A New Class of Packet Schedulers for Quality-of-Service Networks

Jörg Liebeherr

Department of Computer Science University of Virginia

jorg@cs.virginia.edu

Motivation

 Transmission of video and audio over packet-switched networks.

• Requires new networks and protocols.

Overview

- Background
- QOS Networks
- Rotating Priority Queues (RPQ) Scheduling
- Rotating Priority Queues Plus (RPQ+) Scheduling
- Conclusions

Quality-of-Service

- Video and audio need *Quality-of-Service* (*QoS*) guarantees:
 - delay
 - jitter
 - throughput
 - loss rate
- A deterministic service gives worst-case guarantees.

Multimedia Networks

- Multimedia connections have QoS and traffic parameters.
- Multimedia networks need resource reservation.

Why is Resource Reservation Difficult?

Compressed digital video has a variable bit rate.

 Problem: How do we provide deterministic QoS without peak-rate reservation?

Design Space of a Multimedia Network

What is Traffic Characterization?

- A traffic characterization is a bound for the traffic over any interval.
 - Time-invariant: $A^*(t) \ge A[\tau, \tau + t], \quad \forall t, \tau$
 - Subadditive: $A^*(t_1 + t_2) \le A^*(t_1) + A^*(t_2), \quad \forall t_1, t_2$
- Traffic characterization must map to traffic policer.

The "Leaky Bucket" Traffic Characterization

• Used in: ATM, Integrated-services Internet

Traffic Characterization Problem

- Given a video sequence, how do I select leaky bucket parameters?
- Previous approaches:
 - Candidate Sets (Low and Varaiya 1991).
 - Choose B according to buffer space availability (Pancha and El Zarki 1995).
 - Relative importance of buffer space and bandwidth (Guillemin et. al. 1995).
 - Empirical envelope (Wrege, Knightly, Zhang, and Liebeherr 1996).

Empirical Envelope

- The best possible characterization for a video source is its empirical envelope $E^{\ast}.$
- $E^*(t) := \sup_{\tau \ge 0} A[\tau, \tau + t]$, for all $t \ge 0$.
- Difficult to police, expensive to compute.

Design Space of a Multimedia Network **Packet Scheduling Traffic** Characterization **Admission**

Control

Packet Scheduling

- A connection j has a delay bound d_j .
- Packet scheduling discipline determines delay.

Admission Control

Schedulability Condition:

Given a packet scheduler and a set of connections. The connections are said to be **schedulable** if a violation of the delay bounds will never occur.

Schedulability Condition

=

Delay Bound Test for Admission Control

Scheduling and Network Utilization

- First-Come-First-Served (FCFS)
 - Simplest, offers only one delay bound.
- Earliest-Deadline-First (EDF)
 - Sophisticated, optimal in terms of schedulability.
- Static Priority (SP)
 - Compromise, offers fixed number of delay bounds.

First-Come-First-Served (FCFS)

• Exact Admission Control Test:

$$d \ge \sum_{j \in \mathcal{N}} A_j^*(t) - t + \max_{k \in \mathcal{N}} s_k \qquad t \ge 0$$

Earliest-Deadline-First (EDF)

Exact Admission Control Test (Liebeherr/Wrege/Ferrari):

$$t \ge \sum_{j \in \mathcal{N}} A_j^*(t - d_j) + \max_{k, d_k > t} s_k \qquad t \ge 0$$

where $\max_{k,d_k>t} s_k \equiv 0$ for $t > \max_{k \in \mathcal{N}} d_k$

Static Priority (SP)

Exact Admission Control Test (Liebeherr/Wrege/Ferrari):

$$(\exists \tau \leq d_p)$$

$$t + \tau \qquad \geq \sum_{j \in \mathcal{C}_p} A_j^*(t) + \sum_{q=1}^{p-1} \sum_{j \in \mathcal{C}_q} A_j^*(t+\tau) + \max_{r>p} s_r$$
 for all $p,\ t \geq 0$

What is a good scheduler?

Approximate EDF with FIFO queues

Approximations that require *no sorting*:

- HOL-PJ (Lim/Kobza 1990)
- Relabeling Architecture (Peha/Tobagi 1991)
- Rotating-Priority-Queues (RPQ) (Liebeherr/Wrege 1994)

Rotating-Priority-Queues (RPQ)

Design Principles:

- P priority sets.
- P+1 FIFO queues with labels.
- ullet Relabel queues every Δ time units.
- One delay bound for each priority set: $d_p = p \cdot \Delta$.

RPQ Scheduler

Admission Control Test for RPQ

For all priorities p and all $t \ge d_1$,

$$t \ge \sum_{j \in \mathcal{C}_1} A_j^*(t - d_1) + \sum_{q=2}^P \sum_{j \in \mathcal{C}_q} A_j^*(t + \Delta - d_q) + \max_{r, d_r > t + \Delta} s_r^{max}$$

RPQ

• Transmissions *before* a tagged packet.

Experimental Setup

- Single 155 Mbps switch.
- Three connection groups Low, Medium, High Delay.

		Delay	Burst	
	Index	Bound	Size	Rate
	j	d_{j}	B_{j}	r_{j}
Low	1	12 ms	4,000 cells	10-155 Mbps
Medium	2	24 ms	2,000 cells	10-155 Mbps
High	3	36 ms	4,000 cells	10-155 Mbps

Evaluation

Evaluation of RPQ

RPQ ($\Delta = 12ms$; 6 FIFOs) RPQ ($\Delta = 6ms$; 12 FIFOs)

RPQ ($\Delta = 4ms$; 18 FIFOs) RPQ ($\Delta = 3ms$; 24 FIFOs)

Rotating-Priority-Queues⁺ (RPQ⁺)

Design Principles:

- P priority sets.
- ullet 2P FIFO queues with labels.
- ullet Relabel queues every Δ time units.
- One delay bound for each priority set: $d_p = p \cdot \Delta$.

RPQ⁺ Scheduler

RPQ⁺ Queue Rotation

Implementating RPQ⁺ in Shared Memory

- No movement of packets.
- Operations independent of queued packets.

Admission Control Test for RPQ⁺

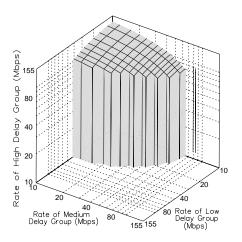
For all priorities p and all $t \geq d_p$,

$$t \geq \sum_{q=1}^{p-1} \sum_{j \in \mathcal{C}_q} A_j^*(t - d_q + \Delta) + \sum_{q=p}^{P} \sum_{j \in \mathcal{C}_q} A_j^*(t - d_q) + \max_{r, d_r > t} s_r^{max}$$

RPQ⁺

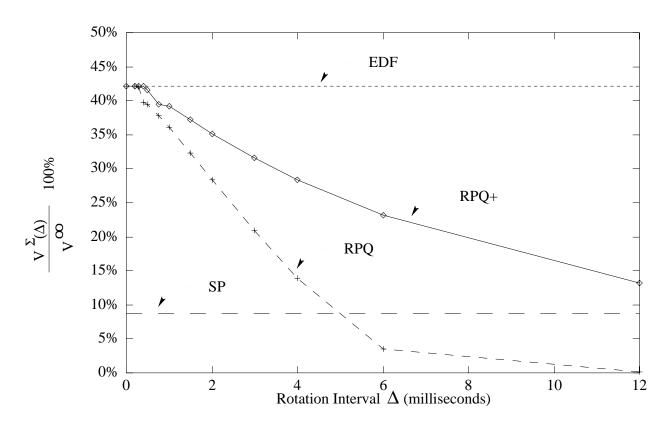
• Transmissions *before* a tagged packet.

Evaluation of RPQ⁺



 RPQ^+ ($\Delta = 12ms$; 6 FIFOs) RPQ^+ ($\Delta = 6ms$; 12 FIFOs)

 $\mathsf{RPQ}^+\ (\Delta = 4ms;\ \mathsf{18}\ \mathsf{FIFOs})$



 $\mathsf{RPQ}^+\ (\Delta = 3ms;\ \mathsf{24}\ \mathsf{FIFOs})$

Summary of Evaluation

• Compare volume of the schedulable regions:

$$\frac{V^{\Sigma}(\Delta)}{V^{\infty}} \cdot 100\%$$

Conclusions

- Approximate EDF with rotating FIFO queues.
- Simple solution (RPQ) can be worse than SP.
- RPQ⁺ is "between" SP and EDF.
- Reading:

```
IEEE/ACM Transactions on Neworking, June 1996.
```

IEEE/ACM Transactions on Neworking, December 1996.

Proc. IEEE Infocom '96, San Francisco, March 1996.

Proc. IEEE Infocom '97, Kobe, April 1997.