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Originally ....

... | wanted to write an elementary introduction to max-plus network
calculus for a course,

— relate it to the min-plus version, and
— discuss applications to scheduling with rate guarantees

e This was supposed to be easy since:
— The (min, +)- and (max, +)-dioids are isomorphic

— Operations of the min-plus and max-plus network calculus are
well-understood

— Many have worked with concepts in both algebras



Min-Plus and Max-Plus Network Calculus

@ Min-plus: Arrival, departures, service are functions of time.
@ Max-plus: Arrival, departures, service are functions of space.
@ Functions are related by a reflection at the diagonal!
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But then ...

Remark 6.2.7. We note that not every result in the min-plus algebra
can be extended here. For example, a concatenation of the minimal

b gl—regulat(?l and the minimal gs-regulator is not the minimal g; © go-
COMMUNICATION NETWORKS regulator in general.
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More specifically, there is not an exact correspondence Calculus
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between the set of flows that are g-regular on one hand, and that are #-smooth on p—
the other. We explain why with an example.
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however, that many concepts can be mirrored in the max-plus

algebra



Min-plus Max-plus
A(t) Arrivals until time ¢ Ts(v)  Arrival time of bit v
D(t) Departures until time ¢ Tn(v)  Departure time of bit v
Wi(t) virtual delay at time ¢ Wi(v)  Delay of bit v:
B(t) Backlog at time ¢ B*(v)  Backlog at arrival of v
B4(v)  Backlog at departure of v
S(t) Service curve vs(v)  Service curve
E(t) Envelope (‘arrival curve') Ap(v)  Envelope (‘arrival curve’)
Q,® (De-) Convolution 2,3 (De-) Convolution
F e F, fis left-continuous, F e, fisright-continuous,
non-decreasing, non-decreasing,
Ft)=0ift<0 F(t)=—c0ift <0




e Work-conserving link with fixed rate C
Arrivals Departures
> | C >
A(t) ; D(t)
| )

e Offers an exact (min-plus) service curve: S(t) = ('t
such that D(t) = A® S(t)

e The corresponding max-plus service curve should be: WS(V) C
with TD(V) — TA®75(V)




Buffered Link
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Recursion for Departure time of nth Packet

Packet 1 Packet 2 .. Packet n

with T%(0) = 0.



Bit-level View of Packets

ln Size of n-th packet (in bits)

We number the bits of the packets Ln ="l
9717'“761_];7§17°°°7L2_];7 7{’71—17"'7[/71_];
Paclret 1 Pac‘kret 2 Pac‘k:et n

Departure of bit v:

Tp(v) = maX{TA(y),TD(y _ 1)} 4+ %
:maX{TA() é TA(Z/—l) % ,TA(0)+%}

_|_
) Iy )+ 51
max {Ty(v = r)




Bit-level View of Packets

With

FRG)= max {F(v—kr)+G(K)},

k=0,1,...,v

we get either

Tp(v) = Ta®vs(v) with  y5(v) =

or



Towards a Continuous-Space View

If we measure traffic in %-th of a bit:

1

Tp(v) = ma.x{TA(I/),TD(V - %)} + LC

K+ +

—  max TaA(lv —K) + :

I{,:O,%,%...,I/{ C }
_ 1 .
= TABYs(v)+ with vs(v) = %
For k — oo:

Tp(v) = TaA®vs(v) with vs(v) = &



Continuous-space View of Packets

Viewing bits as real numbers:

Packet 1 Packet 2 Packet n
A A / A /
' v '
0<v<ty (1 <v<ls L, 1 <v<lL,

K
Tp(L,)= sup sTa(L, —K)+ =
s &)

= Ta®~(L,,)



Zwischenfazit (Interim conclusions)

@ Continuous-space view results in: S(t) = Ct <> v5(v) =

@ In a packet-level or bit-level view:

o ‘Extra term’ ‘2 for packets (or & for bits) reflects a
packetization (or ‘bit’-ization)

e 'Extra term’ is the root cause for reported discrepancies
between min-plus and max-plus network calculus

@ Next: Continuous-space max-plus NC and continuous-time
min-plus NC are isomporphic = Pseudo-inverse functions



Motivation for Pseudo-inverses

@ A and the 14 are diagonal Tratic (s
0 1000 2000 3000 4000 5000 6000 7000
reflections of each other Tafhe |t e
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@ If functions are continuous and . -
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reflection are the inverses 3000 -
2000 — Y
@ Since A and T4 are neither, inverse R -
. . L s S e B e s e e s e B
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= Pseudo-inverse functions




Pseudo-inverses

For a non-decreasing function F"

@ Lower pseudo-inverse:
F(y) = inf{z | F(z) >y} = sup{z | F(z) <y}
@ Upper pseudo-inverse:

F(y) = sup{z | F(z) <y} = inf{z| F(z) >y}




Pseudo-inverses
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Properties of pseudo-inverses

For non-decreasing functions F' and G:

O Ftand F'T are non-decreasing

@ F'*is left-continuous and F'T is right-continuous
© F is left-continuous = F = (FT)¢

@ F is right-continuous = F' = (Fi)T

© Order-reversing: F > G = FT<GT F+< Gt




Mapping functions between time and space domain

min-plus
burst function
0
@ FcF,=FTeT, s
@ FeT,= FYeF, °
© §"=5and 6+ =6. 0
>
max-plus

burst function

-

0




Mapping between min-plus and max-plus algebras

Min-plus — Max-plus:
© (FAG) =FTva?t
)T = Frgat
@ (FoGg) =Ftga?
)T(l/) = inf max{FT GT(I/—FL)}

0<k<v
@ F € F, subadditive = F'T superadditive

Max-plus — Min-plus:
@ (FVG)*=FtAGY.
Q ...



Mapping traffic envelopes

Notation:
A~b: B IS a min-plus traffic envelope for A
Th ~Ag: Ag max-plus P Ty

O A~FE— AT~ ET
Q@ Th~Ap=Ta%~Ag"

Example: Token Bucket

E(t)=b+rt = E)= [”_br

r




Mapping service curves

@ D-A®S=D=AgST || @ Tp=TaBvs =Ty =TS @~
@ D>A0S=>DT<AM®ST || @ Tp<Tu®ys =T =T, @~
©@ D<A®RS=>DT>AT®ST © Tp>Thdrys =T <T,}@qd

Example: Latency-rate service curve

A —00, ifl/<0,
SU)=Rt-Dler = SW)=qv o o
R -

Example: Residual service curve

S(t) = [Ct— E.)]"T = ST = % (inf {:17 [ Ao(z) > = ;V} + 1/>



Why do we care?

e Backlog easier with min-plus: B(t) = A(t) — D(t)
Delay is easier with max-plus: W(v) =Tp(v) — Ta(v)

e Aggregate of flows:
A(t) = Zj.vzl A;(t)| (min-plus)

Ta(v) = ” ’1117ny jzlll"(.l.?fN Ta;(vj)| (max-plus)

Min-plus and max-plus network calculus are complementary:

@ Capacity provisioning is easier with min-plus network calculus

e [raffic algorithms are easier in a max-plus view




Example: SCED

e Computing timestamps: Deadline computation at a SCED

scheduler :
Di(v) =Ta®~vs(v)| (max-plus)
VS.
Di(t) = sup{z|A® S(x) < A(t)}| (min-plus)
— (4@ S)T(A(1))

@ Schedulability: Condition for SCED schedulability:

- /
inf max Ap.Q~ve.(v;)> —. Yvr>0 max-plus
V1,...,VUN j=1,...,N EJ [SJ( .7) — C ’ — ( :D )
v=vi+...+VyN

VS.

N
ZE]- ®S;(t) <Ct, Vt>0| (min-plus)

-

j=1




Everything maps nicely, right?
Not quite!



Backlog and Delay

e Backlog and delay cannot be mapped exactly with pseudo-inverses
e We can only provide bounds, e.g.,

B(A(t)) < B(t) < BY(D(t))

which can be quite loose:

B(t) > B“(A(t)) N B(t) < BYD(t))
Time tme
BY(A(t)) = 0
A Ty Ty

BY(D(t))

Tp(D(t)) —
. B(t) b t i _
\TA ] Ta
Traffic Traffic
D{t) AEt) DEt) AEﬂ

e Good news: If A and Dare continuous at 74(v) then

B(Ta(v)) = B*(v)



Busy periods and busy sequences

e |n general, busy periods cannot be described using expressions of
the max-plus network calculus

e We define the concept of busy sequence as a maximal sequence of
bits with non-zero delays

e Busy sequence also helps with defining a strict max-plus service
curve



Problems with busy periods and sequences

e Asingle busy periods may
cover multiple busy
sequences

e Asingle busy sequence
may cover multiple busy
periods

Time

te t7

“ ' = |
t1 to t3 ta t5

s

>



e C(larification of the relationship between min-plus and max-plus
network calculus

— Dispenses with the frequently made assumption of constant
packet sizes for a max-plus analysis

e Now: Can switch between a min-plus or max-plus viewpoint in the
same analysis

e Filled a few holes in the max-plus literature, e.g.,
— busy sequence
— strict max-plus service curve

— adaptive max-plus service curve



Supplemental Slides



Strict max-plus service curve

A strict max-plus service curve vg € 7, satisfies for all v and p in
the same busy sequence, it holds that start of bsy sequence

Tp(v) = Tp(p) < vs(v —p). if@< s
and Tp(v) —Ta(p) <vs(v —p), ifv=p.

e Cannot define (general) strict max-plus service curve with busy
period |

33



Adaptive max-plus service curve

An adaptive max-plus service curve g for a network element satisfies
for all v > 0,

Tph(v) < gléfj{lnax [TD(,LL) +vs(v — p) ,TA§75(1/)] } :

where

F%G(l/) = sup {F (k) + G —kK)}

PEK<V



Max-plus convolution by Chang/Lin

@ Chapter 6 in Chang's Book

@ Let F' and G be non-decreasing real-valued functions, and
H(n) a non-decreasing integer-valued function:

F oy Gn) = max {F(k)+ G(H(n) — H(k))} .

0<k<n

o Setting ¢/, = ;11 and L'(n) = Y725 £, the output of the
buffered link is

/

4
Th(n+1) =70 ys(n) + 4

with vg(v) = %
e If /,, =1, operations V and @, yield a dioid.



Mappings of Dioids

@ See Chapter 4, in “Synchronization and Linearity: ...".

@ Applies residuation theory for lattices to establish
isomorphisms between dioids

@ Terminology:

upper pseudo-inverse
lower pseudo-inverse
non-decreasing function
right-continuous

residual

dual residual
Isotone mapping
isotone and upper
semi-continuous
isotone and lower
semi-continuous
residuated mapping

left-continuous

left-continuous and non-
decreasing function
right-continuous and non-
decreasing function

Lo L

dual residuated mapping




Lindley equation

W, = max{O,Wn_l + Sn_1 — An_l} ,

W queueing time of n-th packet,
Sn—1  service time of (n — 1)-th packet, and
Ap_1 is time between arrivals of packets (n — 1) and n

o With W,, = W,, +S,, we can rewrite Lindley equation as
W, = ma.x{O, Wp_1— An_l} + 5, .
o Since W, =T7%(n) —T%(n) we can write
ThH(n) =Wy +T%(n)

= max{Th(n),TH(n—1))} + %n




