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Available Bandwidth

Available bandwidth is the unused capacity along a path
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Available bandwidth of a link: "
a(t,t+7) = lft . Ci(z) — Ni(z)dz
T

Available bandwidth of a path:

a(t,t+71) = z:q-”nH a;(t,t+ 1)

* Goal:
Use end-fo-end probing to estimate available bandwidth

Edited slide from: V. Ribeiro, Rice. U, 2003




From packet pairs to packet trains

* Shortcoming: packet-pairs
do not capture temporal
queuing behavior essential for
available bandwidth

queuing delay

estimation | .
Packet-pairs fime
?’ac?(ep?raln
* Solution: Transmit multiple packet in a probe (>packet train)
How fast to send a packet train?
Rate of packet train is determined by gap between packets
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So: rate at which the packet trains are sent is crucial:
* Rate too high > probes preempt existing traffic
* Rate too low - probes only measure the input rate




Bandwidth estimation methods

Numerous techniques emerged in the last 5 years

Two methods are relevant to this talk:
+ Pathload (PAM " 02, Jain/Dovrolis)
* Pathchirp (PAM ‘03, Ribeiro eft. Al.)

P afhload [Jain & Dovrolis, 2002]
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CBR packet trains
Vary rate of successive trains
Converges to available bandwidth

We call this approach: Rate scanning




P acke‘l' Chlr‘ps [Ribeiro et.al., 2003]

probe packets

time
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Uses a single packet train
Successively decrease packet gap within packet train
.. thereby covering a range of probing rates

We call this approach: Rate chirps

Our point of departure:

There are dozens of probing schemes (with inventive acronyms),
each offering their own heuristics and assumptions on the network

* Can heuristics be made rigorous?

+ Is there a betfter way to view the problem?

IS THERE A (better) THEORY OF BANDWIDTH ESTIMATION ?




(Classical) System Theory

Linear Time Invariant (LTI) Systems

Timearinvariant:

AA =0 D=8+
—P
Trrmaat Mautrmaat
b1 AL At — TM(E) b1DD(t — T D5(t)

+ If input is Dirac impulse, output is the system response S
+ Output can be calculated from input and system response:
D(t) = f” A(T) - S(t — 7)dr =: A% S(¢)

(i) | “convolution”

System Theory for Networks

* Networks can be viewed as linear systems in a
different algebra:

- Addition (+) > Minimum (inf) Min-Plus
* Multiplication (*) > Addition (+) Algebra

- Systems theory for networks is called Network
Calculus

* emerged in the 1990s

Network service is described by a service curve S




Min-Plus Linear Systems

rinne|isvaneat:
A1(A A= §) Network D =Dx S
. > A
inf{b1 + A1(t),ba + A2(8)} S(t) inf{by + D1(t),b2 + D2(t)}

* If input is bgrst function & output is the service curve S

#rivals and service curve:
otherwise

D(t) =tinffA(T)} 'St —7)} = Ax S(t)

“min-plus convolution”

Transforms

Classical LTI systems

Time domain Frequency domain

1 lo’s] -
f() Fourier Filw) = Vo _/_OC f(t)e “hat
O WaNSTOIM | 1y () = Fy(w) - Fo(w)

Min-plus linear systems

Time domain Rate domain
Legendre L(r) = suplrr —
t 2" | T pi{rt — f(7)
f® transform f( ) T { ()}
Jf*(}(f) ‘Cf*q:’cf'l"cg

Properties: (1) L(L(f)) < f .If f isconvex: L(L(f)) = f
(2) If g convex,then f>ge Ly<L,




One more thing ...

Many networks are not min-plus linear
ie., forsomet: D(t) # A=xS(t)

.. but can be described by a lower service curve S
such that forall +: D(t) > A x S(t)

Having a lower service curve is often enough, since it provides a
lower bound on the service !l

Bandwidth estimation in the network calculus

View the network as a min-plus system that is either linear or
nonlinear
Bandwidth estimation scheme:
A

1. Timestamp probes
AP(T) - Send probes
Dr(t) - Receive probes

data

2. Use probes to finda S that
satisfies D(t) > Ax S(t)

for all (A,D).

3. S is the estimate of the
available bandwidth.




Bandwidth estimation in the network calculus

View the network as a min-plus system that is either linear or
nonlinear

Bandwidth estimation scheme:
1. Timestamp probes
AP(t) - Send probes
DP(t) - Receive probes

data

2. Use probes to finda S that

satisfies D(t) > A S(t)
for all (A,D).

3. S is the estimate of the
available bandwidth.

Why is bandwidth estimation hard ?

Goal: Find S as large as is possible

So: maximize S
subject to D(t) >AxS
= inf-{A(r) + St —7)},

Yt > 0, for all pairs (A, D).

This is a max-min optimization (= very hard problem group)




Is there hope?

* If network is min-plus linear, weget D = A% S
- Ifweset A=¢§,then D=6§%xS =9

+ So: We get an

exact solution when the S| delay ——
probe consist of a burst L lam= @ |

(of infinite size and sent with ! |D(t) = 5(t)

an infinite rate) | r
However: time t

- Large bursts consume a lot of bandwidth
* Large bursts can make a network non-linear
- Need to find better solutions

Three methods
(that work better than infinite sized bursts)

Passive measurements
2. Rate Scanning
3. Rate Chirps

For the time being, we will assume a linear
network,ie., D = Ax S




Passive measurements

How much info can be extracted from passive
measurements of a traffic flow? (without probes)

Define a min-plus deconvolution:

fog@)=sup{f(t+7)-9g(7)}

Deconvolution is not an inverse of the convolution, but:
(a) "Dudlity: f<g*h & h2f0g

(b) New result: ((h*xg)@g)xg=nh=xg

Passive measurements (2): Algorithm

Step 1: Collect measurements (A¢y, D)
+ We know that Dy = Ay S, but we do not know S

Step 2: Compute S = Dy @ Ay
- Then: Dy = S* Aygy

= ((S*Ayp) @ Ap) x Ay

= (Dy @ Agyp) * Apy

= S‘ * Af.?'

- Applying “duality” to Dy = Ay %S gives S > Dy @ Ay = S

Step 3: So, we know that our S is a service curve and that S > §
In fact, S is the best possible estimate based on the trace
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Passive measurements (3): Example

Service:

S(t) = (b+rt)

(R[t - T1T)

leaky
bucket

)7 rate R
b latency T

R =100 Mbps T=10ms —
r=25Mbps b=750kB
Traffic: On-Off Source
Scenario high load low load
Burstiness high | med | low | high | med | low
Number of sources 1 5| 25 1 5| 25
Source peak rate [Mbps] | 200| 40 8| 200 | 40 8
Total average rate [Mbps] 20 20| 20 10 10| 10

Passive measurements (4): Results
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Rate Scanning (1): Theory

Backlog: B(t) = A(t) — D(t)
Max. backlog:
Bmaz = SUD{A(Q - D(t)}
t

If A(t) = rt, we can write this as:
Brmaz(r) = sup{rt— ‘Ir;f{'r"r + S(t—1)}}
— sup{sup{r(t — 1)~ S(t—1)})
= SLED{?‘I! —S(t)}
= Lg(r)
Inverse transform: If S is convex we have
S(t) = L(£5)(8) = £B,0,(8) = sUP{rt—Bmaz(r)}

Rate Scanning (2): Algorithm

Step 1: Transmit a packet train at rate 7,
CompUTe B‘;';'La_'r (T')

ComPUTe S(t) = ‘C‘Bmfa;z‘(t)

Step 2: If estimate of S has improved, increase” and go to Step 1.

This method is very close to Pathload !
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Rate Scanning (3): Example

Service:

S(t) = 0.4t2

Rate scanning: 10, 20, ..., 80 Mbps
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Rate chirp (1): Theory

In signal processing, chirp signal is a signal whose frequency
changes in time

In network probing, rate chirp is a packet train that is sent at
different rates

Suppose we have a service curve: D=AxS

Take the Legendre transform: Lp = Ly,s =LA+ Lg

Rearrange (Need: £ 4(r) < oo ) Lo=Lp— L4y
Taking the transform again: L(Lg) =L(Lp—LA)
If S is convex we have S = L(L(S))
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Rate chirp (2): Algorithm

 Note: A packet chirp satisfies £

(r) < oo

chrp

STep 2: comPUTe g(t) - L(LDf'h.r'p - E“if'h.r'p)(t) '

- Then: S < S,ie. we have alower service curve

If S isconvex, then S =

S, and we have

recovered the service curve completely.

Step 1: Collect measurements of a chirp: (Ac,p, Denrp)

Rate Scanning (3): Example

Service: S(t) = 0.4¢2
Rate chirp:  Packet size: 1200 Bytes

1.04

Computed service curves

y=1.01
y=1.03
v=1.04

spread factor: 1.01, 1.02,
Rate chirps

4 4
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= =
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Non-Linear Systems (or: How about FIFO ?)

When we exploit D(t) = A * S(t) we assume a min-plus
linear system

In a linear system, the system response S does not change with
the input. But in FIFO, the system response changes with the
input rate. So, FIFO is not min-plus linear.

Ina FIFO system with .. —>—”” C};»
I—’_

.. we get
(7‘/7/55/705 fyeen - rt ifr<C—re.
easure = :
measur ,,_er:Ct , fr>C—1re.

Non-Linear Systems (or: How about FIFO ?)

If we set Sf-j_fo(t) == (C - Tc‘:)t
. we can describe a FIFO D(t) = (rt) *Spip, ,if r < C —re
system as D) > (rt)*Spife ,if r>C —re

This means: FIFO is a linear system :
if total traffic is below capacity, _ i not
and non-linear otherwise. linear linear

So, we should not increase rate of
probe traffic beyond

?‘:C—T‘g

r<C-—rc Er)C—'rg

Probing' rate

?‘:C—T‘<-;




Detecting Non-linearity

Backlog convexity criterion
Suppose that we probe at constant rates A(t) = rt
Legendre transform is always convex

In alinear system we have:
Bmaz(r) = Lg(r)

If we find that for some rate r
Bmax(r) # convg (1)

we know that system is not linear

EmuLab Measurements

Emulab is a network testbed at U. Utah
- can allocate PCs and build a network
- controlled rates and latencies

Some Questions:

How well does our theory translate
to real networks?

Does representing available

bandwidth by a function (as
opposed to a number) have

advantages?

How robust are the methods to
changes of the traffic
distribution?
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Dumbbell Network

UDP packets with 1480 bytes (probes) and 800 bytes (cross)
Cross traffic: 25 Mbps

Constant Bit Rate (CBR) Cross Traffic

Results of 100 repeated estimates of the service curve
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Rate Scanning Rate Chirp

Problems with detecting non-linear region with Ratechirp

Cross
traffic



Rate Scanning: Different Cross Traffic

reference
service curve

data [Mbit]

data [Mbit]

service curve
estimates

i

i

Exponential: random interarrivals, low variance
Pareto: random interarrivals, very high variance

reference
service curve

service curve
estimates

0 a5 50 75 100 125
time [ms]

Exponential

25 50 75 o 125
time [ms]

Pareto

Summary: Rate of the service

curve estimate

* Take average of 100 measurements

Pathload tool

351
30
a priori bound
25
_é 20} .exponentlal
= '-""".'[:_'.'"i'."""'."‘.""
3 15 areto
10+
5_
0 L , . : :
0 25 50 75 100 125

time [ms]
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Network with multiple bottlenecks

LY

A, R~ 4
! Cross
~«, 100 Mbps ‘v traffic 100 Mbps
Cross 10 ms ' H no delay
. - (] o~
traffic R ' -~
=« 50 Mbps =50 Mbps ==
) oo5ms ___ ~0ms _IC
2% . ' ‘:‘,
Probe 100 Mbps 100 Mbps 100°Mb
traffic .10 ms no dela ps
Q:,v o delay no delay Q
‘ Probe 2
v traffic

Network Service Curves

Receiver
Sender Ghet

A network with two nodes
D= (AxS1)*S>=Ax(S1*S5>)

.. can be simplified to a single node:

St = 51 % S5
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Network multiple bottlenecks

End-to-end probing

Cross
traffic

;

min-plus convolution

[y
relerence serviee curve

z e
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prOblng Take min_plus “n . 50 H?IOtt enl.?lf; " 2(SN|
convolution of result tine [ns]
20 20
E 15 ?_ 15¢
2 10 gnl {
| st !
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”H 50 100 1500 200 ”!J 50 - ||'n| I?.iu 200
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Conclusions

* Posed available bandwidth estimation as a problem in min-
plus linear systems

+ Available bandwidth is a service curve.

*+  The min-plus linear interpretation can provide a foundational
Jjustification of probing schemes:

+ Pathload (rate scan)
+ Path chirp (rate chirp)

- Difficulties with network probing can be related to non-
linearities of the underlying system

* Can exploiting min-plus algebra for e2e measurements




