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e Goal: Attempt a coherent self-contained story anchored
in a few important questions:
— Analysis of “real” traffic
— Analysis of buffered link
— Scaling of performance metrics (in size of network)
— Quality of upper and lower bounds
— Statistical Multiplexing

e Goal: No prerequisites (on the subject)
e Goal: Discuss interesting applications and case studies

e Non-goal: Comprehensive literature survey



@ Network Traffic Models

@ A Network Calculus Primer

o Buffered links (+ min-plus algebra)
e Envelopes and service curves

e Performance bounds

e Min-plus linear system theory

e (Case study: Bandwidth estimation

© Stochastic Network Calculus

e Statistical multiplexing gain

o Statistical envelopes and sample path envelopes

e Statistical end-to-end analysis

o Assessment of the state-of-the-art (beyond hype and myths)

© Application areas

o Wireless networks
o Data centers
e Smart grids



MODELLING NETWORK
TRAFFIC



Network Traffic



HD Movie

Harry Potter movie with HD encoding
— Codec: H.264 SVC
— Frames per second: 24 fps @ 1920x1088
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Skype Voice Call: 6 minutes

e SVOPC encoding, one direction of 2-way call

Dark blue: UDP traffic
Light blue: TCP traffic
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Internet Traffic: 10 Gbps link

e Backbone link of a Tier-1 Internet Service provider
e ~430,000 packets packets in 1 second
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Switch Model



Components of a Packet Switch

Processor
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Interconnection Network
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Modeling a Packet Switch

Output

Input Output Buffers
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Interconnection
Network
Model with input and Simplified model
output buffers (only output buffers)
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A Path of Network Switches
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e Each switch is modeled by the traversed output buffer
e Qutput buffer is shared with other traffic (“cross traffic”)
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A Path of Network Switches

Cross Cross Cross
traffic traffic traffic

e Each switch is modeled by the traversed output buffer
e Qutput buffer is shared with other traffic (“cross traffic”)
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Arrival Model



Arrival Scenarios

* Packet arrives to buffer only after all bits of the
packet have been received

A * Packet arrival appears instantaneous
Packet . : .
: * Multiple packets can arrive at the same time
arrivals
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Modeling Traffic Arrivals

e We write arrivals as functions of time:
A(t) : Arrivals until time t, measured in bits
We assume that A(0)=0 for t < 0.

e To plot the arrival function, there are a number of choices:
1. Continuous time or Discrete time domain
2. Discrete sized or fluid flow traffic
3. Left-continuous or right-continuous

Note: The presentation of stochastic network calculus uses discrete-
time for conciseness , and otherwise a (left-) continuous time

domain
16



Discrete-sized vs. Fluid Flow

Traffic
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Traffic arrives
in multiples of bits
(discrete time, discrete-sized)

Traffic
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Traffic arrives like a fluid
(continuous time, fluid flow)

e |tis often most convenient to view traffic as a fluid flow, that allows
discrete sized bursts
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Fluid Flow Traffic with Bursts

e Does A(t) include the arrival at time t, or not ?

Traffic Traffic

(bits) right-continuous (bits) 1 left-continuous
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(Note: A(0)=01)
e Most people take a left-continuous interpretation
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NETWORK CALCULUS
PRIMER



Buffered Link



Buffered Link

e Standard model of an output buffer at a switch

Arrivals Departures
> | C >
A | D(1)

—B(t)—
Backlog

e Link rate of outputis C

e Scheduler is work-conserving (always transmitting when there is a
backlog)

e Transmission order is FIFO
e Infinite Buffers (no buffer overflows)
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e Arrivals of packets
to a buffered link

e Backlog at the
buffered link

Packet
arrivals
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A(t) Arrivalsin [0,t), with A(t) =0ift <0
D(t) Departures in [0,t), with D(t) < A(t)

B(t) Backlog at t.
B(t) = A(t) — D(t)

W(t) (Virtual) delay at t:
W(t)=inf{y > 0| D(t+y) > A(t)}

We write:  A(s,t) = A(t) — A(s)
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Traffic
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Reich's Backlog Equation (1958)

REICH’S BACKLOG EQUATION: Given a left-
continuous arrival function A and a buffered link with
capacity C'. Then for all ¢ > 0 it holds that

B(t) = sup {A(t) — A(s) —C(t—s)} .

0<s<t
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Meet the min-plus convolution

Use Reich’s backlog equation to describe departures:

D(t) = A(t) — B(t)

A(t) — sup {A(t) — A(s) — C(t — s)}

0<s<t

= inf {A(s)+C(t—s)}.

0<s<t

We call this operation (min-plus) convolution (®)

Define: S(t)

Then:

Ct, t>0
0, t<0

D(t) = A S(t)




Introduction to Network Calculus
(min, +) Algebra



Processes

A Process is a function of time, F': R — R U {oo}

- non-negative : F(t)>0
- non-decreasing : F(t+s)> F(t) for s >0
- one-sided (causal) : F(t)=0fort <0

JF = all non-negative, non-decreasing processes
Fo = all non-negative, non-decreasing, and causal processes
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Meet the (min, +) algebra

Conventional Algebra Min-Plus Algebra
Addition (+) —  Minimum (min, A)
Multiplication (-) — Addition (+)
/1 F(t) dt — inf (F (1)
/R F$)G(t—s)ds  —  inf {F(s) + G(t — 5)}
(= F*G(t)) — (=F®G(t))

29



Burst and Delay Functions

Burst function Delay function
(00, t>0 Sa(t) = 6(t —d
5(t) — 0 d( ) ( )
0, t=<0
N N
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Properties of min-plus convolution

F.G,H e F,:

Closure. FF® G € F,.

Associativity. (F®G)@H =F® (G® H).
Commutativity. FRG =GR F.

Distributivity. (FANG)®@ H=(F@ H)N(G® H).
Neutral element. F'® § = F.

Time shift. F'® d4(t) = F(t —d).

Order preserving. If FF < G then FQ H < G® H.
Boundedness. F'® G < F', in particular, F ® F < F.

Except boundedness, properties hold for F, G, H € F
If F,G € F,: irell% {F(s)+G(t—s)}= inf {F(s)+G(t—s)},

0<s<t




Useful min-plus convolutions

@ Convolving rates yields the minimum rate:

A

rate R, ®

>

A

rate R

=7

rate min( R R

_V

@ Convolving delays yields the sum of delays:

®

A ]
B T
0 T+T,



Useful min-plus convolutions

@ Convolving affine functions is the minimum:

A A
min{b1 + 7 t, bg + 79 t}

by +7r1t ® ba— by + 1ot
>

by

I
0 0 0

@ Convolving delay and rate yields latency-rate:
A A A

® rate R . ?




Service Curves



Service Curves

Ct, t>0
0, t<0

@ Service curve is a generalization:

o At buffered link: S(t) = {

Arrivals Network Departures
> system >
A(t) g D(t)

For arbitrary arrivals A and resulting departures D at a network
system, a process S € F, is an exact service curve, if for all t,

D(t)=A® S(t).

Lower service curve = D(t) < A® S(t)
Upper service curve = D(t) > A® S(t)



About Service Curves

@ Service curves express a service guarantee A
for arrivals.

rate R

@ Network system does not need to be
work-conserving ’

Y

e Constant-rate server- S(t) = [Rt]* )

@ Delay server: S(t) = or(t)

P
|
=3
v

) CG(h) — Rl T
\° Latency-rate server: S(t) = R[t — T )

rate R

@ Many scheduling algorithms (e.g.,
Priority, Deadline-based) can be precisely
described by service curves

Y



Concatenation of Service Curves

A1 D1 - AQ DQ AN DN
S1 S SN

Al DN
S1R5R...0 SN

For a sequence of N service elements where the n-th element offers

a lower/exact/upper service curve S, (n =1,..., N), the sequence

as a whole offers an lower/exact/upper service curve
S1IR59R...0 SN

The service curve of the sequence is called network service curve.



Examples: Network Service Curves

Al D1 = AQ D2
S1 So

AN DN
SN

Sequence of ... Sn(t) S1®8S2®...0 SN(t)
constant rate servers Cplt]™ min, (Cy,) [t]T
delay servers dq, (1) 5ZN_1dn (1)

latency-rate servers O, [t — d,]*

min,, (Cn) [t - Zgzl dn]+



Traffic Envelopes
and
Traffic Regulation



Meet the (min, 4+) deconvolution

For two processes F, G € F, the min-plus deconvolution F' © GG is

FoG(t) = Sli}o){F(t +s)—G(s)}

o If F,G € F,, then

SUD,> {F(t+s)—G(s)} = ig}g {F(t+s)—G(s)}.

@ Weak properties: not closed , not associative, not commutative.

F.G,H e F,
@ Composition of ® and ©. (FOG)oH =Fo(G® H).
@ Duality. ' <G®H ifandonly if F o H <.




Subadditivity

A function F' is subadditive,
if for all s,t € R

F(t+s) < F(t) + F(s) . o) :

@ F' concave = F' subadditive

@ F' subadditive:
-F=F®F
-F=For | | |

o F'e F,: | 1 i
-FOoF eF,

- F' @ F' subadditive




Traffic Envelopes

At +7)

Traffic envelopes bound traffic
over intervals of time

| |
t t+ 71

A function F is a traffic envelope for A (A~ E ) if

E(r)> A(t+7) — A(t), Yr>0,VteR.

o A~ F = A=AQF

@ Good envelopes are subbadditive



Traffic shaping (Greedy shaper)

Greedy shaper : A network element that

@ limits arrivals to a network to a given specification (traffic
envelope),

@ buffers non-compliant traffic, and

@ releases buffered traffic when it becomes compliant.

A Greedy |D~ E
—>| shaper

If £ is subadditive, greedy shaper offers an exact service curve, i.e.,
Do Ao J




Example of greedy shaper: Token Bucket

—_—> \i/ >
Arrivals Departures

Buffer

b > 0
E(T): +rrt, T
0, T <0

—> FE/(7) is an exact service curve for the token bucket



Concatenation of traffic shapers

The following networks offer the same service (as long as E is
subadditive). Why?

One traffic shaper at network ingress:

Traffic shaping at each node:

—~ v s ]




| eftover Service Curve

Buffer

Given a buffered link with rate C, with two priorities. Low-priority
traffic has arrival function Ay, and high-priority traffic has arrival
function Ay with Ag ~ Eg. Then

Sp(t) = [Ct — Ex(t)]"

is a lower service curve for the low-priority traffic.

This leftover service curve is a (pessimistic) benchmark for the
service experienced at a link with multiplexing.



Performance Bounds



Three Performance Bounds

Given arrival function A with traffic envelope E, and a network

system with lower service curve S:

Network
system

D>A®S

@ Envelope for departures:
D~FEo»S (fort>0)

@ Backlog bound b*:
B(t) <b*=FE o S5(0)
© Delay bound d*: W (t) < d* with

d* =inf{d>0|FE @ S(—d) <0}

Bounds are tight for some A ~ FE.

\
Traffic

Envelope

\

Lower Service
Curve

S

—



Proof of Backlog Bound

B(t) = A(t) — D(t)
— A(t) — inf {A(t—s)+S(s)}

0<s<t

= sup {A(t—s,t) —5(s)}

0<s<t

< sup {E(s) = S(s)}

— ES(0)



End-to-End bounds

o Ay~ F

0 t <0 < T
E()=1"" =Y =" b=
b+rt, t>0 Rt-T), t>T

Objective: Compute end-to-end backlog and delay bounds



Two Analysis Approaches:

@ Network Service Curve: Obtain S" =51 ® So® ... ® Sy,
and compute delay bound using £ and S™.

@ Add per-node bounds: Compute arrival envelopes iteratively
at each node.

o 1%' Node: Use envelope E and service curve S;
o 274 Node: Use A5 ~ E © S and service curve S5
o n'" Node: Use A, ~ (... (E©S1)@82)@...)@8S,_1 and S,



All we need is a deconvolution

Deconvolution of token bucket envelope with latency-rate service

curve:
A
0, t<0
E(t) = _
b+rt, t>0
0 t<T
S(t): Y i
Rt-T), t>T

\/




End-to-End bounds

Results:

Network Service Add Per-node

Curve Bounds
T
> b+ NrT Nb+ (N? + N)%
b Nb T
- — + NT 0 UNT 4 (N2 - N)L=

R R 2R



End-to-End Bounds

e b=10 kb,
e r = 100 kbps,
@ I'=15ms,
e R =500 kbps

End-to-End Backlog Bound

End-to-End Delay Bound

End-to-end delay bound (msec)

—_
o

End-to-end backlog bound (kbit)
(=) - N w ~ [&)] [«2] ~ [ee] [{e)

1000

900
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700 -

600 -
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400

300

200}

100 -

T T T T
— — — Network Service Curve

Add per-node bounds

1 1 1
20 25 30
Number of nodes (N)

1 1 1
35 40 45

50

T 1% T
— — — Network Service Curve

Add per-node bounds

1 1 1
20 25 30
Number of nodes (N)

1 1 1
35 40 45



(min, +) Linear Systems



(Classical) System Theory

Linear Time Invariant (LTI) Systems

IIn®earnvariant:

A1 (A(L)2(2) D1(D(t)2(t)
T + Mt +
blAlAah—l lT)AQ(t) leDlzt —l7l')2D2 (t)



(Classical) System Theory

Linear Time Invariant (LTI) Systems

A=) D=5S%xS58
_>
Input Output

e |[finputis Dirac impulse, output is the impulse response S

e Qutput can be calculated from input and system response:

D(t) = /_°:O A(T) - S(t — 7)dr = A/* S(b)

(classical) convolution”



Min-Plus Linear System

rhiim@|nvdmaat:
A1 (tA AN() Network D1 (tCD)(t)
: P 1 o
inf{by + A1(t),b2 + Ax(1)} S(t) inf{by + D1(t),bo + Da(t)}
g | At le—— delay —»

| | | | | | .
|||||| Lt




Min-Plus Linear Systems

e Ifinputis burst function ¢, output is the service curve S

it
5(t) = oo, Ift> O.,
0, otherwise



Min-Plus Linear Systems

A D=A®S

e Departures can be calculated from arrivals and service curve:
D(t) =inf{A(r+ St —7)} = A®S5()
' /

(min, +) convolution



Transforms

e C(Classical LTI systems

Time domain Frequency dolmaln
— o0 —wt
F(t) _ Fourier Filw) = /o /OO f(t)e dt
feg(t) transform =\ 7 (w) = Fp(w) - Fo(w)
e Min-plus linear systems
Time domain Rate domain
£(®) Jegendre | £4(r) = sup{rr — f(7)}
transform T
f®g(t) Ligg=Lf+ Ly

Properties: (1) L(L(f)) < f. If fisconvex: L(L(f)) =Ff
(2) If g convex, then f>g& Li<Lyg
(3) Legendre transforms are always convex



Characterizing non-linear systems

e Many networks are not min-plus linear
— i.e., forsomet: D #AR®S

e .. butcan be described by a lower service curve
— such that for all t: D(t) > A® S(t)

e Having a lower service curve is often enough, since it provides
a lower bound on the service !!



Bandwidth Estimation (Case Study)



Probing a network with packet trains

e A network probe consists of a sequence of packets (packet
train)

e The packet train is from a source to a sink

e For each packet, a measurement is taken when the packet is
sent by the source (arrival time), and when the packet arrives
at the sink (departure time)

Edited slide from: V. Ribeiro, Rice. U, 2003



Rate Scanning Method

e Each packet trains is sent at a fixed rate r (in bits per second):
— All packets in the train have the same size
— Packets of packet train are sent with same distance

Packet train: | |
€ > > >

D D D

e Rate Scanning: Source sends multiple packet trains, each with
a different rater



Bandwidth Estimation in the Network Calculus

e View the network as a min-plus system that is either linear or
nonlinear

Bandwidth estimation scheme:

1. Timestamp packets of packet s A
. S A1) |e—— delay —
train: 1
AP(t)- Send probes | T D)
. backlog
DP(t)- Receive probes T ’—l
2. Use probes to find an Sthat |
satisfies o 0 timer
D(t) > A® S(t)
for all (A,D).

3. S is the estimate of the available
bandwidth. The goal is to select
as large as possible.




Rate Scanning (1): Theory

data
N
‘=
¥,
*
*
*
*
’0
&
S

e Backlog: B(t) = A(t) — D(¢t)

e Max. backlog: | bj;ilgﬁ

Bmaz = S%D{A(t) - D(t)}

1 1 1 1 1 1 [
T T T T T T Ll

e If A(¢t)=rt and D(t) = A ® S(t), we can write this as:

Bmaz(r) = s%p{rt — ir)rf{frfr + S(t—171)}}
= sup{sup{r(t—7) = S(t —7)}}
= sup{rt —5(t)}
Ls(r)
e |nverse transform: If S is convex we have
S(t) = L(Lg)(t) = LB, (1) = sup{rt—Bmaz(r)}



Rate Scanning (2): Algorithm

Init: S(t) — 0
Step 1: Transmit a packet train at rate r,
compute B, ,.(7)

compute S(t) =Lp (1)

Step 2: If estimate of S has improved, increase rand go to Step 1.



Non-Linear Systems

e When we exploit D(t) = A® S(t), we assume a min-plus linear
system

e |n non-linear networks, we can only find a lower service curve that
satisfies D(t) > A® S(t)

e We view networks as system that linear ;  not
are linear at low load, and that : linear
become non-linear when r < threshold i 7 > threshold
network load exceeds a threshold. : R
_ Probing rate
r = threshold

e When increasing the probing rate, we eventually exceed the
threshold at which the network becomes non-linear



Detecting Non-linearity

How to determine when the probed network becomes non-linear?

Backlog convexity criterion
* Suppose that we probe at constant rates A(¢) = rt
e |Legendre transform is always convex

e |n alinear system, the max. backlog is the Legendre transform of
the service curve:

Bmaaz("“) — ES(T')

> When Bmaz(r) is no longer convex the system is no longer linear
—> Stop (increasing the rate) when B4 (7) has become non-convex



EmulLab Measurements

e Emulab is a network testbed at U. Utah
— can allocate PCs and build a network
— controlled rates and latencies




Dumbbell Network

e UDP packets with 1480 bytes (probes) and 800 bytes (cross)
e Cross traffic: 25 Mbps

Cross
traffic 100 Mbps 100 Mbps
10 ms no delay
50 Mbps
ea0Ms ==

100 Mbps 100 Mbps
Probe 2210 ms no delay “~3
traffic

o’ A



Constant Bit Rate (CBR) Cross Traffic (LFV10)

e Cross traffic is sent at a constant rate (=CBR)

257

reference
service curve

data [Mbit]

/" service curve
estimates

0 25 50 75 100 125
time [ms]

CBR cross traffic

e The “reference service curve” (red) shows the ideal

results. The “service curve estimates” shows the results of
the rate scanning method

e Figure shows 100 repeated estimates of the service curve



Rate Scanning: Different Cross Traffic

(LFV10)

e Exponential: random interarrivals, low variance

e Pareto: random interarrivals, very high variance

2.5
2 L
—_ reference
= 157 service curve
=
g
g 1r SErvice curve
estimates
0.5
O v “d | L L
0 25 50 75 100

time [ms]

Exponential

125

257
2 L
= reference
= Lo service curve
=
9
5
service curve
05 estimates
Y
0 =7 .l | | |

time [ms]

Pareto



A Few Remarks on
Deterministic Network Calculus



Remarks on deterministic network calculus

e Comprehensive analysis framework for communication networks:
— Applicable for an analysis that includes “real traffic”

— Precise/exact description of traffic control algorithms: traffic
shaping, scheduling

e Foundations in
— Dioid algebra
— Linear systems

e Great for teaching due to the closeness of theory and practice (e.g.,
traffic models, traffic shaping, scheduling, etc. )

82



Mythbusters

e Myth: “Deterministic Network Calculus is always pessimistic”

— Deterministic network calculus analysis of min-plus linear
systems can be exact

— Lower service curves of non-trivial scheduling algorithms can
vield a tight (necessary and sufficient) analysis

— Worst-case analysis is pessimistic (for average case).
Therefore, if network calculus is used for worst-case analysis,
results are accordingly

e Not a Myth: “Deterministic Network does not account for
statistical multiplexing”

— This motivates Stochastic Network Calculus

83



STOCHASTIC NETWORK
CALCULUS
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®
N
® ®
(= :
o> 7 L
] . . . ‘: -
Expected Deterministic Probable worst-
case worst-case

case



Statistical Multiplexing Gain

Worst-case arrivals

Arrivals FIOW 2 ‘l |‘|

&
Worst-case =
backlog 2 ‘\

Time




Statistical Multiplexing Gain

Resources heeded Resources needed)
to support to support
<<N-
guarantees guarantees
\for N flows ) \for 1 flow )

Statistical multiplexing gain is the raison d’étre for packet networks.

e Source of statistical multiplexing is the stochastic independence
of aggregated traffic sources



Motivation for Stochastic Network Calculus

Extend network calculus analysis so that it can
account for

1. Statistical multiplexing

2. Random service models (wireless!)



Statistical Envelopes



Multiplexed arrivals

A;~E
Ay~ Ey
PR
J
N
e Arrivals from group of flows: Z Aj

j=1

N
e Deterministic envelope of aggregate: Z L
j=1

e Statistical envelope: a traffic envelope G of the aggregate
that may be violated with a small probability,
and with ¢ <) E|
j



Statistical Envelope

A statistical (traffic) envelope G for a random arrival process A with
stationary increments satisfies for all s <t

Pr|A(s,t) > G(t—s;¢)] <e

@ ¢ is violation probability
@ Statistical envelope bounds arrival of a flow with high certainty
@ Statistical envelopes are non-random functions

@ Due to stationary increments, we can write

Pr[A(t) > G(t;e)] < e |




Constructing Statistical Envelopes

Given: N i.i.d. flows Ay(t),..., An(t)

o Expected value E[A(?)]
o Variance Var[A(t)]

o Moment generating function M 4 (0, t)

Compute:

Pr Y A;j(t)>G(t;e)| <e

Tools:
@ Central Limit Theorem
@ Chernoff Bound

e Hoeffding Bound



Statistical Envelopes: Central Limit Theorem

Central Limit Theorem:

al — z — NE[A(#)] )
Pr A; xl ~1—® .
; (t) > _ : <\/NVar[A(t)]

—>  G(t;e) = NE[A@)] + VNz1—e /Var[A( J

(®(2): CDF of standard normal and ®(2;_.) = ¢)



Statistical Envelopes: Chernoff Bound

Chernoff Bound:

Pr |3 Ai(t) > 2| <e " (Ma(0.1)”

—> ((t;¢) = infp-g %(N InM4(0,t) — lne) J




Statistical Envelopes: Hoeffding Bound

(A(t) must be bounded)

Hoeffding Bound :

2(12

< e NE®D)?

Pr |y Aj(t) > NE[A@®)]t+a| <



Example: Shaped Traffic

Traffic: A; ~ E; (each flow is shaped) with p; = lim;_, —Ejt(t)

o E[A(t)] = pt

|
i

W ,
MA 0 t)

E(t

Central Limit Theorem: G(t;e) = Npt + VN 2z1_ept \/% — 1

: Do) 1 pt OF(t) _

Chernoff bound: G(t;e) = 52%{6’ (N In(1+ B (e 1)) —In 8)}
1,1

Hoeffding bound: G(t;e) = N pt+ VN E(t) S In -




Example: Shaped Traffic

(BBLOOO)

Dual token bucket: E(t) = min{Pt,b+rt} (P >r).

Type Peak rate Mean rate Burst size

P (Mbps) r (Mbps) b (bits) —6
e =10
1 1.5 0.15 95,400
2 6.0 0.15 10,345
70 i ' T ' 35 T T T T T
1

— Peak Rate —~ f—
£ 60F  Deterministic Envelo - 2 4l Peak Rate |
2 N Statistical Envelope (Chernoff)- - 2 30 : Statistical Envelope (Chernoff) — -
; Statistical Envelope (CLT) - ‘; ' Statistical Envelope (CLT) ~ -------

50¢ o 251 1
z 2 25
5y 3 1

o
& 40 (5} 20k I
= — - E 1 "
Qc-ﬁ' - < -~
= =TT E : Deterministic Envelope o Ne1000 =]
5 30 N =100 - " . © 15r, N =100 T i
oéa —_— - _ B - E . A(_,,‘— /f//;@;,‘ -
g 20 T  N=10000 s I T _—zEET T
E 4T - {)_,__,_‘_—.._,__.—.:—--- g 10L e o DaEE N=10000 |
< - B pageg TN e e
At =TT E =T =7 7% T Average Rate
10 /-Tr‘f . -‘—‘-r‘ - _: ---- :': ——————— N = 10000 5 ,/-"/‘——" ///'/”':—-’—— - 7
e ™~ Average Rate LA gE T
0 ”'(;:‘___5‘-.;:_.';“‘5 = /;’/v“/ et g
=T L L L L O L ) L I L
20 40 60 80 100 20 0 €0 50 100
Time interval (ms) Time interval (ms)

Type 1 Type 2



Statistical vs. Deterministic Envelopes

Traffic rate at t = 50 ms

Type 1 flows

Traffic rate per flow (Mbps)

0.1

(BBLOOO)

Average Rate

Peak Rate

Statistical Envelopes

4000 6000 8000

Number of connections

10000



Backlog Computation

(or: Why statistical envelopes are not enough)



Backlog Analysis

Ay~ E;

Ay~ Ey

DA

J

Next step: Use the statistical envelope for a
probabilistic backlog analysis



Stochastic backlog bound: Encountering a problem

Recall Reich’s backlog expression (for buffered link):

B(n) = oglkaan {A(k,n) —C(n—k)} .

Stochastic backlog bound:

Pr|B(n) > x| = Pr Jmax. {A(k,n)—C(n—Fk)} > :13]

@ Good news: If G(k;e) < Ck + x, then Pr(A(k) — Ck > x) < (k)

@ Bad news: > )_,&(n) is unbounded (in general) for k — oo



Different ways to address the problem

e The problem (prev. slide) can
be addressed differently,

leading to a range
of approaches:

Abandon rigor:
Principle of the
largest term

Pr[B(n) > x] =

= Pr

| 0<k<n

Pr - max {A(k,n)—C(n—k)} > .’1?]
U An—-k)-Cn—k) > :z')}

(union bound)

\

Avoid union bound:

l

martingale analysis

Use distribution of A:

moment generating
function calculus

Asymptotics only:
effective bandwidth

~

Use tail distribution of A:

sample path envelope

Each approach presents a tradeoff (with pros and cons)
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Principle of the largest term

Pr [maxX(n) > x] ~ max Pr [ X(n) > z]
k<n k<n

@ Rhs. is always lower bound for |hs.

@ Rhs. is upper bound when it is justified that

ZP?“ >£U~I]£l<aXP7“[X( n) > x
k<n "

Then: Backlog bound P(B(n) > b°) < € with
b° = maxy<, (G(k;e) — Ck) )




Effective bandwidth (abbreviated)

1
Effective bandwidth: «(0) = klim o InM4 (0, k) J
—00

Then:

C>a) = 3IK>0: Pr(B(n)>z)<Ke ¥

@ Provides exponential decay rate (but no constants)
o Avg. rate < a(f#) < Peak rate

@ Multiplexing of N independent flows Aq,..., Ay with effective
bandwidths a1 (), ..., an(0):

N
a(f) = Zaj(n) .
j=1



Exponentially Bounded Burstiness (EBB)

Arrival process A has exponentially bounded burstiness (EBB) if

Pr (A(S,t) > p(t —s) + 0) < Me™ ™7 |

for all s <t and all o > 0, with constants M > 0 and a > 0.

@ Interpretations:

1. Probability of deviation from average rate p by more than o has
exponential decay

2. Probabilistic token bucket

e EBB traffic is large class: Poisson, Markov-modulated On-Off, etc.
e EBB assumption is sufficient to obtain a stochastic backlog bound

@ Other nice properties



Backlog Bound with EBB traffic

Pr|B(n) > x| = Pr ( max {A(n) — A(k) —C(n—Fk)} >z

0<k<n

Pr( g (A(nk:)(}(nk:)>x))

0<k<n

n

< Z Pr(A(k) — Ck > x) (union bound)

k=0
= zn:Pr(A(k) >rk—(C —r)k+ x)
k=0

< 3 Mee((©nk+n
k=0
Me—ox
— 1 — e—a(C—T)

)



Revisiting Formulation of Statistical Envelopes

e EBB definition: | Pr(A(t) > pt+o0) < Me™“°

@ We write this as a statistical envelope:

Statistical envelope:
In EBB:

We get:

Pr{A(t) > G(t,e)] < e
e=Me < o =In(M/e)"

G(t,e) =pt+In(M/e)”

@ Thus there are two equivalent formulations:

(1) decay function

G(t;o) =pt+o
e(x) = Me™°

<~

(2) fixed violation probability

G(t,e) = pt+1In(M/e)"
e fixed

@ We use both: (1) is more convenient for analysis, and (2) is

convenient for illustrations



Statistical Envelope (Revised Formulation)

A statistical (traffic) envelope G for a random arrival process A with
stationary increments satisfies for all s <t

Pr[A(t) > G(t;x)] < e(x)

where €(x) is decreasing in x.

Exponentially bounded burstiness (EBB) G(t;x) = rt + x,
e(x) = Me "

Stochastically bounded burstiness (SBB)  G(¢; ) =rt+x,
[y e(u)du <



Doob's inequality: Avoiding the union bound

Doob’s inequality: If X, is a supermartingale, then

Pr ( max X > a:) < ELX]
0<k<n X

A has independent increments Z(k)=Amn—k,n)—Ck
— aZ (k) :
C' > 0 constant e IS a supermartingale

Pr|B(n) > x| = Pr RS {An —k, k) —C(k)} > a:}

— Pr | max e®%(k) 5 ooz
0<k<n

< E[e*?M]e=  (Doob'’s inequality)

— e—OKiB

The art lies in the construction of a suitable supermartingale (very
difficult for general network elements)



Statistical Sample Path Envelopes
(SSPEs)

(and Single Node Performance Bounds)



Need for statistical sample path envelope

@ Deterministic envelope E satisfies

VO<s<t: A(s,t) < E(t —s)

@ Statistical envelope G gives us

VO<s<t: PrlA(s,t) < g(t—s;e)] >1—¢

@ Suppose we had an envelope G with

Pr|v0o<s<t:A(s,t)<Gt—s;e)] >1—%

A statistical sample path envelope (SSPE) of a random arrival pro-
cess A is given by an envelope function G and a decay function ()
such that for all ¢ > 0

Pr| sup {A(s,t) —G(t—s;0)} > 0| <Z(0)
0<s<t




Sample path envelopes make it easy!

Deterministic analysis:

B(n) = max {A(k,n) —Cn—k)} < Sup {E(k) — Ck;}

Stochastic analysis:

B(n) = max {A(k,n) = C(n—k);

< Orgng;cn {a(k, o) — Ck} (with probability) 1 —&(2))

Hence: Backlog bound P(B(n) > b%) < ¢ is given by

b° = max (G(k;¢) — Ck)

k<n




Benefits of sample bound benefits

@ Sample path envelope allows us to keep probabilistic argument
separate:

@ Analyze backlog for a single sample path

@ Bound the result with statistical sample path envelope

@ Statistical sample path envelope is often pessimistic

@ Note: A statistical sample path envelope is equivalent to a
probabilistic backlog bound at a buffered link

@ Statistical sample path envelope , Statistical envelope

=
%



Statistical Sample Path Envelope for EBB traffic

Statistical Sample Path Envelope

Statistical Envelope G(t:0) = (p+ )t + 0
g(t,a)zpt+0 i _ _ Me—@°
£(0) = Me—o? 2(0) = 1=

’ 0 > 0 arbitrary constant

Pr( sup {A(t —s,t) —G(s)} > 0)

0<s<t

= Pr(os<ti[<)t{A(t —s5,t)—(p+9)s+o} >0)

< ZP?“ (t —s,t) > (p+0d)s+0c) (union bound)

—Qo
<::£:>A[€—1naé—a53:: Me
_-3—0 ]'__e_aé



Different ways to obtain SSPE . ..

@ ... with the Principle of the Largest Term:

Pr [max {A(s,t)} > G(t — 3)] ~ max Pr[A(s,t) > G(t — s)]

0<s<t 0<s<t

— G(t;e) =G(te), E=e |

@ ... using a Statistical Backlog Bound
Suppose we have Pr|B(t) > x| <e(x) ,Vx
Since B(t) = supg<s<; {A(s,t) — C(t — 5)}, we get

— E(t;x)ZCt—l-iE, 5(37):5(37”




Different ways to obtain SSPE . ..

@ ... using Time Scale Bounds:

Deterministic bound on busy period |71 = max{k|FE(k) > Ck}

n—1
Pr pnax {A(l,n) —Gn—1;e)} > O] < ;Pr [A(l,n) > G(n — l)]




Different ways to obtain SSPE . ..

@ ... using Time-Decaying Violation Probabilities:

Assume statistical envelope where violation probability decays with
time: | Pr[A(n —k,n) > G(k)] < e(k)

E
For example: |e(k) = s
n—1
— — : > < — >
Pr| max {A(n—k.n)=G(k:e)} > o] <X Pr [A(n k,n) > G(/
> E
<>
— 2
L T1k
_r

Q
VS
&
™
N—"
|
0
—~
5
™
SN—"
™|
|
|
o
D—




Comparison: Statistical Sample Path Envelopes

Traffic:  A; ~ E; with E(t) = min{Pt, o + t} with

P=1

.5 Mbps p = 150 kbps o = 95,400 bits

(There are additional parameters/choices !)

—
o
o

Statistical sample path envelope (kbits)

0]
&)

»
o

— Global envelope

Time decay prob.
""""" Time scale bound -
- - -SSPE (EBB)

50 100 150 200
Time interval (ms)

Different SSPEs (2 = 1079)



Stochastic Bounds (Single Node)

Given:
e Statistical sample path envelope: G(t;o), (o)
@ Deterministic lower service curve: S(t) with D> A® S

@ Statistical envelope for departures:
G © S(t; o) with £(o) is a statistical envelope of departures

@ Backlog bound: b*(c) = G © S(0; o) with

Pr(B(t) > b*(0)) < £(0)

© Delay bound: d*(c) =inf{d > 0|G @ S(—d;o) < 0} with

Pr(W(t) > d"(0)) < e(o)

Compare to deterministic bounds!



Proof of Backlog Bound

Pick: o
Assume: Vs <t: A(s,t) < G(t — s;0) (with prob. > 1 —e(0))

B(t) = A(t) — D(1)
— A(t) — inf {A(t—s)+S(s)}

0<s<t
= sup {A(t —s,t) —S(s)}
0<s<t
< sup {G(s;0) = S(s)}
=G0 S(0;0)

This bound does not hold with probability < (o)

Note: Proof is essentially identical to deterministic case.



Statistical Service Curves

(and Single Node Performance Bounds)



Statistical Service Curve

Wanted: Probabilistic analogue to deterministic service curve

For arbitrary arrivals A and resulting departures D at a

network system, a function S(-,e) € F, is a statistical

service curve with violation probability ¢ > 0 if for all ¢
P(D(t) < A®S(t,e)) <c¢

or

For arbitrary arrivals A and resulting departures D at a network
system, a function § is a statistical service curve if for all ¢

P(D(t) <A®S(t,z)) <e(x)

where () > 0 is a decreasing function.

Statistical service curve is a non-random stationary bound on available service



Stochastic Leftover Service Curve

Given: A fixed rate link with random cross traffic A..
Question: What is the available service to the flow with arrival A7

AC

L,

A —> D

D

cC

Buffer

If cross traffic has arrival function A. with SSPE G(t,¢), a statistical
service curve with violation probability € for arrivals A is

S(t;e) = [Ct —G(t,e)]™

Note: Formulation involves a sample path argument.



Time-varying service

@ Time-varying service: Available service in [s,t) is S(s,t)

o Service is not time-invariant: S(s,t) # S(s+ x,t + x)
o Service is additive: S(s,t) = S(s,7) + S(7,1)

e Service can be deterministic or random

@ Time-varying service requires (min, +) algebra on bivariate
functions.

For arbitrary arrivals A and resulting departures D at a network

system, a bivariate service process S(s,t) is a time-varying server,
If for all ¢,

D(t) > inf {A(s)+ S(s,t)}

— 0<s<t




Random service

@ Random Service: Available service
S(s,t) is a random variable such
that:

e Service is time-varying

e Consider a tail bound S(t) with

Service at time t

decay function £(t) such that time t

Pr(S(s,t) <S(t—s)) <e(t—s)

Then: The tail bound S provides a statistical service curve with
P(Dt) < A®S®)) <> iuyc(k)

|

Formulation involves a union bound.
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Service with Exponentially Bounded Burstiness (EBB)

A bivariate service process S has exponentially bounded burstiness
(EBB) if

Pr(S(s,t) < p(t—3s)— a) < Me ™7 |

for all s <t and all ¢ > 0, with constants M > 0 and o > 0.

Statistical Service Curve

EBB service g(t; 7)=(p—0t+o
S(t;o) =pt—o — _ Ve—ao
e(x) = Me (o) = =
‘ 6 > 0 arbitrary constant )

Pr (D(t) < inf {A(s)+ S(t—s)}) <......

0<s<t

< Z Pr(S (p—90)(t—s)4+ o) (union bound)

—o
< § :Me—aae—ach _ Me
Bl 1 —e=

sS=



Stochastic Bounds (Single Node)

Given:

o Statistical sample path envelope: G(t;0,), £,4(0,)

@ Statistical service curve: S(t;os), es(0s)
@ Define: e(o) = mj&n {e(og) + es(os)}
og+0s

@ Statistical envelope for departures:
G © S(t;0) with () is a statistical envelope of departures

@ Backlog bound: b*(¢) = G @ S(0;
)

o) with
Pr(B(t) > b*(a)) <e(a)

) <
@ Delay bound: d*(¢) =inf{d > 0|G @ S(—d;o) < 0} with
Pr(W(t) > d*(g)) < e(g)

Compare to deterministic bounds!



Proof of Backlog Bound

Pick: 0g, 0
Assume: Vs < t: A(s,t) < G(t — s; Tg) (with prob. > 1 —¢4(0y))
D(t) > A® S(t;04) (with prob. > 1 — &5(05))

B(t) = A(t) — D(t)
= A(t) — inf {A(t—s)+S(s;04)}

0<s<t
= sup {A(t—s,t) — S(s;04)}
0<s<t
< sup 1G(s504) — S(s;04) }
5>

=G0 8(0;04,0)

This bound does not hold with probability < e,(0,) + €5(0s)

Note: Proof is essentially identical to deterministic case.



Example: Schedulability Analysis

What is the maximum number of flows
with delay requirements that can be put
on a buffered link with and without
considering statistical multiplexing?

e Link capacity C
e Each flows j has

— arrival function A; 4~ E;
— envelope E;

— delay requirement d, Ay~Ey / 4<(9<




Schedulability Analysis

e Work-conserving scheduler A, ~E, ~ Scheduler
that serves flows from Q classes :

* Class-q has delay bound d, Ay Ey /—

Deterministic Service

Statistical Service
Never a delay bound violation if:

Delay bound violation < ¢ if:

1
d, > sup - {Z E,(s+ Ayp) — Cs}
P

1 —
d, > sup - {Z Gp(s+Agpie) — Cs}
p

Where

qu are scheduler-

E, dependent constants (see [LGB11])

Gp(-;€) is det. envelope for all
class-p flows

is SSPE of all class-p



Schedulability Analysis (KWZL96)

Deterministic service
40 | | | | | |

C=45 MbpS 35 —45% EDF —
Static Priority (SP) —

=

S 30 ]
MPEG 1 traces: =

e

@ 25

=
Lecture: = 20

- @)

d =30 msec 2 15

2 .
Movie >~ 10
(Jurassic Park): * 5
d =50 msec

0 10 20 30 40 50 60 70
# Lecture Connections



Schedulability Analysis

Number of Terminator connections

Example: MPEG videos with delay constraints at C= 622 Mbps

2000

1500

Deterministic service vs. statistical service

Thick lines: Earliest Deadline First (EDF)
Dashed lines: Static Priority (SP)

Statistical multiplexing
makes a big difference

Scheduling
has small impact

.
.,
.
*
”
Yo
.

1000 1500 2000

Number of Lambs connections

(BBLOOO)

dterminator: 100 ms
dlamb: 10 ms

e=10"°



Schedulability Analysis (LBLO7)

Different traffic types: - Regulated
- Memoryless On-Off
- Fractional Brownian Motion (FBM)

700 ' ' ! ! J ' Schedulers:
> 600k SE.  — il SP- Static Priority
5 EDE - EDF — Earliest
E—: 500 - GPS --- . Deadline First
GPS — Generalized
104*4(.'0 N k. Il Processor Sharing
[-‘ 3w - Q@ o _."s\_. A
qé 00 | Peak & ' Traffic:
B _Rate & Ay, 1  Regulated - 2-level
g 100 - Eg f,?c- g % ep - token bucket
2 M Tratsse 4 e On-Off — On-off
00 100 200 300 400 500 600 700 ouee
Number of Type—2 Flows Brownian Motion

C= 100 Mbps, & =10



Stochastic Network Calculus:
End-to-End Performance Bounds



Stochastic Network Service Curve

Recall deterministic result:
If St 52, ..., 8" describes the service at each node,

then
et — Sl S5?x... @8N

describes the service given by the network as a whole.




Stochastic Network Service Curve

* Problem: Given statistical service curves S' ' S?, ... S¥ find
statistical network service curve S™¢! so that

St —-8Sles8’w...08"

e Technical difficulty:

Al :81: D1:A2 : : D2

D*(t) > inf {A%(s) +S%(t —s)} (with prob. &)

T 0<s<t Splisa
= {A%(s,) + S%(t — s,)} _, random
variable!

< A" @ 8(s,) + St — 50)} (withapTob. ¢)
= A' S8 ® S84t



Stochastic Network Service Curve

e |n early 2000s, finding a stochastic network service curve was an
open problem for a few years:

— Some incorrect solutions made it to publication
— Some solutions were quite restricted (e.g., [BLP0O6] )

e The following result - first presented at ACM Sigmetrics 2005 - was
general enough to enable numerical computations under non-

trivial probabilistic assumptions



Statistical Network Service Curve (CBLOG)

e Stat.service curve atnoden: S"(t,0) = [S"(t) — o], £"(0)
with Z;il e™(0™) < 0

e Define: S_5(t) = S(t) — dt

Theorem: If S1 82 ... S are statistical service curves,
then forany v > 0, Snet(t, o) = [Snet(t) _ g]+ is a
statistical network service curve with

SMNt) =8 @8] ® ... 0@ Sy_1),(t)

e"(0) = ___inf {eN(UN) + i ign(an +j7)}

N _
2in=10"=0 n=1 j5=1



Example: Scaling of Delay Bounds

Through

Flows
> Node 1 Node 2 > > Node N
Through

iy

Cross Cross Cross
Flows Flows Flows

vy

e Traffic: EBB model of Markov Modulated On-Off ( :‘
e All links have capacity C

e Same cross-traffic (not independent!) at each node
with SSPE gc(t7 o)

e Service curve of through flows at node n:
(through traffic has lower priority) S™(t,0) = [Ct — ?C(t, g)]+



Example: Scaling of Delay Bounds

-1 L.

Flows
> Node 1 Node 2 > > Node N

—»
Through

I |

Cross Cross Cross
Flows Flows Flows

e Two methods to compute delay bounds:

1. Network service curve:
Compute single-node delay bound with statistical
network service curve

2. Add per-node bounds:
Compute delay bounds at each node and sum up



Example: Scaling of Delay Bounds (CBLOG)

e Peakrate: P=1.5 Mbps e C=100 Mbps
Average rate: r = 0.15 Mbps e Cross traffic = through traffic

e T=1/u+1/A=10ms © =107

1000 i i i
900/ / e Addition of per-
| adding per-node node bounds grows
800 &8 R/ results f 3
S o O(N3)
700~ 1 Wi
H S! .
-~ ; e Network service
600 ;
£ ; curve bounds grow
25000 / O(N log N)
8 400r with network service curve
3001 '
200+ _50%
100 ; 27 |
o o U=10%
: : : t f 1 | | ] |
% 10 20 30 40 50 60 70 80 90 100

Total nodes N



Lower Bound on E2E Delay are Q(N log N) (BLC11)

e M/M/1 queues with identical exponential service at each node

0SS 0SS 0SS
affic affic ffic

G I - - s

Through Node 1 Node 2 Node N
flow

Theorem: E2E delay 17/ "¢t satisfiesforall 0 < 2z < 1

Pr (W”et < lelog(vgN)) <z

Corollary: z-quantile wx(z) of Wy satisfies

wn(z) = Q(Nlog N)




Upper and Lower Bounds on E2E Delays

Node 1

Node 2 Node N

—>

Through
flow

e Tandem network without cross traffic
e Node capacity: C
e Arrivals are compound Poisson process

— Packet arrival rate: )
— Packet size: Y; ~ exp(p)

e Utilization: p =X\ (uC)



Upper and Lower Bounds on E2E Delays BLC11)

= = =Upper bound ,/ CapaCIty
——— Simulation e -
40| == Lower bound L7 ¢ = 100 Mbps

Mean packet size

A 1
£ = = 400 Bytes
> %
8 Load factor
p=90%
Violation probability
0 e =10"°

10 20 30 40 50
Number of nodes



End-to-End Performance Bounds for

Heavy-tailed Traffic
(briefly)



Heavy-Tailed Self-Similar Traffic

e A heavy-tailed process X satisfies

Pr(X(t)>x) ~Kz™® | 1<a<?2

e A self-similar process satisfies

X (t) ~gist a~ M X (at)

a>0
H € (0,1) Hurst Parameter



htts Traffic Envelope

e Heavy-tailed self-similar (htss) envelope:

V

G(t—s;0) e(o)

e Main difficulty: Backlog and delay bounds require sample
path envelopes of the form

Pr(sups<¢{A(s,t) —G(t—s;0)} >0) <e(o)

e Key contribution (not shown):
Derive sample path bound for htss traffic



Example: Node with Pareto Traffic

Traffic parameters:

a = 1.6
b = 150 Byte
A = 75 Mbps

Node:

e (Capacity C=100 Mbps
with packetizer

e No cross traffic

Compare:

e Upper bound

e Lower bound

e Simulations of sample paths

Pr(W(t) > w)

(LBC12)




Example: Nodes with Pareto Traffic (End-to-end) z¢;y)

Number of nodes:

N=1,2.48

Compared with:

Upper bound
Lower bound

Simulation of sample
paths with 102 packets

Pr(W(t) > w)




lllustration of scaling bounds

End-to-end delays of htts traffic:

e Upper Bound: O(Ng—i(log]\[))ﬁ)
e Lower Bound: Q(Nﬁ)

Upper Bound

Lower Bound

End-to—end delay bound

Number of nodes (N)

{ O (NlogN)
@ (N)



Moment Generating Function

Network Calculus
(briefly)



Moment Generating Function (MGF) Network Calculus

@ An alternative method to derive stochastic bounds without
constructing envelopes for traffic or service

@ Assumes independence of arrivals and service

o MGF of random variable (RV) X: Mx (6) = E[e%X]
o For two independent RVs X and Y: Mx .y (0) = Mx(0)My(0)

@ Describes arrivals, departures, and service as bivariate functions

o A(s,t) are arrivals in time interval [s,t)
o D(s,t) are random departures in [s,1)

o S(s,t) is the random available service in [s,1)

@ Derivations require network calculus for bivariate functions



Network Calculus for bivariate functions

Arrivals: A(s, t)

Departures: D(s,t)

Time-varying server:  D(0,t) > A ® S(0,t)

Backlog: B(t) = A(0,t) — D(0,t)

Delay: W(t) =inf{s > 0| A(0,t) < D(0,t+ s)}

f®g(s,t) =ming<r<{f(5,7) + (7. 1)}
f % g(S}t) — ma*XOSTSS{f(Ta t) - g(Tv 5)}

@ Envelope for departures:

D(s,t) < A@ 5(s,1) Network service curve:
@ Backlog bound: S1®85®...0SN(s,t) is the time-
B(t) < Ao S(t,t) varying server of a sequence of time-
varying servers with S1, Sa,...,Sn

© Delay bound: W(t) <

4

inf{d>0|A® S(t+d,t) <0}
Note: Network calculus for bivariate functions has weaker properties.

Eg., f®g(st) #9® f(s,t)




Moment Generating Function (MGF) Network Calculus

@ For independent bivariate processes f and ¢

t
Mgg(—0,5,t) <> Ms(—0,5,7)My(—0,7,1)

T=S

Mygg(0,s,t) <> Mg(0,7,t)Mg(—0,7,5).

7=0

With the Chernoff bound, this yields:
Pr(f®g(s,t) <Y(s,t)) <e
Pr(fog(s,t) < Z(s,t)) <e

with

1 . |

f

Z(s,t) = min — { log (Z M(0,7,t)Ms(—6,, .s-)) - log;}

\ =0



Moment Generating Function (MGF) Network Calculus

Mu(0,s,t) = E[e?AED) N Mg(—0,s,t) = E[e™50)]|

Pr(B(t) > b*(t)) < € with

t
) .1
b* (t) = min - {log (Z Ma(6, T,t)Ms(—e,T,t)> — logs}

7=0

Pr(D(s,t) > D*(s,t)) < £ with

D*(s,t) = min 1 {log (Z MA(a,T,t)MS(—e,T,s)> — loge}

6>0
> 0 7=0

Pr(W(t) > w™(t)) < £ with

t+d
*(t) = min = /, fo(— _
w”(t) = min {log (;}]\[A(H,T, tyMs(—6,T,t +d)> loge}



Moment Generating Calculus

e Due to independence assumptions, the end-to-end bounds of
backlog and delays in a tandem network increase linearly in the

number of does 2> O(N)

e Compare this this with the ©(V log N) scaling, when arrivals and
service are correlated
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A Few Remarks on
Stochastic Network Calculus



Remarks: Stochastic Network Calculus vs. Queueing Theory

e Comparison is quite pointless, but often done

e Queueing theory ...

... works with exact descriptions of arrival and service processes

... frequently seeks derivations of exact results

... frequently relies on independence of underlying processes

... frequently analyzes single node systems

... difficulty of analysis increases quickly beyond Poisson traffic and exp. service

e Stochastic Network Calculus ...

... works with bounds on arrival and service processes

... seeks derivation of good bounds

... generally applies to correlated arrival and service processes
... analysis frequently extends to multi-node systems

... analysis of complex processes is often tractable

— Stochastic Network Calculus extends the scope analytically tractable
models, by giving up on achieving exact results

159



Remarks: Application of union bound

e Union bound is a crude tool for estimating unions of events
e Stochastic network calculus applies union bound widely

e Union bound wants to be used smartly:
— As “bound of last resort”, not to be used when other bounds are available

— Bounds are often satisfactory within certain parameter ranges, but
deteriorate outside such ranges

— “Bad cases” are easily constructed, but sometimes due to inadequate
parameter choices
e Alternatives to the union bound:

— If analysis is supported by measurement statistics, union bound is not
needed

— Additional independence assumptions in the Martingale analysis allow to
replace union bound by Doob’s inequality (recently good progress, but only
for single node systems)
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Remarks: Lower bounds

e Most stochastic network calculus studies derive upper bounds on
performance metrics

— This is motivated by the desire to investigate a probabilistically relaxed
worst-case scenario ...

— ... but leaves open the accuracy of the derived bounds

e Deriving lower bounds complements the analysis and addresses
guestions about accuracy (see this slide set)

e Many opportunities exist in in studying lower bounds
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APPLICATION AREAS



Smart Grids Storage Systems



Smart Grid Storage

e Problem: Match time-varying energy demand and energy supply

=~

using energy storage

Energy storage

!

V4 H " Smart Grid )7\

—_— —
T End users
Renewable energy =

sources | The Grid
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Smart Grid Storage

@Bma,x%

W) —Bt—
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Smart Grid Storage

Energy Energy
supply <—Bna—> demand
0 ¢ > ¢ @»
W) —DB(t)— L(#)
Stored
Waste of Loss of

power supply

e Loss of power supply
e Waster of power supply:

energy
power supply

B(t) < Threshold and S(t) > 0
B(t) — Bmax w S(t) > 0
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Smart Grid Storage (WCLL12)

Use:
BACKLOG EQUATION WITH LOSS BY CRuUZz/LIu:

B(t) = min { max {S(u,t) — D(u,t),S(s,t) — D(s,t) + Bmaw[t]+}}

0<s<t | s<u<t

To obtain:
Loss of Power Supply:

L(t) = max { min [D(U, t) — S(u,t),D(s,t) — S(s,t) — Bmax[t]+]+}

0<s<t—1 | s<u<t—1
Waste of Power Supply:
W)= min { (max_ {S(u,t) = D(w,t) — Bmaz[t]™, 5(s,) — D(s,t) + Bmaz — Bmas [t1+]+}l

Then create stochastic bounds with SSPE of S and D.
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Wireless Networks
(Multihop multiaccess networks)



Multihop Fading Channels

@ [ransmission over a cascade of wireless channels with cross
traffic/interference



Multihop Wireless Network Model (Physical Layer)

Through
traffic C C C
N
N
N
N
@ Intermediate nodes are amplify and
forward relays
@ Fading channel model expresses @1_ ] | Y
variation of channel L O ( )
e Rician I
o Naka gami-m [Fading channel model ™~

o Rayleigh



Multihop Wireless Network Model (Network Layer)

Cross traffic Cross traffic

Through
traffic

@ Intermediate nodes are store and
forward relays

@ Fading channel is characterized by
its channel capacity

Cross traffic

3

N
Cross traffic

Through |_ O:_T
traffic

Node model

Fading channel capacity



Network Model

Cross traffic Cross traffic Cross traffic

N @ =11} @ ST @ X

@ [ime-varying channel capacity:
e Shannon: C'(v¢) = Wlog(1l + )
o Fading channel: | C(v) = Wlog(g(t))
@ W: channel bandwidth (in Hz)
@ ¢ signal-to-noise ratio (SNR) at time ¢

@ l.i1.d. cross traffic at each node



Service and Traffic Elements in the SNR Domain

@ Service process in [T,1):

S(r,t) =) logg(vi) = hard!

@ Exponentiated service process
t—1
S(1,t) = eS(mt) = Hg(ﬁ,z) — simpler
=T

@ Exponentiate arrivals and departures as well:

A(T,t) — eA(T,t) and D(T,t) _ eD('r,t)

— (reate a transfer domain where all processes are exponentiated



SNR Domain

(ZLB14)

SNR domain @l‘)‘»@—» S
f \

X log(X

’D(t)>
. )
\ ¥
Bit domain @t) ﬂ@—’ ﬂ@-’ D(tD

@ SNR service process: S(7,t) = Hf;ig(“,z) — more tractable

o SNR arrival process: A(T,t) = eA(T)

—> SNR domain is governed by (min, x) dioid algebra

— Compute stochastic bounds in SNR domain, and
transfer results back



Multiaccess Channels

R. Gallager (1985): A Perspective on Multiaccess Channels:
“For the last ten years there have been at least three bodies of
research on multiaccess channels, each proceeding in virtual
isolation from the others and each using totally different models.”

Gallager's list: Revised list:
@ collision resolution @ Multiaccess information theory
@ multiaccess information theory @ Random Access

© spread spectrum © Dynamic scheduling



Service Characterization in Transfer Domain

1. Multiaccess information theory
e physical layer
e permits concurrent transmissions with no coordination [Tse

and Hanly 1998|
t—1 t—1 |- u) |hi|*p;
S]IT(Ta t) — Hu.:'r g] (A/U) — Hu.:'r (J' —l— 772.%’11) Zli(lu) |1V0|I"fr )

2. Random access
o MAC layer

e collision when two or more users transmit simultaneously
[Ciucu 2011]

RA I gtw) ppt=1. \1=Vi(u
Sj (th) — HL_ZIT[Q('YU)]‘J(U) — H'U:T[g( V. )] J( )

where V() is virtual interference process.
3. Dynamic scheduling (opportunistic scheduler)

o link/network layer
o centralized scheduler makes decision which user can transmit

, t—1 m 2 yrt-1
SPS(r, 1) =TTk lo (/™ = Ty 05 (i)




Backlog Bounds for NV multiaccess Rayleigh Channels

10 10
) =
= Bf ® 6
£ =
T 4 T 4
g s
E 2+ 2 2r
% % 5 10 15 20 25
Avernge channel SNR (dB) Average channel SNR (dB)
Information—theoretic Random access
10 1
- —+— one node
- —+— 10 nodes
= g 20 nodes
E —&8— 30 nodss
2
z 6
=
[
2
T 4
¢
%
s 2r
00

Average channel SNR (dB)

Opportunistic scheduler
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