network. As a

result, although the number of nodes traversed to forward a message is bounded by the same value as

in Chord, the routing paths between intermediate nodes are shorter in Tapestry and Pastry.
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(a) Successors of node with identifier 8.
(Redrawn from [39].)
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(b) ROFL rings for network in Fig. 2.5(a).

Figure 2.5: ROFL rings for a hierarchy of ASes.

ROFL: Routing on Flat Labels [39] by Caesar et al., performs greedy routing on a multi-substrate

network. ROFL views the multi-substrate network as a hierarchy of Autonomous Systems (ASes),

connected by routers. As in Chord [8] nodes have numerical identifiers, which are wrapped in a ROFL

ring. Since ROFL does not assume routing between ASes exist, each node maintains a source route to

its predecessor and successor, as a hop-by-hop sequence of one-hop connected routers. One ROFL ring

is built for each AS, starting from leaf ASes. ROFL ring of a leaf AS contains all nodes connected to

the AS. If an AS has children ASes, the ROFL ring is built by merging ROFL rings of child ASes. For

illustration, Fig. 2.5 shows a network with five ASes and four nodes with identifiers: 8, 14, 16, and 20.

The node with identifier 8 participates in the ROFL ring of AS 4, together with the node with identifier

20. The ROFL ring of AS 2 is created by merging the rings of child ASes: AS 4 and AS 5. For the node

with identifier 8, this means that it gets the node with identifier 16 as a successor in the ROFL ring of

AS 2. The ROFL ring of AS 1 is created by merging rings of AS 2 and AS 3, and in AS 1, node 8 has

as a successor node 14. By using greedy routing a message sent between two ASes will never traverse

higher than the least-common ancestor AS in the hierarchy of ASes.

Ford [13, 40] proposes Unmanaged Internet Protocol (UIP) as a greedy routing scheme for a general

multi-substrate network. In UIP, nodes are assigned numerical identifiers viewed as binary strings. A

node has an overlay link to at least one node for each possible length of the longest common prefix, i.e.,

to a node with longest common prefix of length zero, one, two, . . ., up to the identifier length. If two

nodes connected by an overlay link are in different substrate networks, they cannot use a path set up
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by the intra-substrate routing to realize the overlay link. Therefore, UIP introduces virtual links as a

mechanism for two nodes to communicate by using a relay node. Consider nodes A and B attached

to substrate networks S1 and S2 respectively and node R attached to both substrate networks. Node

A establishes a virtual link to node B by storing information that node B is reachable via node R.

Messages from node A to node B are forwarded on the virtual link in two parts: (1) from A to R using

a path set up by the intra-substrate routing in S1 and (2) from R to B using a path set up by the

intra-substrate routing in S2. Once a virtual link is established, it can be used to build further virtual

links. Virtual links allow UIP to establish overlay links between nodes that are not in the same substrate

network.

Caesar et al. [14] propose Virtual Ring Routing (VRR) as a greedy routing scheme that is imple-

mented directly on top of the data link layer, i.e., VRR does not assume existence of intra-substrate

routing. Nodes in VRR are assigned numerical identifiers and ordered in a circle, with wrapping around

zero, referred to as a virtual ring. Each node N stores a virtual neighbour set (vset) of the rVRR
2 closest

nodes with identifiers smaller and the rVRR
2 closest nodes with identifiers larger than the identifier of

node N . Each node also stores a physical neighbour set (pset) of all nodes it can communicate with

at the data link layer, i.e., one-hop connected nodes. Since VRR assumes no routing in the substrate

networks, VRR introduces virtual links as a mechanism to enable communication between a node and

nodes in its vset. Virtual links in VRR follow the same ideas as virtual links in UIP: by concatenating

existing links between nodes, new links are established. If links (N0, N1), (N1, N2), . . . , (Ni−1, Ni) exist,

they can be concatenated to a create virtual link (N0, Ni), by inserting routing table entries for the

virtual link at nodes N0, N1, . . . , Ni. Nodes N0 and Ni are referred to as end-point nodes and nodes

N1, N2, . . . , Ni−1 as intermediate nodes of a virtual link. The inserted routing table entries store infor-

mation bout the next-hop nodes for both end-points of the virtual link. A routing table stores entries

for all nodes in the vset and pset and also for end-point nodes of all virtual links for which the node is

an intermediate node. Routing is done greedily by selecting the node from the routing table that has an

identifier that is numerically closest to the destination node identifier. Adding end-points of virtual links

to the routing tables of intermediate nodes provides routing shortcuts, similar to fingers in Chord [8].

Using only nodes from vset for routing, each message travels along the virtual ring, moving at most
rVRR

2 identifiers between two nodes. End-point nodes of virtual links passing through an intermediate

node have identifiers that depend on the connectivity in the substrate network. As such, it is expected

that the identifiers of end-point nodes are randomly distributed along the identifier space. Thus, when

considering end-point nodes during forwarding, a message can move more than rVRR
2 identifiers in one

hop.

2.3 Two-level Routing

Recall from Section 1.2.2 that in two-level routing nodes are organized into groups and routing paths

are set up between groups of nodes. Nodes in a group are assumed to be able to communicate to each

other. Hinden [41] proposes to apply two-level routing to the Internet, with the goal of reducing the

size of routing tables stored at routers. Nodes are grouped into autonomous domains (ADs), which are

assigned IP addresses from a set of designated addresses for ADs. Routing sets up paths between ADs.

Before forwarding a message, DNS is used to obtain the address of the AD in which the destination

node resides. Next, the message is encapsulated with an additional header containing addresses of the
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source and destination ADs. The encapsulated message is forwarded using the added header and the

destination AD address. When a message enters the destination AD the added header is removed and

the original message is delivered to the destination node.

Ŝ
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S2
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D

Substrate network attachment point

Encapsulated message
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message

message
header

message
header

message
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Figure 2.6: Multi-substrate network with Ŝ.

Ideas about encapsulation presented by Hinden may be applied to routing between substrate net-

works, which are all connected to a single substrate network, referred to as Ŝ. For example, the Internet

is Ŝ and the private networks connected through NAT devices to the Internet are the other substrate

networks. Places where substrate networks connect to Ŝ are referred to as substrate network attachment

points. Each substrate network attachment point has an address in Ŝ, which is used as the address of

the substrate network. Routing between substrate networks is provided by Ŝ. Messages entering Ŝ are

encapsulated with a header appropriate for Ŝ, with the destination set to the address of the destination

substrate network. For illustration, Fig. 2.6 shows Ŝ with four substrate networks S1 through S4. A

message from node N in substrate network S4 is forwarded to node D in substrate network S2. The

original message is encapsulated when entering Ŝ and then forwarded in Ŝ using the added header. When

the message reaches S2, the message is decapsulated by removing the added header, and the original

message is delivered to node D. Using encapsulation to forward messages through Ŝ is the central idea

in several proposals for routing between substrate networks, e.g., LISP [42], ILNP [43], RANGI [44], and

IPNL [45].

Farinacci et al. propose Locator/ID Separation Protocol (LISP) [42], which uses encapsulation in

Ŝ. The authors assume all substrate networks use IP routing. A node address is composed of: (1) the

address of the substrate network attachment point in Ŝ and (2) the address of the node in the substrate

network. Messages are forwarded by the IP routing through Ŝ using destination substrate network

address and in the destination substrate network by using the destination node address.

Randall and Saleemthe also use encapsulation to forward messages in Ŝ in Identifier-Locator Network

Protocol (ILNP) [43]. Each node is assumed to have an identifier, which is independent of the substrate
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network in which the node resides. A node address is composed of: (1) the address of the substrate

network attachment point in Ŝ and (2) the node identifier. Each substrate network is assumed to have an

identifier resolution service, which is used to resolve node identifiers into addresses. When a forwarded

message is decapsulated in the destination substrate network, identifier of the destination node is resolved

into an address. The address is used to complete the forwarding via a path set up by the intra-substrate

routing.

Routing Architecture for the Next Generation Internet (RANGI) [44] by Xu assumes Ŝ with IPv6

routing and the other substrate networks with IPv4 routing. Node addresses are IPv4-embedded IPv6

addresses, where the leftmost 96 bits identify a substrate network. The remaining 32 bits are an IPv4

address, which is unique within the substrate network. Messages are forwarded through Ŝ by using the

first 96 bits of the address as an IPv6 address of the destination. In the destination substrate network,

messages are forwarded by using the last 32 bits of the address as an IPv4 address.

Francis and Gummadi propose IP Next Layer (IPNL) [45], where each node has a unique identifier,

which is a Fully Qualified Domain Names (FQDN). The authors assume Ŝ exists, however, substrate

networks may connect to Ŝ through other substrate networks. Node addresses are short, fixed-length,

numerical fields consisting of three parts:

(1) a globally unique IP address of the substrate network attachment point in Ŝ,

(2) a Realm Number (RN) identifying the substrate network where the node resides, and

(3) an IP address of the node that needs to be valid only in its substrate network.

Messages are forwarded first through Ŝ and then forwarded to the destination substrate network based

on the RN. Forwarding is completed by using the paths set up by the intra-substrate routing and the

IP address of the destination node.

4+4 [46] and GSE [47] assume Ŝ with directly attached substrate networks. Instead of using en-

capsulation to forward messages through Ŝ, the authors modify message headers to contain two source

and two destination addresses. 4+4 considers the public Internet as Ŝ, while the substrate networks are

behind NAT devices and use private IPv4 addresses. Message headers contain both private addresses of

nodes and public addresses of NAT devices. Only one pair of source and destination addresses is used

at a time when forwarding. NAT devices swap the addresses as messages travel between the public and

the private address spaces. That is, the public address of the NAT device of the destination substrate

network is used when forwarding in Ŝ, and the private address of the destination node is used when

forwarding in the destination substrate network. GSE assumes that Ŝ and all other substrate networks

use IPv6 addresses. To forward messages between the substrate networks, GSE changes the semantics

of the IPv6 address. The first eight bytes are interpreted as the address of the attachment point of a

substrate network and the last eight bytes are the address of a node in the substrate network. Therefore,

when forwarding in Ŝ the first eight bytes are used as the destination address and in the other substrate

networks the last eight bytes are used as the address of the destination.

The assumption of a single substrate network Ŝ, to which all other substrate networks connect, is

relaxed by Ahlgren et al. [48] and Feldmann et al. [49]. They replace Ŝ with a hierarchy of substrate

networks, referred to as Ŝ. Fig. 2.7 illustrates such a network, with a three-level hierarchy of Ŝ. For

example, this hierarchy can be created by customer-provider relation between Internet Service Providers

(ISPs), or created dynamically as Schmid et al. propose in TurfNet [50]. By turning a large substrate
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Figure 2.7: Multi-substrate network with Ŝ.

network into a hierarchy of substrate networks, the size of routing tables at nodes is reduced. A node is

only required to store information about paths to other nodes in its substrate network and an additional

path to the parent substrate network in Ŝ. Routing between substrate networks is realized using source

routes based on substrate networks. A source route for a node in a substrate network, say S1, contains

substrate networks on a path from the root substrate network to S1. Since each node stores information

about a path to its parent substrate network, a message can be easily forwarded to the root substrate

network. A message is forwarded from the root substrate network to the destination substrate network

using a source route. Messages are forwarded through substrate networks in Ŝ using encapsulation.

Ahlgren et al. [48] assume a small number of stable substrate networks which make up Ŝ, to which all

other substrate networks attach through routers. Every node and router has a globally unique identifier,

referred to as Node Identifier (NID). Each router stores mappings from FQDNs to NIDs to addresses

of nodes in its substrate network. Routers participate in a single DHT, which enables them to discover

each other’s addresses, and also participate in a network wide DNS. Before sending a message, a node

uses DNS to resolve FQDN of the destination node into the NID of the destination node and the NID

of the router of the destination substrate network. A node sends a message to its own router, which

uses the DHT to resolve the NID of the destination router into an address. A message is forwarded to

the destination router through substrate networks in Ŝ. The destination router uses stored mappings

to obtain the address associated with the NID of the destination node, and delivers the message to the

destination node.

Feldmann et al. propose Hierarchical Architecture for Internet Routing (HAIR) [49], which uses a

hierarchy of substrate networks, with an arbitrary number of levels of hierarchy. HAIR assumes a stable

core substrate network (CORE) and several levels of smaller access or enterprise substrate networks

(INT), which together make up Ŝ. Edge substrate networks (EDGE) connect to INT substrate networks.

A node’s address is a source route from the CORE towards a node, recording substrate networks on the

path. All nodes store a path to their parent substrate network, used to forward messages to the CORE

substrate network. From the CORE substrate network to the destination node, messages are forwarded
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using source routes.

Schmid et al. [50] propose TurfNet, which assumes no particular hierarchy of substrate networks,

but rather creates its own hierarchy. The substrate networks are called TurfNets and are connected

through gateways nodes. Every TurfNet has a logical entity, called TurfControl, that is responsible for

TurfNets essential services, such as, address allocation and resolution, routing, and turf composition.

Turf composition allows independent TurfNets to create new TurfNets. That is, when TurfNets tnA and

tnB compose to form TurfNet tnC , the other TurfNets see only tnC , without knowing which TurfNets

are contained within tnC . The TurfNets form a hierarchy of tiers, where TurfNets can be connected

to other TurfNets in their own tier and to the TurfNets in tiers immediately above and bellow. Each

node has a globally unique identifier and registers it with TurfControl to establish a mapping from the

identifier to its local address in the TurfNet. All registrations are propagated from the child TurfNet

to the parent TurfNet, until the top tier of the hierarchy is reached. The TurfControls along the path

set state that maps registered identifier to the TurfNet from where the registration request came, thus

setting forwarding state to forward message from the top tier down to the registered node. TurfNet

uses name resolution to discover routing paths, however unlike [48], the name resolution does not return

a path description. Instead, a resolution message is sent from TurfControl to the TurfControl in the

parent TurfNet, until a TurfNet, whose TurfControl knows about the identifier of the destination node, is

reached. The resolution message is returned to the sender node using state stored when the sender node

registered its identifier. As the message travels to the sender node, state is set in TurfControls of the

intermediate TurfNets. This state maps the destination nodes identifier to the TurfNet from which the

resolution message arrived. Thus, when the resolution is completed, a path from source to destination

node is set up in TurfControl of all TurfNets on the path.

Clark et al. in FARA [51] and Crowcroft et al. in Plutarch [52] argue that a multi-substrate network

should be viewed as a collection of substrate networks without any inherent hierarchy. In FARA,

messages are forwarded by placing forwarding directives in message headers. A forwarding directive is

defined as the information needed to cause eventual delivery of a message to the destination. Substrate

networks are traversed using substrate specific forwarding directives, e.g., an IPv4 address on the public

Internet. A forwarding directive from a source to a destination is a concatenation of substrate forwarding

directives. The authors provide specification of forwarding directives for a multi-substrate network with

a single substrate network Ŝ. Each nodes is assumed to be able to obtain a forwarding directive from it

self to Ŝ. Then a forwarding directive from a node A to a node B is concatenation of: (1) a forwarding

directive from A to Ŝ, and (2) a forwarding directive from Ŝ to B, obtained by reversing the forwarding

directive from B to Ŝ. Plutarch also describes message forwarding on an abstract level. A message

can be forwarded between two nodes if a chain of substrate networks between them is known to the

sender node. The authors suggest an epidemic-style gossiping mechanism to discover chains of substrate

networks. Neither FARA nor Plutarch proposes a concrete mechanism for routing between substrate

networks.
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Landmark Domains Routing

Landmark domains routing provides forwarding of messages between nodes in a multi-substrate network.

Nodes are organized into reachability domains, which are sets of nodes that can communicate using the

paths set up by the intra-substrate routing. Landmark domains routing sets up routing paths between

reachability domains. A subset of reachability domains is designated as landmark domains. Each node

stores information about a next-hop node on a path to every landmark domain. All nodes participate in

the next-hop forwarding of messages to landmark domains. From a landmark domain to a destination

node, messages are forwarded by using source routes. Each node in landmark domains routing has a

locator, which contains a source route starting with a node in a landmark domain. Locators are used to

designate message destinations when forwarding. A node discovers its locator by forwarding a special

locator discovery message to the closest landmark domain and by recording the path the message takes.

Since we assume that all links are bidirectional, a source route from the landmark domain to the node

is the revers of the path that the message took.

The rest of this chapter starts by presenting how reachability domains are detected, identified, and

maintained. Next, we explain landmark domains and node locators. Details of message forwarding are

presented in the following section. The chapter concludes with a presentation of locator discovery.

3.1 Reachability Domains

A reachability domain (RD) is a set of nodes, attached to the same substrate network, such that a path

exists between every pair of nodes in the set. We assume that intra-substrate routing sets up paths

between nodes in a reachability domain. Before starting discovery of the routing paths between reacha-

bility domains, landmark domains routing needs to detect reachability domains. To detect reachability

domains nodes select a unique identifier for each reachability domain in the multi-substrate network.

RD identifiers are numbers drawn from a flat name-space.

Two nodes are members of the same RD if: (a) they are attached to the same substrate network,

say S1; and (b) if they can exchange messages in substrate network S1 (possibly using intra-substrate

routing in S1). Assuming that a substrate network offers message broadcast, a node can detect other

members of an RD in the substrate network with a broadcast of an RD discovery message in the substrate

network. All nodes that receive the RD discovery message belong to the same reachability domain as the

sender. For illustration, Fig. 3.1 shows substrate network S1 with nodes A through I. Nodes A through

26
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Figure 3.1: Detection of reachability domain members in a broadcast substrate network.

F belong to reachability domain RD1 and nodes G, H, and I belong to reachability domain RD2. An

RD discovery message broadcast by any node in RD1 reaches all other nodes in RD1, as illustrated in

Fig. 3.1 for node A broadcasting an RD discovery message. Since there is no path between nodes from

RD1 and RD2 in substrate network S1, an RD discovery message broadcast by a node in RD1 does not

reach nodes in RD2. In substrate networks that do not offer message broadcast, RD discovery messages

may be flooded instead. When flooding a message, each node sends a copy of the message to all of

its neighbours, apart from the neighbour from which the message arrived. A node may receive several

copies of the same message during flooding. To avoid unnecessary duplication of messages and to reduce

message overhead, landmark domains routing uses per-substrate overlay networks for broadcasting. In

each substrate network nodes try to build an overlay network, using only paths set up by intra-substrate

routing. Since only nodes in the same reachability domain can communicate, nodes build a separate

overlay network for each reachability domain. By broadcasting an RD discovery messages in an overlay

network a node can detect other nodes in the same RD. The overlay network is used only to broadcast

control messages in an RD and is not used in message forwarding. Messages between nodes in the same

RD are forwarded via paths set up by the intra-substrate routing.

The identifier of a reachability domain, referred to as RD-ID, is a random number selected by one

of the members of an RD. To bootstrap construction of an RD, every node picks a random number and

broadcasts the number by using the overlay network. The largest number is picked as the RD-ID of the

reachability domain and the node that broadcasts the selected RD-ID becomes the leader node for the

RD.

Node membership in reachability domains may change as links between nodes fail or new links become

available. To detect changes in RD membership, each leader node periodically broadcasts an RD-ID.

All nodes record the last time they received an RD-ID from the leader node. If a node has not recently

received an RD-ID from the leader node, the node concludes it is no longer in the same RD as the

leader node. A node may not receive an RD-ID for two reasons: (1) the leader node has failed, or (2)

an intra-substrate path is no longer available to the leader node. In both cases, a node that detects it

is no longer in the same RD as the leader node assumes to be the sole member of a new RD. The node

bootstraps construction of a new RD by broadcasting a randomly selected number and assuming the
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role of the leader node.

Broadcasting RD-IDs allows nodes to merge RDs that belong to the same substrate network. Two

RDs are merged into a single RD when a node from one RD detects that a path in a substrate network

is available to a node from a different RD. Nodes from both RDs construct a single overlay network.

Leader nodes from each RD continue to broadcast different RD-IDs on the single overlay network. The

larger RD-ID is selected as the RD-ID of the merged reachability domain. The leader broadcasting the

smaller RD-ID stops broadcasting its own (smaller) RD-ID and joins the RD with the larger RD-ID.

Eventually, nodes from both RDs receive only a single RD-ID and are members of the same RD.
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Figure 3.2: Detection of reachability domain split and merge.

To illustrate the detection of reachability domains splitting and merging, Fig. 3.2 shows a substrate

network with four nodes, over time. The figure shows broadcast of RD-IDs on the right hand side.

Initially, at time t1, all four nodes are in reachability domain RD1. Node A is the leader node and

broadcasts RD-ID id(RD1). At time t2, the link between nodes B and C fails and RD-ID broadcast

of node A reaches only node B. At time t3 nodes C and D detect they stopped receiving RD-ID from

node A. Both node C and D assume that they are the sole members of new RDs. The nodes pick new

RD-IDs and start broadcasting them. Assuming id(RD3), picked by node C, is larger than id(RD2),

picked by node D, id(RD3) becomes the new RD-ID. By time t4, nodes C and D have agreed on RD-ID
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id(RD3) and node C, as the leader node, broadcasts the RD-ID. A time t5 the link between nodes B

and C becomes available again. Both leader nodes A and C broadcast their RD-IDs to all other nodes

in the substrate network. Assuming id(RD3) > id(RD1), nodes A and B join RD3. Node A stops

broadcasting id(RD1) and node C is the only leader node.

3.2 Landmark Domains and Locators

An objective of landmark domains routing is to set up paths between reachability domains. Shortest

paths between RDs may be set up by performing shortest path routing. To store the information about

the shortest paths to all RDs, each node requires a routing table of size proportional to the number of RDs

in the multi-substrate network. Therefore, shortest path routing may not be viable for multi-substrate

networks with a large number of RDs. To reduce the size of routing tables, nodes in landmark domains

routing set up paths only to a subset of reachability domains, called landmark domains. We select

landmark domains uniformly at random from the set of all reachability domains. Every node has a

landmark domains routing table, which stores next-hop nodes for paths to all landmark domains and

distances to landmark domains. Let δ : N × N → R+
0 be a function measuring distance between two

nodes from a set N of nodes in a multi-substrate network. We express the distance from a node to a

landmark domain by a function δ′ : N ×
(
2N \ {∅}

)
→ R+

0 such that

δ′ (N,L) = min
L∈L
{δ (N,L)} .

For any node N and any landmark domain L, the distance from N to L is the minimal distance from

N to any node in landmark domain L.

Recall that each node has a locator, which contains a source route from a node in a landmark domain

to the node. A locator also contains the RD-ID of the landmark domain in which the source route starts.

Landmark domains routing tables are used to forward a message to the landmark domain given in the

locator of the destination node. The source route in the locator is used to forward a message from the

landmark domain to the destination. A locator of a node N is represented as {id(L) : sr(L, N)}, where

id(L) is the RD-ID of a landmark domain L and sr(L, N) is a source route from any node in L to

node N . A source route sr(L, N), containing m nodes, has a format:

(
〈id(RD(1)), sa(N (1))〉, 〈id(RD(2)), sa(N (2))〉, . . . , 〈id(RD(m)), sa(N (m))〉

)
,

where superscripts indicate position of RDs and nodes in the source route. The first RD in the source

route is the landmark domain L and last node in the source route is node N , i.e., RD(1) = L and

N (m) = N . Substrate address of node N (i) in substrate network of reachability domain RD(i) is indicated

with sa(N (i)). Any node in RD(i) can send a message to node N (i) using the substrate address sa(N (i))

and the intra-substrate routing. We require, for 1 ≤ i < m, that node N (i) is a member of reachability

domain RD(i+1), i.e., node N (i) can send a message to node N (i+1) by using the intra-substrate routing.

When forwarding a message on a source route, node N (i) uses id(RD(i+1)) to select an outgoing interface

connected to the substrate network in which RD(i+1) is defined. In this substrate network, node N (i)

can use sa(N (i+1)) to forward a message to node N (i+1). We use the property of reachability domains

that all members can exchange messages using the intra-substrate routing to reduce the length of the

source route. We define a partial source route as a source route where each subsequence of nodes with
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the same RD-ID is replaced by the last node in the sequence. For example, consider a source route:

(
〈id(RD1), sa1(N1)〉, 〈id(RD2), sa2(N2)〉, 〈id(RD2), sa2(N3)〉, 〈id(RD2), sa2(N4)〉,

)
,

where sai(Nj) is the substrate address of node Nj in substrate network of reachability domain RDi.

This source route can be replaced by partial source route:

(
〈id(RD1), sa1(N1)〉, 〈id(RD2), sa2(N4)〉,

)
,

since node N1 is a member of RD2 and thus can forward messages to node N4, which is also in RD2.

RD1 RD2

RD3

Substrate S1
Substrate S2

Substrate S3

A

B
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D

X
E

F
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sa1(B)

sa1(C) sa2(C)

sa2(D)

sa2(E)

sa3(E)

sa3(F )

Landmark

DomainSource route

Partial source route

Figure 3.3: Source route and partial source route.

To illustrate the usage of node locators, Fig. 3.3 shows three substrate networks S1, S2, and S3.

Each substrate network is also a reachability domain. We assume that reachability domain RD3 is

a landmark domain. Circles represent nodes (A through F ) that participate in the landmark do-

mains routing, while squares represents devices that do not participate. The locator of node A is

{id(RD3) : sr(RD3, A)}. Solid arrows show sr(RD3, A) realized as a full source route and dashed ar-

rows show sr(RD3, A) realized as a partial source route. The full source route is (〈id(RD3), sa3(E)〉,
〈id(RD2), sa2(D)〉, 〈id(RD2), sa2(C)〉, 〈id(RD1), sa1(B)〉, 〈id(RD1), sa1(A)〉) and the partial source

route is (〈id(RD3), sa3(E)〉, 〈id(RD2), sa2(C)〉, 〈id(RD1), sa1(A)〉).

3.3 Message Forwarding

The forwarding process in landmark domains routing consists of three distinct parts:

(1) Next-hop forwarding from the source node to the landmark domain in the destination node’s

locator. A node forwarding a message obtains the substrate address of the next-hop node from the

landmark domains routing table. A message is forwarded to the next-hop node via a path set up

by the intra-substrate routing.

(2) Forwarding inside the landmark domain to the first substrate address in the source route.
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(3) Forwarding from the landmark domain to the destination node, using the source route and paths

set up by the intra-substrate routing between the nodes included in the source route.
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3
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Domain

Figure 3.4: Landmark domains routing.

To illustrate message forwarding, Fig. 3.4 shows a multi-substrate network with six reachability

domains, where reachability domain RD3 is selected as the landmark domain. Circles represent nodes

participating in landmark domains routing, while squares represent other devices that do not participate.

The locator of node L is:

{id(RD3) : (〈id(RD3), sa3(G)〉, 〈id(RD4), sa4(K)〉, 〈id(RD6), sa6(L)〉)} .

We explain forwarding of a message from node A to node L.

(1) Node A obtains substrate address sa1(B), as the next-hop node on a path to landmark domain

RD3, from the landmark domains routing table. Using sa1(B), the message is delivered to node

B. Node B obtains sa2(E) from the landmark domains routing table and forwards the message to

next-hop node E.

(2) As ingress node to the landmark domain, node E needs to forward the message to the egress node

G, i.e., the first node in the source route. Thus, node E uses intra-substrate routing to forward

the message to the first substrate address sa3(G) in the source route.

(3) From the source route, node G obtains the substrate address sa4(K) of the next node on the

path towards the destination. Node G relies on the intra-substrate routing to perform multi-

hop forwarding to node K. Node K forwards the message to the destination node using the

intra-substrate routing and the last substrate address sa6(L) in the source route.



Chapter 3. Landmark Domains Routing 32

A X1

RD1

B X3

RD2

E

RD3

Landmark

Domain

Destination id(RD3)

RouteRecord
1
2
3

�id(RD1), sa1(A)�
�id(RD2), sa2(B)�

Locator Discovery Message

Destination id(RD3)

RouteRecord
1
2
3

�id(RD1), sa1(A)�

Locator Discovery Message

1

2
3 �id(RD1), sa1(A)�
�id(RD2), sa2(B)�SourceRoute

NextNode
�id(RD3), sa3(E)�

2
Reply to Locator Discovery Message

1
2

3 �id(RD1), sa1(A)�
�id(RD2), sa2(B)�SourceRoute

NextNode
�id(RD3), sa3(E)�

1
Reply to Locator Discovery Message

Destination id(RD3)

RouteRecord
1
2
3

�id(RD1), sa1(A)�
�id(RD2), sa2(B)�

Locator Discovery Message

�id(RD3), sa3(E)�

Figure 3.5: Locator discovery.

3.4 Locator Discovery

In the landmark domains routing, a node is responsible to obtain its locator and update the locator

as the node moves in the network. A node obtains a locator by routing a locator discovery message

towards a landmark domain. To keep the size of partial source routes small, a node sending a locator

discovery message selects the closest landmark domain from the landmark domain routing table as the

destination landmark domain. Locator discovery messages have a RouteRecord field, which is filled by

nodes forwarding the message. Any node N forwarding a locator discovery message via some reachability

domain RDi appends 〈id(RDi), sai(N)〉 to the RouteRecord field, where sai(N) is the substrate address

of node N in reachability domain RDi. When a locator discovery message reaches a node in the landmark

domain, the node appends the RD-ID of the landmark domain and the substrate address of the node

in the landmark domain. Recall from Section 1.1 that we assume all links are bidirectional. Thus, by

reversing the information in the RouteRecord, the node in the landmark domain obtains a partial source

route for the node that sent the locator discovery message. The node in the landmark domain uses the

partial source route to forward a reply to the locator discovery message to the sender node.

For illustration, Fig. 3.5 shows a part of the network from Fig. 3.4. Node A sends a locator discovery

message to landmark domain RD3, shown in top of the figure. Destination of the message is set to

the RD-ID of landmark domain RD3, id(RD3). From the landmark domains routing table node A

obtains substrate address sa1(B) as the next-hop node in RD1 for the path to the landmark domain

RD3. Node A adds 〈id(RD1), sa1(A)〉 to the RouteRecord field, and forwards the locator discovery

message to node B using a path set up by the intra-substrate routing. Node B records its RD-ID and

substrate address 〈id(RD2), sa2(B)〉 and forwards the message to the next node on the path to RD3.

The locator discovery message reaches node E in landmark domain RD3, which adds 〈id(RD3), sa3(E)〉
to the RouteRecord field. Node E creates a replay to the locator discovery message, shown in Fig. 3.5 at

the bottom. NextNode filed indicates which node in the SourceRoute field is the next node that receives

the message. Node E fills the SourceRoute field with the reversed route record from the RouteRecord

field in the locator discovery message and sets the next field to 2, corresponding to node B in source
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route. The reply to the locator discovery message is returned to node A, by following the source route.

Node A can construct its locator using the source route in the message as:

{id(RD3) : (〈id(RD3), sa3(E)〉, 〈id(RD2), sa2(B)〉, 〈id(RD1), sa1(A)〉)} .



Chapter 4

Implementation

In this chapter we present the implementation of landmark domains routing. We start by explaining

building of the overlay networks, which help nodes determine their membership in reachability domains.

Next, we explain how nodes broadcast messages in the overlay networks. The following section describes

how nodes agree on an RD-ID for a reachability domain. The final section details discovery of paths to

landmark domains.

4.1 Overlay Networks

Recall from Section 3.1 that in each substrate network nodes try to build an overlay network. Nodes

in each reachability domain organize into a separate overlay network, and use the overlay network to

agree on an RD-ID. The leader node periodically broadcasts the RD-ID of a reachability domain to the

other members, via the overlay network. We have selected to realize overlay networks as Chord [8] rings,

which have mechanisms to deal with changes of connectivity between nodes and node failures. In Chord,

all nodes that participate in a Chord ring are assumed to be members of a same substrate network and

have a single substrate address. Therefore, all nodes trying to build a Chord ring in a substrate network,

say S1, use only their substrate addresses from substrate network S1.

In Chord, every node N has an m-bit long numerical identifier, id(N), which determines node’s

position in the Chord ring. The successor of node N , succ(N), is defied as the first node with the

identifier larger than the identifier of node N . The predecessor of node N , pred(N), is defined as the

first node with the identifier smaller than the identifier of node N . Every node stores substrate addresses

of its successor and predecessor, and a finger table with m entries, called fingers. In the finger table of

node N , finger[i] stores the substrate address of node with identifier id(N) + 2i−1. If the node with

identifier id(N) + 2i−1 does not exist, then finger[i] stores the substrate address of the first node with

identifier larger than id(N) + 2i−1 that exists, i.e., the successor of node with identifier id(N) + 2i−1.

A node also stores substrate addresses of r potential successors, referred to as a successor list, which

can be used if a node loses connectivity to its current successor. To join a Chord ring, a node needs to

be able to contact a node already in the Chord ring. To achieve this, each node is configured with a

buddy list, which contains substrate addresses of a small number of nodes participating in the landmark

domains routing.

An example of a Chord ring is given in Fig. 4.1, with node identifiers shown. Nodes have three bit

34
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Figure 4.1: Chord ring with fingers for nodes 0 and 3 shown.

long identifiers (m = 3) and each node stores two potential successors (r = 2). The successor of node

0 is the next node in the ring, in clockwise direction, and is equal to finger[1]. finger[2] should point

to node with identifier 2, since 0 + 22−1 = 2. Because node with identifier 2 does not exist, finger[2] of

node 0 points to the successor of node 2, i.e., to node 3.

In a substrate network with more than one reachability domain, a separate Chord ring is created for

each RD. When RDs are merged, so are their Chord rings. To merge nodes into a single Chord ring, we

modify the simple ring unification algorithm presented by Shafaat et al. [53]. Nodes merge into a single

Chord ring in three parts:

(1) A node detects that it can exchange messages with a node from a different Chord ring in the same

substrate network.

(2) Nodes from both rings find a position where rings can be merged. That is, some node M1 from one

ring needs to find a node M2 from the other ring, such that succ(M1) = M2 in the merged ring.

(3) Nodes merge into a single Chord ring by updating their pointers to successor and predecessor nodes.

To test the need to merge RDs and Chord rings, every node periodically tries to send seek messages

to nodes from its buddy list, using paths set up by the intra-substrate routing. If a substrate network

supports broadcast, seek messages are instead broadcast. A node sends seek messages to try to reach

nodes that are members of the same substrate network as the node, but are members of a different RD.

A successful delivery of a seek message from a node in one RD to a node in another RD indicates that

nodes from both RDs can communicate to each other, and thus should belong to the same RD. A seek

message includes the RD-ID of the sender’s node reachability domain. The receiver of a seek message
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Figure 4.2: Merging of two Chord rings.

compares the RD-ID in the seek message to the RD-ID of its own RD. If RD-IDs are equal, both nodes

are in the same RD and no further actions are taken. If RD-IDs are different, the receiving node is in a

different RD than the sending node and the two RDs should be merged.
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To explain how nodes from two Chord rings build a single Chord ring, we consider a seek message

sent by a node N1 to a node N2. Node N1 belongs to a Chord ring named ring1 (and reachability

domain RD1) and node N2 belongs to a Chord ring named ring2 (and reachability domain RD2), as

illustrated in Fig. 4.2(a). The Chord ring, named ring0, that nodes form ring1 and ring2 are building

is shown in Fig. 4.2(b). Let succ(Ni, ringj) be the successor of node Ni in the Chord ring named ringj

and let pred(Ni, ringj) be the predecessor of node Ni in the Chord ring named ringj . Nodes from ring1

and ring2 build ring0 in three parts:

(1) Node N1 sends a seek message to a node N2 from its buddy list, illustrated with an arrow from

node N1 to node N2 in Fig. 4.2(a). The seek message contains the RD-ID of RD1 (id(RD1)),

and the identifier and the substrate address of node N1. Node N2 is a member of RD2, and since

id(RD1) 6= id(RD2) node N2 concludes that it can communicate with a node from RD1.

Algorithm 1 N : processFind(msg)

1: if msg.M2 = null then // Searching for M2 = succ(N1, ring2)
2: if id(msg.N1) ∈ (id(N), id(succ(N)) then
3: // Successor of this node is M2, send msg to ring1
4: msg.M2 ← succ(N)
5: sendTo(msg,msg.N1)
6: else
7: // Continue searching for M2

8: nextNode← getClosestPreceedingNode(msg.N1)
9: sendTo(msg, nextNode)

10: end if
11: else // Searching for M1 = pred(M2, ring1)
12: if id(msg.M2) ∈ (id(N), id(succ(N)) then
13: // This node is M1, start merging
14: mm← MergeMsg(N, succ(N), id(N)
15: succ(N)← msg.M2

16: sendTo(mm,msg.M2)
17: else
18: // Continue searching for M1

19: nextNode← getClosestPreceedingNode(msg.M2)
20: sendTo(msg, nextNode)
21: end if
22: end if

(2) Nodes from ring1 and ring2 start building ring0 by finding a node M1 from ring1 and a node M2

from ring2 such that:

succ(M1, ring0) = M2.

Nodes M1 and M2 build ring0 and will inform other nodes how to join ring0 in part (3) of

the merging. Nodes M1 and M2 are discovered using a find message, which has fields for the

identifiers and substrate addresses of nodes N1 and M1. We present discovery of nodes M1 and

M2 (see Algorithm 1) in three steps:

(2a) Node N2, which has received the seek message from node N1, starts searching for node M2

in ring2 such that:

M2 = succ(N1, ring2).
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Node N2 creates a find message and records the identifier and the substrate address of node

N1 (from the seek message) in the find message. Node N2 forwards the find message in ring2

towards node N1, illustrated by arrows inside ring2 in Fig. 4.2(a). Since node N1 is not a

member of ring2, forwarding of the find message terminates at a node M ′2, which is the node

in ring2 with identifier closest to id(N1), but not larger than id(N1):

id
(
M ′2
)
< id

(
N1

)
< id

(
succ (M ′2, ring2)

)
.

It follows that succ(N1, ring2) = succ(M ′2, ring2) = M2. Node M ′2 stores the identifier and

the substrate address of node M2 in the find message.

(2b) Node M ′2 sends the find message to node N1, illustrated by an arrow from node M ′2 to node

N1 in Fig. 4.2(a).

(2c) Node N1 starts searching for node M1 in ring1 such that:

M1 = pred(M2, ring1).

Node N1 forwards the find message in ring1 towards node M2, illustrated by arrows inside

ring1 in Fig. 4.2(a). Forwarding of the find message terminates at a node M1, which is the

node in ring1 with the identifier closest to id(M2), but not larger than id(M2):

id
(
M1

)
< id

(
M2

)
< id

(
succ (M1, ring1)

)
.

That is, node M1 is the predecessor of node M2 in ring1. Since M2 = succ(N1, ring2) there is

no node in ring2 with the identifier in the interval
(
id(N1), id(M2)

)
. Thus pred(M2, ring0) =

pred(M2, ring1) = M1.

Algorithm 2 N : processMerge(msg)

1: if msg.pred 6= null then
2: // Update predecessor node
3: pred(N)← msg.pred
4: end if
5: // If msg has not traversed the entire merged ring
6: if msg.stop 6= id(succ(N)) then
7: if id(msg.succ) ∈ (id(N), id(succ(N))) then
8: // Update successor and inform new successor of old successor
9: oldSuccessor ← succ(N)

10: succ(N)← msg.succ
11: msg.succ← oldSuccessor
12: msg.pred← N
13: else
14: // If this node did not change its successor node, the successor node
15: // does not change its predecessor node
16: msg.pred← null
17: end if
18: sendTo(msg, succ(N));
19: end if

(3) If M1 = pred(M2, ring0) then M2 = succ(M1, ring0). Node M1 builds ring0 by setting node M2 as
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its successor. A merge message is used to inform other nodes to join ring0. A merge message has

three fields:

pred – the identifier and the substrate address of the new predecessor node,

succ – the identifier and the substrate address of a potential successor node, and

stop – the identifier of the node that created the merge message, i.e. id(M1).

NodeM1 creates a merge message and sets pred = M1, succ = succ(M1, ring1), and stop = id(M1).

Node M1 sends the merge message to node M2, as illustrated by an arrow from node M1 to node

M2 in Fig. 4.2(a). Passing of the merge message (see Algorithm 2) is illustrated in Fig. 4.2(b) with

arrows outside ring0 and the values of fields pred, succ, and stop shown.

Any node receiving the merge message checks if the pred field is set. If the pred field is set, the

node updates its predecessor to the node stored in the pred field and clears the field. A node

receiving the merge message also checks if succ is a better successor than nodes current successor.

If succ is a better successor than the current successor, then the node updates its successor to

the node stored in the succ field. The node records its old successor in the succ field of the

merge message. The node also records its own identifier and substrate address in the pred

field, so that the new successor can update its predecessor to this node. The node sends the

merge message to its new successor.

If succ is not a better successor than the current successor, then the node forwards the merge

message to its current successor, without modifying the pred or succ fields.

When a node with the identifier equal to stop is reached, forwarding of the merge message stops

and all nodes from ring1 and ring2 have joined ring0.

4.2 Broadcasting in a Chord Ring

Algorithm 3 N : ForwardBroadcastMessage(msg)

1: // Initialize broadcast
2: if msg.topId = null then
3: msg.topId← id(N)
4: sendTo(msg, finger[m])
5: msg.topId← id(finger[m])
6: end if
7: // Send to finger nodes in interval this node is responsible for
8: for i = (m− 1) down to 1 do
9: // Skip fingers not in interval

10: if id(finger[i]) ∈ (id(N), msg.topId) then
11: msg.topId← id(finger[i+ 1]);
12: sendTo(msg, finger[i]);
13: end if
14: end for

A simple way to broadcast a message in a Chord ring is to forward a message along the Chord

ring. If there are n nodes, the broadcast is completed after (n − 1) rounds of transmission. To reduce
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the number of rounds of transmission, we use the broadcast mechanism proposed by El-Ansary et al.

[54], where the number of rounds of transmission to complete a broadcast is bounded by O(log2(n)).

Some node N , which wants to broadcast a message, sends a copy of the message to each of its finger

nodes: finger[1], finger[2], . . . , finger[m]. Finger node finger[i] is responsible to forward the broadcast

message to nodes with identifiers in the interval
(
id(finger[i]), id(finger[i+ 1])

)
, for 1 ≤ i < m. Node

finger[m] is responsible for the interval
(
id(finger[m]), id(N)

)
. Finger nodes continue the broadcast by

forwarding the message to a subset of their finger nodes, which fall in the interval they are responsible for.

Message broadcasting is presented in Algorithm 3, where node N receives a message msg to broadcast.

Message has a field topId, which stores the end of interval node N should broadcast to. Node N is

thus assigned the interval
(
id(N), topId

)
. If node N initializes the broadcast (lines 1 – 6), N forwards a

copy of msg to its finger[m], setting topId to its own identifier id(N). Other nodes, which forward the

broadcast message, never forward to their finger[m] node, since finger[m] node is outside the interval

that they are responsible for. A node forwarding a broadcast message sends the message to a subset of

its finger nodes finger[1], finger[2], . . . , finger[m− 1], which are in the interval the node is responsible

for (lines 7 – 14).
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Figure 4.3: Broadcasting a message originating at node 0.

Fig. 4.4 shows an example where node 0 broadcasts a message in a Chord ring with m = 4. Arrows

indicate forwarding of messages and the numbers next to the arrows indicate the value of topId field in

messages. To initiate the broadcast, node 0 sends the message to its finger nodes 1, 2, 4, and 8. By

setting the topId value, node 0 creates four intervals: (1, 1), (2, 4), (4, 8), and (8, 0). Forwarding of the

message in each interval created by node 0 is shown by different colour arrows. Paths that the broadcast
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Figure 4.4: Broadcasting a message originating at node 0, shown as a tree.

message takes are redrawn as a tree in Fig. 4.4. Each of the nodes 1, 2, 4, and 8 is responsible to

broadcast the message to the nodes in the sub-tree rooted at the node.

4.3 Determination of RD-IDs

Name Description

rdId identifier of the reachability domain
leader true if the node is leader node, false otherwise
seqNo last received sequence number from the leader node
lastT ime time when seqNo was received

Table 4.1: Information stored by a node for a reachability domain.

Recall from Section 3.1 that nodes form reachability domains by agreeing on an RD-ID for the reach-

ability domain. The leader node broadcast an RdInfo message every TcheckRd seconds to all members

of the RD. The RdInfo message carries the RD-ID of the reachability domain and a sequence number.

On each broadcast, the leader node increases the sequence number by one. Information that a member

node stores for an RD is shown in Table 4.1.

When a node initially connects to a substrate network, the node tries to join an existing RD. A node

waits for TjoinRdWait time to receive an RdInfo message with an RD–ID. If a node does not receive an

RdInfo message, the node creates a new RD by selecting a random RD-ID ,and becomes the leader node

of the RD. The node broadcasts RdInfo messages, starting with sequence number zero.

Actions taken by any node N when receiving an RdInfo message are shown in Algorithm 4. Node N

adopts the received RD–ID in three cases:
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Algorithm 4 N : processRdInfo(msg)

1: if (rdId = null) || (msg.rdId > rdId)
2: || (rdId = msg.rdId && seqNo < msg.seqNo) then
3: rdId← msg.rdId
4: seqNo← msg.seqNo
5: lastT ime← currentTime
6: // Continue broadcast of msg
7: ForwardBroadcastMessage(msg)
8: end if

1. Node N has no RD–ID. (In this case, node N adopts the received RD–ID, and joins the existing

reachability domain.)

2. The RD-ID of node N is numerically smaller than the one received.

3. The RD-ID of node N is the same as the one received and the received sequence number is larger

than the sequence number of node N . (Node N checks sequence numbers to prevent forwarding

old rdInfo messages that might be present in the network during changes of the RD membership.)

In all cases, node N stores the sequence number from the rdInfo message and updates the last time it

heard from the leader node. Node N also continues the broadcast of the rdInfo message.

Algorithm 5 N : CheckRd

1: if leader then
2: // Leader node updates sequence number and broadcasts
3: seqNo++
4: msg ← rdInfo(rdId, seqNo)
5: msg.topId← null
6: ForwardBroadcastMessage(msg)
7: else if lastT ime < currentTime− 2 ∗ TcheckRd then
8: // Node N has not heard from leader in TcheckRd, concludes a split
9: // has occurred, and picks a new RD-ID

10: rdId← random
11: seqNo← 0
12: lastT ime← currentTime
13: leader ← true
14: // Broadcast new RD-ID
15: msg ← rdInfo(rdId, seqNo)
16: msg.topId← null
17: ForwardeBroadcastMessage(msg)
18: end if

Each node N checks for partitions of the reachability domain every TcheckRd seconds (see Algo-

rithm 5). If node N is the leader node, node N increases the sequence number and broadcasts an rdInfo

message. Otherwise, if node N has not received an rdInfo message in the last TcheckRd seconds, node N

concludes that a path to the leader node is no longer available and that a partition of the reachability

domain has occurred. In this case, node N picks a new RD-ID, sets it self as the leader of the new

reachability domain, and broadcasts an rdInfo message with the new RD-ID and the sequence number

set to zero.
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4.4 Landmark Domains Routing

LM RD Dist NextHop

id(RD1) distance11 sa1(N11)
id(LD1) id(RD2) distance12 sa2(N12)

· · · · · · · · ·
id(RDa) distance1a saa(N1a)
id(RD1) distance21 sa1(N21)

id(LD2) id(RD2) distance22 sa2(N22)
· · · · · · · · ·

id(RDa) distance2a saa(N2a)
· · · · · · · · · · · ·

id(RD1) distanceb1 sa1(Nb1)
id(LDb) id(RD2) distanceb2 sa2(Nb2)

· · · · · · · · ·
id(RDa) distanceba saa(Nba)

Table 4.2: Landmark domains routing table.

This section describes the discovery of paths to landmark domains. We use distance vector routing,

which operates at the granularity of reachability domains. That is, we consider connectivity between RDs

and measure path lengths in the number of traversed RDs. Member nodes of an RD store information

about next-hop RDs on paths to every landmark domain. A node that is a member of more than one RD,

stores information about a path to every landmark domain from each RD. Nodes store information about

paths to landmark domains in the landmark domains routing table. Table 4.2 shows the structure of the

landmark domains routing table for a node connected to a RDs in a network with b landmark domains.

For each landmark domain, the node stores information about paths obtained from all reachability

domains. A single entry in the landmark domains routing table has the following information:

LD – RD-ID of a landmark domain,

RD – RD-ID of the reachability domain from which the routing information is obtained,

Dist – distance to the landmark domain measured in the number of traversed RDs,

NextHop – substrate address of a next-hop node on a path to the landmark domain. (The next-hop

node is a member of the next-hop RD.)

To send a message to a particular landmark domain, a node selects the entry with the shortest distance.

The node uses the substrate address of the next-hop node to forward a message to the next-hop RD,

using intra-substrate routing.

The discovery of paths to a landmark domain, say RDL, starts with some node N , which is mul-

ti-homed in RDL and some other reachability domain RDO. Since node N is a member of RDL, node N

has a path of zero hops to the landmark domain RDL. Node N informs other members of RDO about a

path to RDL, one hop long, with node N as the next-hop node. Nodes multi-homed in RDO now know

a one hop long path to RDL, via node N , and can advertise two hop long path to RDL via themselves.

Nodes in any reachability domain RDO periodically exchange routing information. Ideally, every

member node would inform all other member nodes about shortest paths to all landmark domains the

node has stored. Then, member nodes can locally compute shortest paths from RDO to all landmark
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domains. However, all nodes broadcasting routing information might overwhelm the substrate network.

Instead, a single member node collects routing information from a subset of member nodes, compute

shortest paths, and broadcast the shortest paths to all member nodes.

All member nodes of RDO check every TcheckRt seconds if they have received a routing table update

in the last TcheckRt seconds. Assume node N in RDO has detected it has not received a routing table

update in last TcheckRt seconds. Node N sends a pull message to all next-hop nodes from its landmark

domains routing table where RD is equal to id(RDO). Recipients of the pull message reply to node N

with a pullReply message containing landmark domains routing table entries with shortest distances to

all landmark domains. Node N computes shortest paths to all landmark domains for RDO and puts

them in a push message. The push message is broadcast to all member nodes of RDO, which update

their landmark domains routing table. The broadcast is performed in the same way as described in

Section 4.2.

Nodes pull the routing information only from next-hop nodes, to limit the number of messages

exchanged. This allows nodes in an RD to detect if an existing path to a landmark domain has failed.

However, if some node N in RDO learns of a better path to a landmark domain, from some reachability

domain other than RDO, N starts the update process by sending a pull message. Since N computes

shortest paths and sends out a push message, N can inform all other member nodes about the new path.
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Evaluation

In this chapter, we present the evaluation of landmark domains routing. We evaluate three properties

of the proposed routing scheme:

Stored state – the amount of information stored at each node by the routing protocol, i.e., the size of

routing tables,

Path stretch – the ratio between the length of a path set up by the routing protocol and the shortest

path from source to destination, and

Message overhead – the communication cost of setting up routing paths.

When designing a routing protocol, it is desirable to be able to set up routing paths with a small message

overhead. Paths set up by the routing protocol should have a small path stretch, so that messages are

forwarded on paths with lengths close to the shortest paths. The stored state should also be small, so

that it can be stored at nodes with limited memory. Stored state, message overhead, and path stretch

present a trade-off: stored state and message overhead can be reduced at the cost of increased path

stretch. To be able to operate in networks of any size, a routing protocol should use stored state that

does not grow fast with the size of the network. For instance, shortest path routing protocols produce

the smallest path stretch of one. In these protocols the stored state at each node is proportional to the

number of nodes in the network. Using shortest path routing protocols in large networks may result in

amount of stored state that exceeds available memory at nodes. Routing protocols suitable for networks

of any size are called scalable routing protocols. In scalable routing protocols, the trade-off between

stored state, message overhead, and path stretch has an additional constraint that stored state at a node

grows slower than the number of nodes in the network.

We will evaluate the scalability and performance of landmark domains routing. First, we evaluate the

scalability of landmark domains routing through numerical analysis. We explore how the stored state

and path stretch grows as the size of a multi-substrate network increases. In the second part of this

chapter we evaluate the implementation of the proposed routing scheme using simulations. We compare

landmark domains routing to existing compact routing scheme (Disco [12]), and overlay network based

greedy routing schemes (UIP [13] and VRR [14]).

45
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5.1 Numerical Analysis

In this section we present a numerical analysis of the scaling properties of landmark domains routing.

First, we explore the size of stored state at a node as a function of the number of nodes and substrate

networks in a multi-substrate network. In the second part of this section we present an analysis of path

stretch for large multi-substrate networks.

5.1.1 Stored State

n Number of nodes
nS Number of substrate networks
nL Number of landmark domains
nI Number of interfaces per node
nm Number of entries in finger tables (in Chord rings)
r Number of entries in successor lists (in Chord rings)

Table 5.1: Parameters for computation of stored state.

In landmark domains routing, the stored state at a node consists of:

• the landmark domains routing table (see Table 4.2),

• information about RDs (see Table 4.1), and

• state stored for Chord rings (finger tables and successor lists).

Table 5.1 shows parameters that determine the amount of stored state at a node in landmark domains

routing. A node connects with each of its nI interfaces to a substrate network, and is a member of a

reachability domain in every substrate network. A node stores:

• nInL entries in the landmark domains routing table,

• nI entries with information about RDs, and

• nI finger tables, with nm entries each, and nI successor lists, with r entries each.

Thus, the stored state at a node in landmark domains routing, denoted by nLDe and measured in the

number of entries, is given by:

nLDe = nInL + nI + nI(nm + r). (5.1)

We compare the stored state of landmark domains routing to the stored state of a compact routing

scheme Disco [12], as baseline. In Disco, the number of landmark nodes in the multi-substrate network

is computed as
√
n log(n). Each node stores one routing table entry for each landmark node and

one routing table entry for the
√
n log(n) closest neighbours. The stored state at a Disco node (nDe ),

measured in the number of entries, is given by:

nDe = 2
√
n log(n) (5.2)

For the number of landmark domains we pick nL =
√
ns log(ns). Then Equation 5.1 becomes

nLDe = nI

(√
ns log(ns)

)
+ nI + nI(nm + r). (5.3)
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By selecting
√
ns log(ns) reachability domains as landmark domains, we ensure that stored state at nodes

grows slowly with the increase in the number of reachability domains. Also, this allows us to make a

direct comparison between stored state of landmark domains routing and Disco. In a multi-substrate

network with one node per substrate network, the number of nodes and substrate networks is equal.

With nS = n, the number of landmark domains and landmark nodes is also equal.
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Figure 5.1: Stored state at a node.

To compute stored state we assume that in a multi-substrate network with n nodes and nS substrate

networks, each substrate network has the same number of nodes, given by n
nS

. Fig. 5.1 shows the stored

state for Disco and landmark domains routing as a function of the number of nodes, parametrized by

the total number of substrate networks. The stored state of landmark domains routing grows slower
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than linear as the number of nodes increases, showing that landmark domains routing is scalable. When

we set nS = n, each substrate network contains only a single node, and the stored state for landmark

domains routing and Disco are roughly the same. When we increase the size of substrate networks, the

stored state in landmark domains routing decreases significantly, while the stored state in Disco dose

not change. This shows that landmark domains routing leverages existing substrate networks to reduce

the amount of stored state.

5.1.2 Path Stretch

Recall from Section 3.3 that a message forwarded by landmark domains routing is first forwarded to a

landmark domain, and then from the landmark domain to the destination node. The landmark domain

is selected by the destination node and included in the locator of the destination node. A node selects

the closest landmark domain when creating a locator. In the worst case, the path stretch produced by

landmark domains routing is twice the diameter of the network. This path stretch is determined by

several factors:

• source and destination nodes are one-hop connected, i.e., the shortest path between source and

destination is one hop long, and

• the path from the source node to the landmark domain has the maximal length, i.e., given by the

diameter of the network, and

• the path from the landmark domain to the destination node has maximal length, i.e., diameter of

the network.

With a sufficiently large number of landmark domains, it is unlikely that nodes will experience the

worst case path stretch. As the number of landmark domains increases, the probability that a landmark

domain exists close to a node also increases. Since the path stretch depends on the distance from node

to its closes landmark domain, the probability of nodes experiencing worst case path stretch decreases.

To show this we proceed to compute the path stretch depending on the distance between the destination

RD and the closest landmark domain. Consider Fig. 5.2, which depicts a source reachability domain

RDS and a destination reachability domain RDD. The shortest path from RDS to RDD is independent

of the location of landmark domains. The path taken by landmark domains routing deviates from the

shortest path to visit a landmark domain. The deviation from the shortest path depends on the distance

from the landmark domain to the destination RD. For landmark domain LM1, which is closer to RDD

than LM2, the deviation is smaller. As a result, the path stretch from RDS to RDD is smaller if RDD

uses LM1 as landmark domain instead of LM2.

We explore the path stretch for a multi-substrate network modelled as a grid of substrate networks.

Each substrate network connects to four other substrate networks, i.e., to substrate networks directly

above, below, left, and right. We assume that all nodes that are members of a substrate network are

members of a same RD and that there is one RD per substrate network. Further, we assume that all

nodes in an RD are one-hop connected, i.e., a path through any RD is one hop long. Thus, the number of

hops in a path is equal to the number of RDs the path traverses. We pick one RD as the destination RD

and compute the path stretch for messages sent from other RDs to the destination RD. For illustration,

Fig. 5.3 shows a scenario with 81 substrate networks. The destination reachability domain is labelled

RDD. The landmark domain closest to RDD is labelled LM . In the figure, the shortest path from LM



Chapter 5. Evaluation 49

RDS RDD

LM1

LM2

sp(RDS , RDD)

sp(LM1, RDD)

sp(RDS , LM1)

sp(RDS , LM2)

sp(LM2, RDD)

dL1

dL2

Figure 5.2: Distance of a landmark domain to the destination node.

to RDD is four hops long. Fig. 5.3 also shows a source reachability domain labelled RDS . The shortest

path from RDS to RDD is showed with the dashed arrow and is eight hops long. The path taken by

landmark domains routing is shown with solid arrows and is 10 hops long. This results in a path stretch

of 1.25.

We assume that each LD is selected uniformly at random from the set of reachability domains,

independently from other landmark domains. Let dL be the number of hops from the destination

reachability domain to the closest landmark domain. We are interested in the probability of a landmark

domain being close to the destination reachability domain RDD. Thus, we compute the probability

Pr[dL ≤ d] that the closest landmark domain to RDD is reachable via a path of d or less hops. We

compute Pr[dL ≤ d] as:

Pr[dL ≤ d] = 1− Pr[dL > d],

(5.4)

where Pr[dL > d] is the probability that the closest landmark domain to RDD is more than d hops away.

We compute this as the probability that all landmark domains are more than d hops away from RDD.

For a single landmark domain, the probability that it is more than d hops away from RDD is given by:

1− 4
∑d
i=1 i+ 1

ns
,
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Figure 5.3: Grid model of a multi-substrate network.

where 4
∑d
i=1 i + 1 is the number of RDs that are d or less hops away from RDD and nS is the total

number of RDs. The number of RDs that are i = 1, i = 2, . . . , i = d hops away form RDD is counted by

4
∑d
i=1 i. We add one to the sum for RDD it self. Then, for nL landmark domains, Pr[dL > d] is given

by:

Pr[dL > d] =

(
1− 4

∑d
i=1 i+ 1

ns

)nL
, (5.5)

Using (5.5) in (5.4) we get:

Pr[dL ≤ d] = 1−
(

1− 4
∑d
i=1 i+ 1

ns

)nL

= 1−
(

1− 2d(d+ 1) + 1

ns

)nL

(5.6)

For illustration, in Fig. 5.3 we indicate RDs that are one, two, three, and four hops away from

RDD with cyan, yellow, orange, and green colour, respectively. Since landmark domains are selected

independently, to get the probability that all nL landmark domains are more than d hops away we

multiply the probability for a single landmark domain nL times.

Fig. 5.4 shows the probability that at least one landmark domain is d hops away from RDD, for a

multi-substrate network with 106 substrate networks. As we increase the number of landmark domains,

the probability that a landmark domain exists close to RDD increases.

We plot the path stretch between all RDs and the destination RD in the centre of the network,
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Figure 5.4: Probability of a landmark domain existing d hops from RDD (Pr[dL = d]) for a multi-
substrate network with 106 substrate networks.

depending on the distance of the closest landmark domain to the destination RD, in Fig. 5.5. As the

distance from the destination RD to the closest landmark domain approaches one, the path stretch also

approaches one. We also see from Fig. 5.5 that the majority of paths have a small path stretch, even

when the distance between RDD and the closest landmark domain is large.

In Fig. 5.6 we plot the path stretch for multi-substrate networks by varying the number of substrate

networks. The number of landmark domains is fixed to 1000. For each number of substrate networks

we compute the probability of a landmark domain falling d hops away from RDD and use the expected

value to compute the path stretch. We plot path stretch only from 1 to 1.5 since almost all paths have

a path stretch in this range. Fig. 5.6 shows that there is little difference in path stretch when the size
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Figure 5.5: Path stretch for a multi-substrate network with 106 substrate networks.

of a multi-substrate network is increased, although the expected distance from the landmark domain to

RDD increases significantly. To explain this, lets consider source reachability domain RDS , destination

reachability domain RDD, and a landmark domain LM . The length of the shortest path from RDS to

RDD is denoted by |sp(RDS , RDD)|. The path stretch ps(RDS , RDD) can be computed as:

ps(RDS , RDD) =
|sp(RDS , LM)|+ |sp(LM,RDD)|

|sp(RDS , RDD)|

=
|sp(RDS , RDD)|+

(
|sp(RDS , LM)|+ |sp(LM,RDD)| − |sp(RDS , RDD)|

)

|sp(RDS , RDD)|

=
|sp(RDS , RDD)|+ dev

|sp(RDS , RDD)|

= 1 +
dev

|sp(RDS , RDD)| ,

(5.7)

where dev expresses the additional path length caused by visiting landmark domain LM , compared to
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Figure 5.6: Path stretch for a multi-substrate network with 1000 landmark domains.

the shortest path. As the size of a multi-substrate network is increased, the average length of shortest

paths increases proportionally. However, even with a fixed number of landmark domains, the expected

distance of the closest landmark domain to the destination RD and thus the value of dev increase much

slower than the length of the average shortest path. Therefore, as the size of multi-substrate network

grows, the path stretch is dominated by the length of shortest paths, and therefore approaches one.

5.2 Simulations

In this section we present results obtained from simulations of landmark domains routing. For simulations

we use the discrete event simulator OMNeT++ [55, 56]. To evaluate paths set up by simulated routing

scheme, we evaluate the transmission of messages between 2502 randomly selected node pairs. We

compute the path stretch between the selected pairs of nodes. Delivery ratio for a node is computed

as the number of messages received by the node divided by the number of messages sent to the node.

We measure message overhead at a node as the bitrate of received control messages, averaged over the

duration of 1 second.
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The rest of this section presents how multi-substrate networks are generated and explain configuration

parameters for the simulated routing schemes. We present simulation results for static and dynamic

multi-substrate networks. In static multi-substrate networks the connectivity between nodes remains the

same during the simulation. Dynamic multi-substrate networks contain mobile nodes, whose movement

causes changes of connectivity between nodes during the simulation.

5.2.1 Multi-substrate Network Generation

nS Number of substrate networks
n
nS

Number of nodes in each substrate network

αp, αe
Parameter of substrate degree probability distribution
(αp for power-law and αe for exponential distribution)

βp, βe
Parameter of node degree probability distribution
(βp for power-law and βe for exponential distribution)

Table 5.2: Parameters for static multi-substrate networks.

To evaluate landmark domains routing we need a topology generator for multi-substrate networks.

The generator needs to create connections between substrate networks and links between nodes in sub-

strate networks. We define substrate network degree of a substrate network, say S1, as the number of

substrate networks connected to S1. The node degree of a node N , in a substrate network S1, is the

number of neighbours node N has in S1. We have developed a custom generator for multi-substrate

networks, which produces multi-substrate networks with substrate and node degree governed by a prob-

ability distribution. Input parameters for our multi-substrate network generator are shown in Table 5.2.

The topology generator starts by drawing nS random positive integers from a power-law probability

distribution with parameter αp or an exponential probability distribution with parameter αe. The

numbers are re-drawn until they are a graphic sequence 1, to ensure they can be used as substrate network

degrees. The drawn numbers are used as substrate network degrees to create a random substrate network

graph with nS substrate networks, by using the modified pseudo-graph (also known as configuration

graph) approach (see [58]). To each substrate network we attach a number of stubs equal to the substrate

network degree. We randomly select pairs of stubs and connect them to create edges, avoiding creating

self-loops. If the generated substrate network graph is not connected, the process is repeated (including

drawing new random numbers). Next, we assigned n
nS

nodes to each substrate network. We replace edges

between substrate networks with multi-homed nodes, by randomly uniformly picking one node from each

substrate network connected by an edge and merging the two nodes into a single node. Finally, for each

substrate network we create links between nodes, in the same way as edges between substrate networks

were created, using parameter βp or βe for node degree distribution.

The process of generating a multi-substrate network is illustrated in Fig. 5.7, where nS = 3 and
n
nS

= 3. First, a random graph with three substrate networks and edges between them is generated

(Fig. 5.7(a)). Substrate networks are expanded and three nodes are assigned to each substrate network,

as shown in Fig. 5.7(b). For every edge between two substrate networks, one node from each substrate

network is selected (Fig. 5.7(c)). For example, for the edge between substrate networks S1 and S3 we

1The list of degrees of all nodes of a graph, arranged monotonically and beginning with the maximum degree, is called
a degree sequence. A finite sequence of non-negative integers is a graphic sequence if it is a permutation of the degree
sequence of some graph (see [57]).
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Figure 5.7: Steps of generating a multi-substrate network.

pick nodes C and G. Next, nodes connected by edges between substrate networks are merged into

multi-homed nodes (Fig. 5.7(d)). For example, nodes C and G become a single node, labelled C = G,

multi-homed in substrate networks S1 and S3. Finally, for each substrate network links between nodes

are generated (Fig. 5.7(e)).
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nWS Number of wireless substrate networks
nsWI Number of wireless interfaces per static node
nm Number of mobile nodes
nmWI Number of wireless interfaces per mobile node
rWI Radio range of wireless interfaces
nG Number of groups
nm

nG
Number of mobile nodes in a group

rG Group radius
vmin Minimum node (group) speed
vmax Maximum node (group) speed
p Maximum node (group) pause time
fx Length of playing field
fy Hight of playing field

Table 5.3: Additional parameters for dynamic multi-substrate networks.

We also generate dynamic multi-substrate networks, which are composed of wired and wireless sub-

strate networks. First, we generate a multi-substrate network with wired substrate networks as described

for a static multi-substrate network. We replace some of the nodes in the generated multi-substrate net-

work with routers. Routers are devices, which participate in the intra-substrate routing, but not in the

simulated routing. A router connects only to one substrate network. To generate wireless substrate

networks and mobile nodes we use parameters shown in Table 5.3. We crate nWS wireless substrate

networks and equip each static node with nsWI wireless interfaces. A static node connects with each of

its wireless interfaces to a randomly selected wireless substrate network. Further, we create nm mobile

nodes, each of them equipped with nmWI wireless interfaces. All wireless interfaces have radio range of

rWI metres. To simulate dynamic substrates, we organize mobile nodes into nG groups, with nm

nG
nodes

in each group. All mobile nodes in the same group connect to the same wireless substrate network with

one of their wireless interfaces. With the remaining nmWI − 1 wireless interfaces a mobile node connects

to randomly selected substrate networks.

Node mobility is modelled using Reference Point Group Mobility (RPGM) model [59] implemented

in BonnMotion [60]. In this model, nodes move together in groups. Each group has radius of rG metres

and nodes in a group move independently within the group radius. Nodes move on a playing field of

size fx × fy m2. Nodes movement on the playing field is superposition of group movement and node’s

movement in a group. Movement of nodes and groups is modelled using waypoint mobility: nodes (and

groups) move from one randomly selected waypoint to another, randomly selecting a new speed (between

vmin and vmax) at each waypoint. Also, nodes (and groups) can remain still (for a random time between

0 and p seconds) when they reach a waypoint.

5.2.2 Simulated Routing Schemes

To evaluate the performance of landmark domains routing we compare it with three existing routing

schemes: Disco [12], UIP [13], and VRR [14]. Table 5.4 shows the configuration parameters used. In all

routing schemes we use m-bit long binary identifiers.

We use Disco to make a comparison to a compact routing scheme and UIP and VRR to make a

comparison to greedy routing schemes. Two-level routing schemes described in Section 2.3 are not

suitable for a direct comparison with landmark domains routing. LISP [42], ILNP [43], RANGI [44],



Chapter 5. Evaluation 57

Name Description Value

m Identifier length 14
TDiscoRt Time between sending routing information in Disco 1 s
nUIPb Number of nodes in a bucket in UIP 3
TUIPRt Time between sending routing information in UIP 1 s
rV RR Size of vset in VRR 2
TcheckRd Time between broadcasting RD-IDs 2 s
TcheckRt Time between sending routing information 2 s
TwaitRt Time to wait for replies to a pull message 1 s

r Number of alternate successors in Chord ring 2
Tstabilize Time between checking reachability of successor node 1 s
Tfix Time between checking reachability of finger nodes 2 s

Table 5.4: Configuration parameters for simulated routing schemes.

IPNL [45], 4+4 [46], and GSE [47] assume existence of a central substrate network Ŝ, and routing

schemes of Ahlgren et al. [48] and Feldman et al. [49] assume existence of a central hierarchy of substrate

networks Ŝ. This routing schemes are not intended to operate on a multi-substrate network without a

central substrate network or networks. FARA [51] and Plutarch [52] are designed to operate without

the assumption of a central substrate network, however, the authors describe these two routing schemes

at an abstract level and do not provide sufficient details to allow implementation. Additionally, none

of the mentioned two-level routing schemes supports dynamic substrates, that is, the schemes assume

that substrate networks are never partitioned. TurfNet [50] is designed to support dynamic substrate

networks and does not assume a central substrate network, but the authors do not provide any details

about the routing between substrate networks, thus making this scheme impossible to implement.

Disco is a compact routing scheme, which provides a bound of Õ(n1/2) per node on stored state and

guarantees paths stretch below 3. In Disco, every node stores routing entries for landmark nodes and

nodes in its vicinity. Each node sends all stored entries to its neighbours every TDiscoRt seconds.

UIP is a routing scheme, for multi-substrate networks, which leverages the existing intra-substrate

routing. In UIP, each node stores information about the virtual links to overlay neighbours. A node has

m buckets (one for the each possible length of the longest common prefix between two nodes). Bucket i

stores information about virtual links to NUIP
bucket neighbours whose identifiers match the identifier of the

owner node in the first i bits, for 0 ≤ i < m. Each node sends the information stored in its buckets to

all overlay neighbours every TUIPRt seconds. Each time a node learns about a new neighbour, the node

sends the information stored in all of its buckets to all overlay neighbours.

VRR is a routing scheme, which can operate on multi-substrate networks, but does not leverage the

existing intra-substrate routing. The authors of VRR in [14] show that VRR performs comparably or

better than popular MANET routing protocols. 2 Therefore, by comparing landmark domains routing

to VRR we can indirectly get a sense of how our routing scheme compares to MANET routing protocols.

In landmark domains routing, leader nodes broadcast RD-IDs every TcheckRd seconds. Nodes ex-

change information from landmark domains routing tables every TcheckRt seconds. A node that initiates

exchange of information by sending a pull message waits for TwaitRt seconds to receive pullReply mes-

sages before broadcasting new routing information. Chord rings are implemented as described in [8].

Each node checks if its successor is still reachable every Tstabilize seconds and check if finger nodes

2Destination-Sequenced Distance Vector (DSDV) [61], Dynamic Source Routing (DSR) [62], and Ad-hoc On-Demand
Distance Vector Routing (AODV) [63].
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are reachable every Tfix seconds. Nodes also keep r alternative successors in case connectivity to the

successor node is lost.

5.2.3 Static Multi-substrate Network

Figure 5.8: Visualization of generated static multi-substrate network (αp = 2.2, βp = 2.2, nS = 100,
and n

nS
= 25). All links in a single substrate network are of the same colour.

To evaluate the performance of landmark domains routing for a static multi-substrate network, we

generate a multi-substrate network, with parameters αp = 2.2, and βp = 2.2. We vary the number of

substrate networks and the number of nodes per substrate network. For each combination of parameters

we generate three multi-substrate networks and present average results. For illustration of generated

multi-substrate networks, in Fig. 5.8 we show a multi-substrate network generated with nS = 100 and
n
nS

= 25 as a force-directed graph. All links that belong to a particular substrate network are shown in

the same colour (although different substrate network can have the same colour).

To explore the sensitivity of landmark domains routing to the size of substrate networks, we fix the
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number of substrate networks to nS = 25 and vary the number of nodes per substrate network, n
nS

,

from 10 to 200. For landmark domains routing, three RDs are randomly selected as landmark domains.

We present the average values of delivery ratio, path stretch, and stored state in Fig. 5.9, Fig. 5.10, and

Fig. 5.11, respectively. Error bars show one standard deviation. Values on top of each figure indicate

the number of nodes in each substrate network, n
nS

. Due to the large number of messages exchanged

between nodes, we were unable to simulate UIP for n
nS

= 200.
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Figure 5.9: Average delivery ratio for a static multi-substrate network as a function of the number of
nodes in a substrate network.

Landmark domains routing and VRR deliver all messages (Fig. 5.9). Disco and UIP do not deliver

all messages because they impose upper limits on the size of stored routing information. In Disco, node’s

vicinity can contain more than
√
n log n nodes, however a node stores routing entries only for

√
n log n

randomly selected nodes from its vicinity. A node forwarding a message for a destination in its vicinity,

for which the node does not have a routing entry, drops the message. Similarly, in UIP messages are

dropped because of the upper limit on the size of buckets. When a new node joins the network, it can

replace an existing node X already present in a bucket of a node N . If node N has used the link to

node X to form a virtual link to a node Y (Y 6= X), by removing X from the bucket the link to node

X is also removed and the virtual link to node Y fails. Thus, node N drops messages for node Y .

Average path stretch (Fig. 5.10) of landmark domains routing is comparable to Disco and VRR, and

does not grow with the increase of the number of nodes per substrate network. The stored state per

node is shown in Fig. 5.11. Landmark domains routing has the smallest amount of stored state for all

simulated multi-substrate networks. The stored state of VRR is similar to the stored state of landmark

domains routing, with VRR showing much higher variance. All four routing schemes use a small amount

of stored state per node, i.e., in order of kilobits. However, the amount of stored state for Disco and

UIP grows with the increase of the number of nodes per substrate network, while for landmark domains

routing the stored state remains constant.
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Figure 5.10: Average path stretch for a static multi-substrate network as a function of the number of
nodes in a substrate network.
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Figure 5.11: Average stored state for a static multi-substrate network as a function of the number of
nodes in a substrate network.

Fig. 5.12 and Fig. 5.13 show empirical cumulative distribution functions (CDF) of the path stretch

and the stored state, respectively, for a multi-substrate network with n
nS

= 100, i.e., 100 nodes per

substrate network. We can see that path stretch for Disco remains below its upper bound of 3 for all

measured paths. Path stretch for landmark domains routing goes up to 17, however only for a small
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nS = 25, n
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Figure 5.13: Empirical CDF of stored state for a static multi-substrate network (αp = 2.2, βp = 2.2,
nS = 25, n

nS
= 100).

number of paths. In particular, 99.24% of paths have path stretch below 3. Path stretch for UIP is

significantly higher, with some paths reaching path stretch of 85.5 and 89.35% of paths having path

stretch above 3. Landmark domains routing has on average the smallest amount of stored state of

all four compared routing schemes, without major differences in amount of state at individual nodes.
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Amount of state per node in VRR is characterized by a majority of nodes storing a small amount of state

and a small fraction of nodes storing a significant amount of state. The nodes with the high amount of

stored state are the nodes through which a large number of virtual links passes.

To test the sensitivity of landmark domains routing to the number of substrate networks in the

multi-substrate network, we fix the number of nodes per substrate network to n
nS

= 50. We vary the

number of substrate networks nS between 5 and 50, with αp = 2.2 and βp = 2.2 as before. We simulate

landmark domains routing with four randomly selected landmark domains (denoted LD(4)) and 0.2 ·nS
randomly selected landmark domains (denoted LD(*)).
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Figure 5.14: Path stretch for a static multi-substrate network as a function of the number of substrate
networks.

The delivery ratio is equal to 1 for all protocols. The average paths stretch (Fig. 5.14) and the average

stored state (Fig. 5.15) are similar to results when we increase the number of nodes per substrate network.

Stored state for LD(*) slightly increases with the increase in the number of substrate networks, since

the number of landmark domains also increases with the number of substrate networks.

Next we evaluate the influence of the number of landmark domains used in landmark domains routing.

We generate three multi-substrate networks with nS = 25, n
nS

= 50, αe = 0.08, and βp = 2.2; and present

averaged results.

Fig. 5.16 shows the average path stretch and Fig. 5.17 shows the average stored state. We can see

that the path stretch decreases as the number of landmark domains increases. Recall from Section 5.1.2

that path stretch depends on how close a landmark domain is to the destination. With the increases in

the number of landmark domains, the probability that a landmark domain exists close to the destination

node increases and thus path stretch decreases. The simulated multi-substrate network is to small for

the length of the shortest path from the source to the destination to dominate the path stretch. The

stored state increases proportionally to the number of landmark domains, since every node needs to

store routing entries for each landmark domain.
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Figure 5.15: Stored state for a static multi-substrate network as a function of the number of substrate
networks.
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Figure 5.16: Path stretch of landmark domains routing for a static multi-substrate network as a function
of the the number of landmark domains.

5.2.4 Dynamic Multi-substrate Network

In this section we explore operation of landmark domains routing in dynamic multi-substrate networks,

created using the parameters presented in Table 5.5. We create multi-substrate networks with routers
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Figure 5.17: Stored state of landmark domains routing for a static multi-substrate network as a function
of the number of landmark domains.

Parameter Value Parameter Value
nS 10 nG 20
n
nS

50 nm

nG
10

αp 2.2 rG 75 m
βp 2.2 vmin 0 m/s
nWS 10 vmax 1 m/s
nsWI 1 p 5 s
nm 200 fx 400 m
rWI 20 m fy 400 m

Table 5.5: Values of parameters for dynamic multi-substrate networks.

that participate only in the intra-substrate routing, and not in the multi-substrate routing. Since Disco

and VRR assume all devices in the multi-substrate network participate in the multi-substrate routing,

and rely on the exchange of messages between neighbour nodes in substrate networks, we do not simulate

them for dynamic multi-substrate networks. For each set of parameters we generate three multi-substrate

networks and present average results.

To test the sensitivity of landmark domains routing to node movement we vary the maximum speed

vmax of mobile nodes. We pick 5 landmark domains either in static substrate networks or mobile

substrate networks and designate this by LD(5, static) and LD(5, mobile) respectively.

Fig. 5.18 shows the average delivery ratio for landmark domains routing and UIP as the maximum

speed of mobile nodes is increased. Landmark domains routing clearly outperforms UIP at all node

speeds. As the maximum node speed increases, the average delivery ratio of landmark domains routing

decreases, since it cannot discover new routing paths as fast as the connections between nodes change.

However, the average path stretch (Fig. 5.19) of our routing scheme remains low for the delivered
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Figure 5.18: Average delivery ratio for a dynamic multi-substrate network as a function of the maximum
node speed.
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Figure 5.19: Average path stretch for a dynamic multi-substrate network as a function of the maximum
node speed.

messages. The average stored state and the message overhead (Fig. 5.20 and Fig. 5.21) show a significant

difference between the selection of static and mobile substrate networks for landmark domains. Landmark

domains in dynamic substrate networks produce a higher amount of message overhead since paths to

landmark domains change more frequently and landmark domains routing tables need to be updated



Chapter 5. Evaluation 66

    

0

1

2

3

4

5

LD
 (5

, m
ob

ile
)

LD
 (5

, m
ob

ile
)

LD
 (5

, m
ob

ile
)

LD
 (5

, m
ob

ile
)

LD
 (5

, s
ta

tic
)

LD
 (5

, s
ta

tic
)

LD
 (5

, s
ta

tic
)

LD
 (5

, s
ta

tic
)

U
IP

U
IP

U
IP

U
IP

A
ve

ra
ge

 s
to

re
d 

st
at

e 
(k

B
)

vm a x= 1 m
s vm a x= 20 m

svm a x= 5 m
s vm a x= 10 m

s

Figure 5.20: Average stored state for a dynamic multi-substrate network as a function of the maximum
node speed.
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Figure 5.21: Average message overhead for a dynamic multi-substrate network as a function of the
maximum node speed.

more often. The average stored state is higher for landmark domains in dynamic substrate networks,

since they change their RD-IDs more often than landmark domains in static substrate networks. That

is, landmark domains in dynamic substrate networks experience more splits and merges. A change of

RD-ID of a landmark domain means that a new entry in landmark domains routing tables needs to be
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crated and propagated throughout the network.

Next, we explore the impact of the ratio of static to dynamic substrate networks on landmark domains

routing. We use the parameters from Table 5.5, but vary the number of static substrate networks, nS ,

from nS = 5 to nS = 50. Landmark domains are selected in static substrate networks. We simulate

landmark domains routing with five landmark domains and a number of landmark domains proportional

to the number of static substrate networks (0.2 · nS), indicated as LD(5, static) and LD (*, static),

respectively.
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Figure 5.22: Average delivery ratio for a dynamic multi-substrate network as a function of the number
of static substrate networks.

The average delivery ratio (Fig. 5.22) increases with the increase in the number of static substrate

networks for both landmark domains routing and UIP. With the increase in the number of static substrate

networks, both routing schemes benefit from the reduced frequency of change of routing paths. Values

of the average path stretch (Fig. 5.23), stored state (Fig. 5.24), and message overhead (Fig. 5.25) remain

low for landmark domains routing, for all number of static substrate networks.
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Figure 5.23: Average path stretch for a dynamic multi-substrate network as a function of the number of
static substrate networks.
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Chapter 6

Conclusion and Future Work

In this chapter we provide the conclusion and present some ways in which the work presented in this

thesis can be extended in the future.

6.1 Conclusion

In this thesis, we present landmark domains routing, a scalable routing scheme, which operates on a

multi-substrate network composed of static and dynamic substrate networks. We have defined a new ad-

dressing scheme, in which node locations are expressed relative to stable positions in the multi-substrate

network, called landmark domains. The routing abandons the goal of creating globally consistent routing

tables, and instead is based on finding routes to and from landmark domains.

We defined the concept of ‘reachability domain’, as a region of a substrate network in which all nodes

can exchange messages. We use reachability domains as basic building blocks for our routing scheme

and select a subset of them as landmark domains. We let nodes set up routing paths to landmark

domains. Further, we let each node independently discover a path from a landmark domain to itself and

use this path to create a locator, which describes how to reach a node from anywhere in the network. We

show that landmark domains routing performs comparably to other routing schemes for multi-substrate

networks in a static setting. In a dynamic network, landmark domains routing clearly outperformed UIP

in path stretch, delivery ratio, and stored state, while producing orders of magnitude smaller overhead.

We also show that selection of stable landmark domains greatly reduces overhead when compared to less

stable landmark domains. Through numerical analysis we show that the proposed routing is scalable

and requires at most the same amount of stored state as a compact routing scheme. We demonstrate

that in large multi-substrate networks, landmark domains routing produces paths with low average path

stretch and almost all paths have path stretch below three.

6.2 Future Work

The work presented in this thesis can be extended in several ways.

1. Selection of Landmark Domains: We have shown the advantage of selecting landmark domains

defined on stable substrate networks, but we did not investigate methods to determine the stability

of a substrate network. It is desirable to define a metric that would express the stability of

70



Chapter 6. Conclusion and Future Work 71

reachability domains, measure this stability in the multi-substrate network, and conduct selection

of landmark domains based on the metric.

2. Identifier Resolution Service: In landmark domains routing all nodes have persistent identifiers

and ephemeral locators. Since sender of a message knows the destination identifier but not the

locator, a service that resolves identifiers into locators is necessary. There are several options for

developing this service, e.g., a centralized server or a distributed resolution system modelled after

the domain name system. However, as node locators are created and updated by nodes themselves,

a system in which node locators are stored at the nodes is also a viable option. A DHT structure

can be used to realize a distributed identifier resolution service. This DHT can be built over a

substrate network with universal connectivity (provided by landmark domains routing), or directly

on top of the multi-substrate network.

3. Broadcasting in Reachability Domains: We use a Chord overlay network to establish a

routing structure that allows us to broadcast protocol messages to entire reachability domains and

also monitor for merges and splits. Future work can investigate how do other overlay networks

perform in this context. Further improvements in this area can be made by leveraging multicasting

capabilities of some substrate networks to reduce overhead.
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