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Roadmap

• Goal: Attempt a coherent self-contained story anchored 
in a few important questions:

– Analysis of “real” traffic 
– Analysis of buffered link
– Scaling of performance metrics (in size of network)
– Quality of upper and lower bounds
– Statistical Multiplexing

• Goal: No prerequisites (on the subject)
• Goal: Discuss interesting applications and case studies
• Non-goal: Comprehensive literature survey 

2



3



MODELLING NETWORK 
TRAFFIC



Network Traffic



HD Movie

30 minutes 20 seconds

Harry Potter movie with HD encoding

– Codec: H.264 SVC

– Frames per second: 24 fps @ 1920x1088
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Skype Voice Call: 6 minutes

• SVOPC encoding, one direction of 2-way call
Dark blue: UDP traffic
Light blue: TCP traffic
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6 minutes 2 seconds



Internet Traffic: 10 Gbps link

• Backbone link of a Tier-1 Internet Service provider
• ~430,000 packets packets in 1 second
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1 second
(One data point is the traffic in one 

millisecond)

2 µs



Switch Model



Components of a Packet Switch
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Modeling a Packet Switch

Model with input and 
output buffers

Simplified model 
(only output buffers)
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A Path of Network Switches
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• Each switch is modeled by the traversed output buffer
• Output buffer is shared with other traffic (“cross traffic”)



A Path of Network Switches
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• Each switch is modeled by the traversed output buffer
• Output buffer is shared with other traffic (“cross traffic”)

...
Through 
flow

Cross
traffic

Cross
traffic

Cross
traffic



Arrival Model



Arrival Scenarios

15

• Packet arrives to buffer only after all bits of the 
packet have been received

• Packet arrival appears instantaneous
• Multiple packets can arrive at the same time



Modeling Traffic Arrivals

• We write arrivals as functions of time:
A(t) : Arrivals until time t, measured in bits 

We assume that A(0)=0 for t ≤ 0.

• To plot the arrival function, there are a number of choices:
1. Continuous time or Discrete time domain
2. Discrete sized or fluid flow traffic
3. Left-continuous or right-continuous

Note: The presentation of stochastic network calculus uses discrete-
time for conciseness , and otherwise a (left-) continuous time 
domain
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Discrete-sized vs. Fluid Flow

• It is often most convenient to view traffic as a fluid flow, that allows 
discrete sized bursts

Traffic arrives 
in multiples of bits

(discrete time, discrete-sized)

Traffic arrives like a fluid
(continuous time, fluid flow)
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Fluid Flow Traffic with Bursts

• Most people take a left-continuous interpretation

A(t) considers arrivals in (0,t]

right-continuous

A(t) considers arrivals in [0,t)
(Note: A(0) = 0 !)

left-continuous
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• Does A(t) include the arrival at time t, or not ? 



NETWORK CALCULUS 
PRIMER



Buffered Link



Buffered Link

Arrivals
C

A(t)

Departures

D(t)

B(t)

Backlog
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• Standard model of an output buffer at a switch

• Link rate of output is C
• Scheduler is work-conserving (always transmitting when there is a 

backlog)
• Transmission order is FIFO 
• Infinite Buffers (no buffer overflows)



• Arrivals of packets 
to a buffered link

• Backlog at the 
buffered link
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slope -C



Definitions
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A(t) Arrivals in [0, t), with A(t) = 0 if t  0

D(t) Departures in [0, t), with D(t)  A(t)

B(t) Backlog at t.
B(t) = A(t)�D(t)

W (t) (Virtual) delay at t:
W (t) = inf {y > 0 | D(t+ y) � A(t)}

We write: A(s, t) = A(t)�A(s)
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Reich's Backlog Equation (1958)
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Reich’s backlog equation: Given a left-
continuous arrival function A and a bu↵ered link with
capacity C. Then for all t � 0 it holds that

B(t) = sup
0st

{A(t)�A(s)� C(t� s)} .
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Introduction to Network Calculus
(min, +) Algebra 
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Burst and Delay Functions

30

Burst function

�(t) =

(
1 , t > 0

0 , t  0

Delay function

�d(t) = �(t� d)

0

∞

0

∞

d









Service Curves











Traffic Envelopes
and

Traffic Regulation

















Performance Bounds















Add per-node bounds

Add per-node bounds



(min, +) Linear Systems



System

(Classical) System Theory

Linear Time Invariant (LTI) Systems

Linear:Time invariant:



• If input is Dirac impulse, output is the impulse response

System

(Classical) System Theory

Linear Time Invariant (LTI) Systems

• Output can be calculated from input and system response:

(classical) convolution”



Min-Plus Linear System

Network
min-plus linear:time invariant:

da
ta

time t

A(t)

D(t)

delay

backlog



Min-Plus Linear Systems

Network

• If input is burst function    , output is the service curve



Min-Plus Linear Systems

Network

• Departures can be calculated from arrivals and service curve:

(min, +) convolution

D(t) = inf
⌧
{A(⌧ + S(t� ⌧)} = A⌦ S(t)

D = A⌦ S



Transforms

• Classical LTI systems

Fourier 
transform

• Min-plus linear systems

Legendre 
transform

Time domain Frequency domain

Time domain Rate domain

Properties: (1)                              .  If      is convex:
(2)  If     convex, then
(3)  Legendre transforms are always convex   

f ⌦ g(t)

f ⌦ g(t) Lf⌦g = Lf + Lg



Characterizing non-linear systems

• Many networks are not min-plus linear
– i.e.,  for some t:

• … but can be described by a lower service curve
– such that for all t:

• Having a lower service curve is often enough, since it provides 
a lower bound on the service !!

D(t) � A⌦ S(t)

D 6= A⌦ S



Bandwidth Estimation (Case Study)



Probing a network with packet trains

Edited slide from:  V. Ribeiro, Rice. U, 2003 

• A network probe consists of a sequence of packets (packet 
train)

• The packet train is from a source to a sink

• For each packet, a measurement is taken when the packet is 
sent by the source (arrival time), and when the packet arrives 
at the sink (departure time) 

Network
source sink



Rate Scanning Method

• Each packet trains is sent at a fixed rate r (in bits per second):
– All packets in the train have the same size
– Packets of packet train are sent with same distance

• Rate Scanning: Source sends multiple packet trains, each with 
a different rate r

Packet train:

D D D



Bandwidth Estimation in the Network Calculus

• View  the network as a min-plus system that is either linear or 

nonlinear

Bandwidth estimation scheme: 
1. Timestamp packets of packet 

train:

- Send probes

- Receive probes 

2. Use probes to find an       that 

satisfies 

for all (A,D).

3.      is the estimate of the available 

bandwidth. The goal is to select 

as large as possible. 

da
ta

time t

Ap(t)

Dp(t)

delay

backlog

D(t) � A⌦ S(t)

S

S

Ap(t)

Dp(t)



Rate Scanning (1): Theory

• Backlog:
• Max. backlog: 

• If                     and                              , we can write this as:

• Inverse transform: If     is convex we have 
da

ta

time t

A(t)

D(t)

delay

backlog

S

D(t) = A⌦ S(t)



Rate Scanning (2): Algorithm

Init:       

Step 1: Transmit a packet train at rate    , 
compute
compute  

Step 2: If estimate of      has improved, increase     and go to Step 1. 

S(t) = 0



• When we exploit                                ,  we assume a min-plus linear 
system

• In non-linear networks, we can only find a lower service curve that 
satisfies

• We view networks as system that 
are linear at low load, and that 
become non-linear when 
network load exceeds a threshold.

• When increasing the probing rate, we eventually exceed the 
threshold at which the network becomes non-linear

Non-Linear Systems

Probing rate

linear
not 
linear

D(t) = A⌦ S(t)

D(t) � A⌦ S(t)

r < threshold r > threshold

r = threshold



Detecting Non-linearity

How to determine when the probed network becomes non-linear?

Backlog convexity criterion
• Suppose that we probe at constant rates
• Legendre transform is always convex
• In a linear system, the max. backlog is the Legendre transform of 

the service curve:

àWhen                      is no longer convex the system is no longer linear
à Stop (increasing the rate)  when                   has become non-convex 



EmuLab Measurements

• Emulab is a network testbed at U. Utah 
– can allocate PCs and build a network
– controlled rates and latencies



Dumbbell Network

• UDP packets with 1480 bytes (probes) and 800 bytes (cross)
• Cross traffic: 25 Mbps

Cross 
traffic

Probe 
traffic

50 Mbps
10 ms

100 Mbps
no  delay

100 Mbps
no  delay

100 Mbps
10 ms

100 Mbps
10 ms



• Cross traffic is sent at a constant rate (=CBR)

• The “reference service curve” (red) shows the ideal 
results. The “service curve estimates” shows the results of 
the rate scanning method

• Figure shows 100 repeated estimates of the service curve

Constant Bit Rate (CBR) Cross Traffic

CBR cross traffic

(LFV10)



Rate Scanning: Different Cross Traffic 

• Exponential: random interarrivals, low variance
• Pareto: random interarrivals, very high variance 

Exponential Pareto

(LFV10)



A Few Remarks on 
Deterministic Network Calculus



• Comprehensive analysis framework for communication networks:

– Applicable for an analysis that includes  “real traffic” 

– Precise/exact description of traffic control algorithms: traffic 

shaping, scheduling

• Foundations in 

– Dioid algebra

– Linear systems

• Great for teaching due to the closeness of theory and practice (e.g., 

traffic models, traffic shaping, scheduling, etc. )

Remarks on deterministic network calculus 
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• Myth: “Deterministic Network Calculus is always pessimistic”
– Deterministic network calculus analysis of min-plus linear 

systems can be exact
– Lower service curves of non-trivial scheduling algorithms can 

yield a tight (necessary and sufficient) analysis
– Worst-case analysis is pessimistic (for average case). 

Therefore, if network calculus is used for worst-case analysis, 
results are accordingly

• Not a Myth: “Deterministic Network does not account for 
statistical multiplexing”

– This motivates Stochastic Network Calculus

83

Mythbusters



STOCHASTIC NETWORK 
CALCULUS



Deterministic
worst-case

Expected 
case

Probable worst-
case



Statistical Multiplexing Gain

Flow 1
Arrivals Flow 2

Flow 3
Time

Worst-case arrivals
B

ac
kl

og

Worst-case
backlog

Flow 1
Flow 2
Flow 3

Time

B
ac

kl
og

Arrivals

With statistical multiplexing

Backlog



Resources needed 
to support 
guarantees 
for N flows 
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Statistical multiplexing gain is the raison d’être for packet networks.

Statistical Multiplexing Gain

• Source of statistical multiplexing is the stochastic independence 
of aggregated traffic sources



Motivation for Stochastic Network Calculus

Extend network calculus analysis so that it can 
account for 

1. Statistical multiplexing
2. Random service models (wireless!)



Statistical Envelopes



• Arrivals from group of flows: 

• Deterministic envelope of aggregate: 

• Statistical envelope:  a traffic envelope    of the aggregate 
that may be violated with a small probability, 
and with

Multiplexed arrivals

X

j

Aj

NX

j=1

Aj

NX

j=1

Ej

G

G ⌧
X

j

Ej
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(BBLO00)(BBLO00)



Traffic rate at t = 50 ms
Type 1 flows

Statistical  vs. Deterministic Envelopes      (BBLO00)

Statistical Envelopes



Backlog Computation
(or: Why statistical envelopes are not enough)



Next step: Use the statistical envelope for a
probabilistic backlog analysis

Backlog Analysis

X

j

Aj
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Use tail distribution of A: 
sample path envelope

• The problem (prev. slide) can 
be addressed differently, 
leading to a range 
of approaches:

• Each approach presents a tradeoff (with pros and cons)

Different ways to address the problem

102

Asymptotics only: 
effective bandwidth

Avoid union bound: 
martingale analysis

Use distribution of A: 
moment generating 

function calculus

Abandon rigor: 
Principle of the 

largest term
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Statistical Sample Path Envelopes 
(SSPEs)

(and Single Node Performance Bounds)
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(G12)
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Statistical Service Curves

(and Single Node Performance Bounds)
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Example: Schedulability Analysis

What is the maximum number of flows 
with delay requirements that can be put 
on a buffered link with and without 
considering statistical multiplexing?

• Link capacity C
• Each flows j has

– arrival function Aj 

– envelope Ej

– delay requirement dj



Deterministic Service
Never a delay bound violation if:

Schedulability Analysis

• Work-conserving scheduler 
that serves flows from Q classes

• Class-q has delay bound dq

Where
are scheduler-

dependent constants  (see [LGB11] )
is det. envelope for all 

class-p flows
is SSPE of all class-p 

flows

Scheduler

Statistical Service
Delay bound violation         if:

�qp

dq � sup
s

1

C

(
X

p

Ep(s+�qp)� Cs

)
dq � sup

s

1

C

(
X

p

Gp(s+�qp; ")� Cs

)
 "

Ep

Gp(·; ")



C = 45 Mbps

MPEG 1 traces:

Lecture:
d = 30 msec

Movie 
(Jurassic Park):
d = 50 msec

Type 1 flows

strong 
effective
envelopes

Schedulability Analysis

EDF
Static Priority (SP)

Peak Rate

Deterministic service

(KWZL96)



Statistical multiplexing 
makes a big difference

Scheduling 
has small impact

Example: MPEG videos with delay constraints at C= 622 Mbps

Deterministic service vs. statistical service 

Thick lines: Earliest Deadline First (EDF) 
Dashed lines: Static Priority (SP)

dterminator=100 ms 
dlamb=10 ms

Schedulability Analysis

" = 10�6

(BBLO00)



Different traffic types: - Regulated 
- Memoryless On-Off
- Fractional Brownian Motion (FBM) 

Schedulers:
SP- Static Priority
EDF – Earliest 
Deadline First
GPS – Generalized 
Processor Sharing

Traffic:
Regulated – 2-level 
token bucket
On-Off – On-off 
source
FBM – Fractional 
Brownian Motion

C= 100 Mbps, e = 10-6

Schedulability Analysis (LBL07)



Stochastic Network Calculus: 
End-to-End Performance Bounds



Recall deterministic result:
If                               describes the service at each node,
then 

describes the service given by the network as a whole.

then 

describes the service given by the network as a whole.Stochastic Network Service Curve

Snet = S1 ⌦ S2 ⌦ . . .⌦ SN

S1, S2, . . . , SN

Sender Receiver

Snet

Sender Receiver

S1 S2 S3



D2(t) � inf
0st

{A2(s) + S2(t� s)} (with prob. ")

= {A2(so) + S2(t� so)}
 A1 ⌦ S1(so) + S2(t� so)} (with prob. ")

= A1 ⌦ S1 ⌦ S2(t)

• Problem: Given statistical service curves                             find 
statistical network service curve          so that

• Technical difficulty:

is a 
random 
variable!

so

Stochastic Network Service Curve

Snet = S1 ⌦ S2 ⌦ . . .⌦ SN

S1,S2, . . . ,SN



Stochastic Network Service Curve

• In early 2000s, finding a stochastic network service curve was an 
open problem for a few years:
– Some incorrect solutions made it to publication
– Some solutions were quite restricted (e.g., [BLP06] )

• The following result - first presented at ACM Sigmetrics 2005 - was 
general enough to enable numerical computations under non-
trivial probabilistic assumptions



Statistical Network Service Curve

• Stat. service curve at node n:
with 

• Define:

Theorem: If                                are statistical service curves, 
then for any             ,  is a 
statistical network service curve with 

� > 0 Snet(t,�) = [Snet(t)� �]+

Sn(t,�) = [Sn(t)� �]+, "n(�)

Snet(t) = S1 ⌦ S2
� ⌦ . . .⌦ SN

(N�1)�(t)

"net(�) = infPN
n=1 �n=�

n
"N (�N ) +

NX

n=1

1X

j=1

"n(�n + j�)
o

(CBL06)

P1
j=1 "

n(�n) < 1



Example: Scaling of Delay Bounds

• Traffic: EBB model of Markov Modulated On-Off
• All links have capacity C
• Same cross-traffic (not independent!) at each node

with SSPE  
• Service curve of through flows at node n:

(through traffic has lower priority)

...

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Through
Flows

Through
Flows

Node HNode 2Node 1

Gc(t,�)

Sn(t,�) = [Ct� Gc(t,�)]
+

N



Example: Scaling of Delay Bounds

• Two methods to compute delay bounds:
1. Network service curve: 

Compute single-node delay bound with statistical 
network service curve

2. Add per-node bounds: 
Compute delay bounds at each node and sum up

...

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Through
Flows

Through
Flows

Node HNode 2Node 1 N



Example: Scaling of Delay Bounds
• Peak rate: P = 1.5 Mbps

Average rate: r = 0.15 Mbps
• T= 1/µ + 1/l = 10 ms

• C = 100 Mbps
• Cross traffic = through traffic
• e = 10-9

• Addition of per-
node bounds grows 
O(N3)

• Network service 
curve bounds grow 
O(N log N)

N

(CBL06)



Lower Bound on E2E Delay are W(N log N)

• M/M/1 queues with identical exponential  service at each node

Theorem: E2E delay             satisfies for all 

Corollary:       -quantile               of          satisfies

(BLC11)

Wnet

Pr
⇣
Wnet  �1N log(�2N)

⌘
 z

wN (z)

wN (z) = ⌦(N logN)

N



Upper and Lower Bounds on E2E Delays

• Tandem network without cross traffic
• Node capacity:    
• Arrivals are compound Poisson process

– Packet arrival rate:
– Packet size:                    

• Utilization:

...
Through 
flow

Node HNode 2Node 1 N
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Upper bound

Simulation

Lower bound

Upper and Lower Bounds on E2E Delays  (BLC11)



End-to-End Performance Bounds for 
Heavy-tailed Traffic 

(briefly)



• A heavy-tailed process      satisfies

• A self-similar process satisfies  

Hurst Parameter

Heavy-Tailed Self-Similar Traffic



• Heavy-tailed self-similar (htss) envelope:

• Main difficulty: Backlog and delay bounds require sample 
path envelopes of the form 

• Key contribution (not shown): 
Derive sample path bound for htss traffic 

htts Traffic Envelope



Example: Node with Pareto Traffic

Traffic parameters:

Node:
• Capacity C=100 Mbps

with packetizer
• No cross traffic

Compare:
• Upper bound
• Lower bound 
• Simulations of sample paths w (ms)

(LBC12)



Example: Nodes with Pareto Traffic (End-to-end)

Number of nodes:

Compared with:
• Upper bound
• Lower bound 
• Simulation of sample 

paths with 108 packets 

(LBC12)
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End-to-end delays of htts traffic: 
f

• Upper Bound:   
• Lower Bound:  

Illustration of scaling bounds

Q (N)

Lower Bound

Q (N log N)

Upper Bound

⌦(N
↵

↵�1 )
O(N

↵+1
↵�1 (logN))

1
↵�1 )



Moment Generating Function
Network Calculus

(briefly)
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Moment Generating Calculus

• Due to independence assumptions, the end-to-end bounds of 
backlog and delays in a tandem network increase linearly in the 
number of does à

• Compare this this with the                         scaling, when arrivals and 
service are correlated

157

⇥(N logN)

⇥(N)

(F06)



A Few Remarks on 
Stochastic Network Calculus



• Comparison is quite pointless, but often done
• Queueing theory … 

– … works with exact descriptions of arrival and service processes
– … frequently seeks derivations of exact results 
– … frequently relies on independence of underlying processes
– … frequently analyzes single node systems
– … difficulty of analysis increases quickly beyond Poisson traffic and exp. service

• Stochastic Network Calculus … 
– … works with bounds on arrival and service processes
– … seeks derivation of good bounds
– … generally applies to correlated arrival and service processes
– … analysis frequently extends to multi-node systems 
– … analysis of complex processes is often tractable

à Stochastic Network Calculus extends the scope analytically tractable 
models, by giving up on achieving exact results

Remarks: Stochastic Network Calculus vs. Queueing Theory
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• Union bound is a crude tool for estimating unions of events
• Stochastic network calculus applies union bound widely 
• Union bound  wants to be used smartly: 

– As “bound of last resort”, not to be used when other bounds are available 
– Bounds are often satisfactory within certain parameter ranges, but 

deteriorate outside such ranges 
– “Bad cases” are easily constructed, but sometimes due to inadequate 

parameter choices 

• Alternatives to the union bound:
– If analysis is supported by measurement statistics, union bound is not 

needed
– Additional independence assumptions in the Martingale analysis allow to 

replace union bound by Doob’s inequality (recently good progress, but only 
for single node systems)

Remarks: Application of union bound
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• Most stochastic network calculus studies derive upper bounds on 
performance metrics
– This is motivated by the desire to investigate a probabilistically relaxed 

worst-case scenario … 
– … but leaves open the accuracy of the derived bounds

• Deriving lower bounds complements the analysis and addresses 
questions about accuracy (see this slide set)

• Many opportunities exist in  in studying lower bounds

Remarks: Lower bounds:
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APPLICATION AREAS



Smart Grids Storage Systems



• Problem: Match time-varying energy demand and energy supply 
using energy storage

Smart Grid Storage

164

End users

Energy storage

The Grid
Renewable energy 

sources

Smart Grid



Smart Grid Storage
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Smart Grid Storage

• Loss of power supply
• Waster of power supply:

166

B(t) = Bmax and S(t) > 0

B(t) < Threshold and S(t) > 0
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(WCLL12)



Wireless Networks
(Multihop multiaccess networks)
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(ZLB14)
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(WCLL12)
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(ZL14)
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(ZL14)
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