

Packet Scheduling in Linux

Purpose:

Become familiar with the configuration of packet scheduling algorithms in Linux. Conduct
experiments to evaluate the impact of scheduler configuration in Linux.

Software Tools:

 The lab/assignment assumes that there is a Ubuntu (or similar) Linux installation. On
Windows or Mac systems, you can install Ubuntu as a virtual machine.

What to turn in:

 For the lab (to be completed in the lecture) there is nothing to turn in. The assignment
consists of parts 6 and 7, which request to prepare a lab report.

Version 1 (February 2019)

ECE 1545

Lab 1 - Assignment 3

ECE 1545 PAGE 2 J. Liebeherr

Table of Content

Table of Content ___ 2

Overview ___ 3

Part 1. Software installation ___ 5

Part 2. Iperf3 – a throughput measurement tool _____________________________________ 6

Part 3. Piping the iperf3 output ___ 7

Part 4. Visualization ___ 12

Part 5. A script to speed things up __ 14

Part 6. Measuring scheduling algorithms __ 15

Part 7. Hierarchical Token Bucket (HTB) ___ 17

startiperf.sh __ 19

bokehserver.py __ 20

HTB-example.sh __ 22

ECE 1545 PAGE 3 J. Liebeherr

Overview

The objective of this lab is to measure the data rate obtained by a set of flows at a Linux
packet scheduler. The setup of the measurements involves a number of components:

 Scheduler (Qdisc) configuration using the tc (traffic control) command;

 Traffic generators and traffic sinks using the iperf3 command;

 Visualizing the transmitted and received traffic using the Python bokeh library;

In this lab/assignment, all components will be run on a single system. Since the senders
and receivers are on the same computer, we will send all transmissions to the loopback
interface. (The loopback interface – also called localhost – is a virtual network interface
with IPv4 address 127.0.0.1. All transmissions to destination address 127.0.0.1 arrive at
the local system.)
The next figure gives an overview of the components of the lab.

 A set of iperf3 clients transmits data at a given rate to iperf3 servers via the
loopback interface.

 The transmissions by the iperf3 client pass through a Qdisc packet scheduler.

 Both iperf3 clients and servers generate output that plots the amount of data
transmitted over a time interval. The output is written to files.

 The data in the files is formatted for the visualization.

 The visualization, done by the Python bokeh library, shows the data rate of the
iperf3 clients and servers over a moving time window.

The following exercises introduce the components of the measurement experiment one-
by-one. Initially, the scheduler (Qdisc) uses the default FIFO scheduling discipline. Once
the measurement infrastructure is in place, we move on to hierarchical scheduling
disciplines.

ECE 1545 PAGE 4 J. Liebeherr

Figure 1. Overview of measurements and their visualization.

loopback

scheduler

(Qdisc)

iperf3 servers

(receivers)
iperf3 clients

(senders)

in1.iprf

in2.iprf

in3. iprf

out1. iprf

out2. iprf

out3. iprf

Output of iperf3

clients and servers

ra
te

time

Visualization

(Python bokeh)

ECE 1545 PAGE 5 J. Liebeherr

Part 1. Software installation

We assume that you have an operational Ubuntu Linux system available. If you are working
on a Windows or Mac, you can install the VirtualBox virtualization software and install Ubuntu
as a virtual machine.

 Install VirtualBox: https://www.virtualbox.org/wiki/Downloads

 Instructions for installing Ubuntu on VirtualBox:
https://askubuntu.com/questions/142549/how-to-install-ubuntu-on-virtualbox

Exercise 1.1 Install iperf3, python and bokeh library

Open a terminal window and type the following commands:

$ sudo apt update (updates the Ubuntu package manager)

$ sudo apt install iperf3 (installs iperf3)

$ sudo apt install python3 (installs Python)
$ sudo apt install python3-pip (installs Python package manager)

$ pip3 install bokeh (installs bokeh library)

The bokeh library is installed in the directory ~/.local/bin. To test whether the user
account is setup to search in this directory, type

$ bokeh -v

If the command is not found, then the directory ~/.local/bin must be added to the PATH
environment variable. This is done with

$ export PATH="$PATH:$HOME/.local/bin"

Re-trying

$ bokeh -v

should now be successful, and display the version of bokeh.

https://www.virtualbox.org/wiki/Downloads
https://askubuntu.com/questions/142549/how-to-install-ubuntu-on-virtualbox

ECE 1545 PAGE 6 J. Liebeherr

Part 2. Iperf3 – a throughput measurement tool

Iperf3 was designed for throughput measurement over a network. A measurement is done by
first setting up an iperf3 server, e.g.,

$ iperf3 -s

and then start an iperf3 client, e.g.,

$ iperf3 -c 127.0.0.1

Here, the client transmits messages to the loopback address, that is, client and server are
running on the same system. The client transmits data as fast as possible for a duration of 10
seconds. In regular time intervals, client and server display the amount of transmitted data and
the data rate of the previous interval.

Iperf3 has many options. Default values are used when options are not specified. Here is a list
of options that are relevant for us:

-i value specifies the elapsed time (in seconds) between reports of
the data rate (default: 1)

-f value specifies units of displayed data rates
(k: kbit/s, K: kB/s, m: Mbit/s, M: MB/s, g: Gbit/s, G:
GB/s)

--logfile filename
sends output to file filename

-u use UDP (default: TCP). This option is only specified at
the client.

-t value specifies the duration of the measurement (default: 10
sec)

-b value M specifies the target bit rate of transmission in Mbit/s,
e.g., -b 10M is 10 Mbit/s.
(default: unlimited for TCP, 1 Mbit/s for UDP; -b 0
disables the rate control)

-p value species the port number of the iperf3 server (Default:
5201)

Exercise 2.1 Throughput Measurements

Familiarize yourself with iperf3 tool by running a set of measurement tests.

ECE 1545 PAGE 7 J. Liebeherr

Part 3. Piping the iperf3 output

The output of iperf3 has the following format:

$ iperf3 -c 127.0.0.1 -f M
Connecting to host 127.0.0.1, port 5201
[5] local 127.0.0.1 port 53744 connected to 127.0.0.1 port 5201
[ID] Interval Transfer Bitrate
[5] 0.00-1.00 sec 6.97 GBytes 7140 MBytes/sec
[5] 1.00-2.00 sec 6.98 GBytes 7146 MBytes/sec
[5] 2.00-3.00 sec 7.15 GBytes 7324 MBytes/sec
[5] 3.00-4.00 sec 7.19 GBytes 7360 MBytes/sec
[5] 4.00-5.00 sec 7.41 GBytes 7585 MBytes/sec
[5] 5.00-6.00 sec 7.17 GBytes 7341 MBytes/sec
[5] 6.00-7.00 sec 7.11 GBytes 7278 MBytes/sec
[5] 7.00-8.00 sec 7.12 GBytes 7295 MBytes/sec
[5] 8.00-9.00 sec 7.15 GBytes 7318 MBytes/sec
[5] 9.00-10.00 sec 7.13 GBytes 7302 MBytes/sec
-
[ID] Interval Transfer Bitrate
[5] 0.00-10.00 sec 71.4 GBytes 7309 MBytes/sec sender
[5] 0.00-10.00 sec 71.4 GBytes 7308 MBytes/sec receiver

As input for the visualization, we want to write each line of output into a file, such that
each new line of output is immediately available as input to the visualization software;

The following exercise show how to accomplish these tasks.

Exercise 3.1 Processing the iper3 output for visualization

Setup iperf3 server with

$ iperf3 -s

In a separate terminal window, start an iperf3 client that writes the output to file ‘mylog’

$ iperf3 -c 127.0.0.1 --logfile mylog

This will create iperf3 client that write the output data as seen above to file ‘mylog’

Assuming that the output of iperf3 is as given above we want to

1. Deliver the output from iperf3 as it occurs in real-time, that is, line by line. For this we

resort to Unix mechanisms, called pipes and named pipes, which allow us to
concatenate commands in such a way that the output of one command becomes the
input to the next command.

ECE 1545 PAGE 8 J. Liebeherr

Creating a file without content / Deleting content of a file

If the file ‘mylog’ does not exist you will see an error message. In this case, create an empty
file with that name with the command

$ touch mylog

Alternatively, you can open the file with an editor and immediately save and close the file,
without writing any characters in the file.

If you run iperf3 multiple times with the same logfile, new entries will be appended to the existing
file. To ensure that the logfile is empty and the logfile exists when you start a new iperf
measurement, use the command

$ >mylog

Alternatively, you can open the file with an editor, delete all content, and save the file. If you
issue this command when file ‘mylog’ does not exist, the file will be created with no content.

The next figure gives an overview of the task at hand.

Figure 2. Processing of iperf3 output.

Suppose that iperf3 uses the file “in1.iprf” as logfile. When iperf3 writes a new line to the
logfile, we want this line to be immediately made available to bokeh for visualization. This is
done by creating a named paper with name “in1.data”.

We complete the output processing illustrated in Figure 2. We first process the output of iperf3
line-by-line as new lines are written to the logfile, and then write the results into a named pipe.

1. Open two terminal windows and type the commands

$ iperf3 -s
$ iperf3 -c 127.0.0.1 --logfile mylog

(Type one command in one window and one in the other.) Extend the running time of
the client as necessary, e.g., by adding the option `-t 100’.

2. In a separate window, run the command

$ tail -f mylog

The command ̀ tail’ displays the last (default: 10) lines of a file. With the option ̀ -f ’, lines
are displayed as they are appended to the logfile.

Terminate the command before proceeding to the next step. If necessary, restart the
iperf3 client.

in1.iprf
Reformat

(awk)
in1.data

Visualize

(bokeh)
iperf3

ECE 1545 PAGE 9 J. Liebeherr

3. The final step is to write the output of awk into a named pipe. First we create a named
pipe with

$ mkfifo mypipe

And then use the redirection operator `>’ to write the output of tail to the named pipe.
This is done by typing

$ tail -f mylog > mypipe

Convince yourself that the desired content is written to the named pipe by listing its
content with

$ more mypipe

You should see how the size of file ‘mypipe’ grows when iperf3 is running.

4. To start the iperf3 client and the awk processor at the same time, the command is

$ iperf3 -c 127.0.0.1 --logfile mylog & tail -f mylog > mypipe

Running Multiple Linux Commands in Parallel
(Note: If you are familiar with Unix/Linux, the following description will rightfully appear overly
simplified.)

When typing commands in a terminal window, you can only type one command at a time. If
you want to run multiple commands in parallel, one option is to open multiple terminal
windows and type commands in each of the windows.

An alternative to this is to run commands “in the background”. In each terminal window you
can run one command in the foreground process and arbitrarily many commans in the
background. The commands that you usually type run in the foreground. To start a command
in the background, add an ampersand (‘&’) at the end of the command. For example,

$ cmd1 &

starts the command `cmd1’ in the backround. After typing the command, the terminal window
immediately displays a command prompt, which allows you to enter a new command. To
execute two commands in parallel, you can therefore type

$ cmd1 &

$ cmd2

If you want to start both commands at the same time, you enter

$ cmd1 & cmd2

You will get a new command appears after both commands are completed. If you add an
ampersand after `cmd2’, you immediately get a command prompt.

If you are running multiple commands in the background you sometimes want to forcefully
terminate one of these commands. One option to do this is to list the currently running
processes with the command `ps’ and then terminate a process with the command `kill -9’.

ECE 1545 PAGE 10 J. Liebeherr

For example,

$ ps

 PID TTY TIME CMD

 4886 ttys000 0:00.34 -bash

 12279 ttys002 0:00.08 -bash

 37293 ttys002 8:40.97 iperf3 -s

$ kill -9 37293

This terminates the `iperf3 -s’ process.

A generally more convenient way to control commands in execution is to work with `jobs’. In
Unix, every command that is entered at a command prompt constitutes a `job’. You can
control the execution of jobs as follows.

1. Listing current jobs

 $ jobs

 This provides a list of currently active jobs. Each entry has a job number (1,2,…) and a
 status (Running, Stopped, Done).

2. Terminating a job in the background

 $ kill %1

 This terminates the job with job number 1.

3. Stopping and terminating the foreground job

 $ Ctrl-Z

 Stops the foreground job

 $ Ctrl-C

 Terminates the foreground job.

4. Moving a job from the foreground to the background

 $ Ctrl-Z

 $ bg

5. Moving a job from the background to the foreground

 $ %1

 This moves the job with job number 1 to the foreground.

Unix Pipes and Named Pipes

We next address the issue of running a sequence of commands such that the output of one
command becomes the input of another command. This can be done by using the Unix
concept of a pipeline, or, in short a pipe. Let us suppose we want to list all files in a directory
whose names contain the substring “bin”. To list all files in a directory, we use the command

 $ ls

To list all lines of a file with name file1 that contain the string “bin”, we can use the command

 $ grep bin file1

ECE 1545 PAGE 11 J. Liebeherr

Using a pipe, we can concatenate the two commands to obtain a command

 $ ls | grep bin

The symbol “|” defines a pipe. Now, the input to the “grep” command is the output of the “ls”
command.

A named pipe, also called a FIFO special file, is a version of the Unix pipe, that appears as a

file in the operating system. That is, the named pipe has a name, it is located in a directory,
and can be read from or written to just as a regular file. Suppose we have a named pipe with
filename “mypipe”. We can `pipe’ two processes by having the first process write to “mypipe”
and the second process read from “mypipe”. The advantage of named pipes over regular files
is that

• named pipes always reside in main memory; and

• data written into the named pipe is immediately available for reading.

This is not ensured when using regular files. A named pipe with name `mypipe’ is created with
the command

$ mkfifo mypipe

Example: To see how a named pipe works open two terminal windows. In one window, type

$ ls -l > mypipe

Then, in the other window, type

$ cat < mypipe

The result is that the command `cat’, which displays the content of a file), reads and displays
the content of the directory from the first window. Now you display the file before and after
issuing the ‘cat’ command with

$ more mypipe

you will see that the named pipe contains the output of `ls -l’ before it is read, and it is empty
after it has been read. If ‘mypipe’ had been a regular file, the content would not have been
cleared by reading its content.

ECE 1545 PAGE 12 J. Liebeherr

Part 4. Visualization

We will show how to visualize the transmitted and received data from an iperf3 measurement.

Exercise 4.1 Visualization with bokeh

1. Set up logfiles and named pipes for the iperf3 client and the iperf3 server. The
filenames are:

in1.iprf -- logfile for the client
out1.ipfrf -- logfile for the server
data/in1.data -- named pipe for client
data/out1.data -- named pipe for server

To ensure that the files exist and the logfiles are empty issue the commands

$ >in1.iprf
$ >out1.iprf

$ mkdir data

$ mkfifo data/in1.data data/out1.data

Note that you need to create the directory data and the named pipes only once.

2. Download the Python file

https://www.comm.utoronto.ca/~jorg/teaching/ece1545/labs/serverbokeh.py

and place it in the directory `data’.

3. Go to directory data and start a bokeh server with the commands:

$ cd data
$ bokeh serve bokehserver.py

4. Start a web client, e.g., Firefox, and type the following URL:

http://localhost:5006/bokehserver

5. Start an iperf3 server and an iperf3 client that each write to a logfile, and write them to
the named pipes.

$ iperf3 -s -i 0.1 -f bytes -p 10000 --logfile out1.iprf & \
 tail -f out1.iprf > data/out1.data

$ iperf3 -c 127.0.0.1 -i 0.1 -u -f bytes -p 10000 -t 100 -b 10M \
 --logfile in1.iprf & tail -f in1.iprf > data/in1.data

We set the options so that iperf3

https://www.comm.utoronto.ca/~jorg/teaching/ece1545/labs/serverbokeh.py
http://localhost:5006/bokehserver

ECE 1545 PAGE 13 J. Liebeherr

 runs the client for 100 sec,

 transmits data using UDP,

 sets the targeted transmission rate of the client to 10 Mb/sec,

 creates an output line every 0.1 sec, and

 writes the data rate in bits/sec

Note that:

o If a command gets really long and you want to break it up into several
lines, you can create a linebreak with a backslash (\).

ECE 1545 PAGE 14 J. Liebeherr

Part 5. A script to speed things up

The following file is a bash script file that starts an iperf3 server and an iperf3 client, and writes
the output into a named pipe as done in Part 3 and Part 4. The bash script file takes four
parameters, and is started with the command

$./startiperf.sh class length rate offset

where

 class is the class identifier which is used for filenames and to construct the

port number;

 length is the length of experiment in seconds;

 rate is the target rate of the client in Mb/sec;

 offset is a time offset for the the start of experiment in sec.

This file is available at
https://www.comm.utoronto.ca/~jorg/teaching/ece1545/labs/startiperf.sh

The script cleans up files and creates directories and named pipes as necessary. When the
iperf3 client has completed, all processes started by the script – including the iperf3 server –
are terminated.

After downloading the file, change the permission so that the file can be run as a program.
Suppose the file is downloaded to your home directory. You change the permission with the
commands:

$ cd ~
$ chmod 700 startiperf.sh

The ‘chmod’ command makes the file readable, writeable, and executable by the owner of the
file.

https://www.comm.utoronto.ca/~jorg/teaching/ece1545/labs/startiperf.sh

ECE 1545 PAGE 15 J. Liebeherr

Part 6. Measuring scheduling algorithms

Exercise 6.1 FIFO

Setup the following scenario and visualize the results:

 Use FIFO scheduling;

 Use netem to limit the maximum rate of the scheduler to 10 Mbps;

 Generate three UDP traffic flows with iperf3 which sent traffic as follows:

o Flow 1: Sends at rate 2 Mbps, starts at t=0 sec, stops at t=60 sec;

o Flow 2: Sends at rate 4 Mbps, starts at t=10 sec, stops at t=50 sec;

o Flow 3: Sends at rate 8 Mbps, starts at t=20 sec, stops at t=40 sec.

Save a screen capture of the complete experiment visualization to a file.

When all flows are active (20 sec ≤ t ≤ 40 sec), determine the bandwidth obtained by each flow.
Relate the bandwidth obtained by a flow to the rate at which a flow is sending.

Exercise 6.2 Priority Scheduling

Repeat the previous experiment with a static priority scheduler:

 Use PRIO scheduling;
Recall: By default a prio qdisc has three classes with minor numbers “1”, “2”, and “3”,
where “1” is the highest priority, and “3” is the lowest priority.

 Use netem to limit the maximum rate of the scheduler to 10 Mbps;

 Generate three UDP traffic flows with iperf3 which sent traffic as follows:

o Flow 1 (class 1): Sends at rate 2 Mbps, starts at t=0 sec, stops at t=60 sec;

o Flow 2 (class 2): Sends at rate 4 Mbps, starts at t=10 sec, stops at t=50 sec;

o Flow 3 (class 3): Sends at rate 8 Mbps, starts at t=20 sec, stops at t=40 sec.

 Note: If a class has minor number “1”, the script “startiperf.sh” sets the port number
for that class to “10001”. If a class has minor number “2”, the script “startiperf.sh” sets
the port number for that class to “10002”.

Save a screen capture of the complete experiment visualization to a file.

When all flows are active (20 sec ≤ t ≤ 40 sec), determine the bandwidth obtained by each flow.
Explain the results.

ECE 1545 PAGE 16 J. Liebeherr

Exercise 6.3 DRR (Deficit Round Robin)

Repeat the previous experiment with the DRR scheduler:

 Use DRR scheduling;

 Use netem to limit the maximum rate of the scheduler to 10 Mbps;

 You need to define a class as well as filter for each flow.
Note: If a class has minor number “1”, the script “startiperf.sh” sets the port number
for that class to “10001”. If a class has minor number “33”, the script “startiperf.sh”
sets the port number for that class to “10033”.

 Generate three UDP traffic flows with iperf3 which sent traffic as follows:

o Flow 1: Sends at rate 2 Mbps, starts at t=0 sec, stops at t=60 sec;

o Flow 2: Sends at rate 4 Mbps, starts at t=10 sec, stops at t=50 sec;

o Flow 3: Sends at rate 8 Mbps, starts at t=20 sec, stops at t=40 sec.

Save a screen capture of the complete experiment visualization to a file.

When all flows are active (20 sec ≤ t ≤ 40 sec), determine the bandwidth obtained by each flow.
Relate the bandwidth obtained by a flow to the rate at which a flow is sending.

ECE 1545 PAGE 17 J. Liebeherr

Part 7. Hierarchical Token Bucket (HTB)

The final example creates a hierarchical token bucket with classes as shown here:

Exercise 6.1 HTB

Setup the HTB scheduler with parameters for the classes as follows:

Class
Id

Assured
Rate

(Mbps)

Ceiling
Rate

(Mbps)

Burst
Size

(Bytes)

1:3 10 10 4000

1:1 5 10 2000

1:2 5 10 2000

1:11 2.5 10 1000

1:12 2.5 10 1000

1:21 1 10 1000

1:22 4 10 1000

class

htb

1:11

loopback

root

 htb

1:0

 netem

2:0

class

htb

1:3

class

htb

1:2

class

htb

1:1

class

htb

1:12

class

htb

1:21

class

htb

1:22

ECE 1545 PAGE 18 J. Liebeherr

Note: A configuration script for this setup is given at:

https://www.comm.utoronto.ca/~jorg/teaching/ece1545/labs/HTB-example.sh

Your task is to setup (5) different experiments to evaluate whether HTB provides a hierarchical
fair bandwidth allocation. Flows may start and stop at different times.

 Include a scenario, where the bandwidth demand of each flow exceeds the assured
rate.

 Include a scenario, where 1:12 has a bandwidth demand of 10 Mbps, and no other flow
is transmitting.

 Include a scenario, where the bandwidth demands are:
 1:21 10 Mbps start time: 0 sec
 1:22 1 Mbps start time: 0 sec
 1:12 5 Mbps start time: 20 sec
 1:11 does not send

 Include two other scenarios of your own design.

For each scenario, save a screen capture of the complete experiment visualization to a file,
and provide a discussion of the expected versus the observed outcomes.

https://www.comm.utoronto.ca/~jorg/teaching/ece1545/labs/HTB-example.sh

ECE 1545 PAGE 19 J. Liebeherr

Appendix

startiperf.sh

#!/bin/bash

sets up an iperf3 sender and client

writes output to a named pipe in directory ./data

Arguments:

$1 - flow id used for filenames and port

$2 - length of experiment in seconds

$3 - target rate of client in Mb/sec

$4 - offset of start of experiment in sec

Check arguments

if [$# -ne 4]; then

 echo "ERROR: Incorrect number of arguments."

 echo " 1. Class id used for filenames and port"

 echo " 2. length of experiment in seconds"

 echo " 3. target rate of client in Mb/sec"

 echo " 4. offset of start of experiment"

 exit 1

fi

create "./data" directory, if necessary

if [! -d "data"]; then

 echo "Directory './data' does not exist ... will be created"

 mkdir data

fi

Portnumber is flow 10000 + classID

portno=$(($1 + 10000))

Clear output files

>in${1}.iprf

>out${1}.iprf

Create named pipes in ./data and delete if they exist

rm -f data/${1}.in

rm -f data/${1}.out

mkfifo data/${1}.in

mkfifo data/${1}.out

Start iperf3 server

iperf3 -s -i 0.2 -f bytes -p $portno --logfile out${1}.iprf & tail -F out${1}.iprf --retry >

data/${1}.out &

sleep $4

Start iperf3 client

We reverse the order of iperf3 and tail so that we can run iperf3 in foreground

tail -F in${1}.iprf --retry > data/${1}.in & iperf3 -c 127.0.0.1 -i 0.2 -u -f bytes -p $portno -t

${2} -b ${3}M --logfile in${1}.iprf

once client has completed, kill all processes started by this script

echo "Done with client of class ${1}. Kill all processes"

pkill -P $$

ECE 1545 PAGE 20 J. Liebeherr

bokehserver.py

The following file is a python script file that runs the visualization with the bokeh library. The command is

started by with the command

$ bokeh serve bokehserver.py

from bokeh.plotting import figure, curdoc

from bokeh.driving import linear

from bokeh.models.sources import ColumnDataSource

from bokeh.models import DataRange1d

from bokeh.palettes import Spectral

from queue import Queue, Empty

from threading import Thread

from collections import defaultdict

import os

import re

parameter

rate_factor = 1000 # Conversion factor from bps

rate_unit = 'kbps' # Unit to print to y label

time_window = 30 # time window for default boundary, in second

y_max = None # upper bound on y axis, may be None, in `rate_unit`

base_path = '.' # path to search for files, '.' for directory at start up

max_data_point = None # Max number of point to plot in each file, or None for unlimited

List all files in this directory

paths = sorted(os.listdir(base_path))

names = [os.path.basename(path) for path in paths]

Split file names into first and last name using first `.` as separator

name_pattern = re.compile('(\S+?)(\.\S*)?')

match = [name_pattern.fullmatch(name) for name in names]

first_names = sorted(set([m.group(1) for m in match]))

last_names = sorted(set([m.group(2) or '' for m in match]))

Set color/style for each first/last name

available_colors = Spectral[min(max(3, len(first_names)), 11)]

available_styles = ['solid', 'dashed', 'dotted', 'dotdash']

colors = { name: available_colors[i % len(available_colors)] for (i, name) in enumerate(first_names) }

styles = { name: available_styles[i % len(available_styles)] for (i, name) in enumerate(last_names) }

Shared queue

queue = Queue()

This thread reads each file, line-by-line, try to parse it to match `data_pattern` and not

`reject_pattern` and submit parsed data to `queue`

data_pattern = re.compile('\A\[\s*\d*\]\S*\s+\d*.?\d*-

(\d*.?\d*)\s+sec\s+\d*.?\d*\s+(?:[KMGT]?(?:Byte|bit))s\s+(\d*.?\d*)\s+([KMGT]?)(Byte|bit)s/sec\s')

reject_pattern = re.compile('(?:sender|receiver|local|remove)\\n?\Z')

def filler(name, path):

 try:

 with open(os.path.join(base_path, path), 'r') as f:

 for line in f:

 match = data_pattern.match(line)

 if not match or reject_pattern.search(line):

 continue # Skip if doesn't match, or match reject_pattern

 time = float(match.group(1))

 rate = float(match.group(2))

 # Kilo, Mega, Giga, Tera

 rate *= {'': 1, 'K': 1e+3, 'M': 1e+6, 'G': 1e+9, 'T': 1e+12}[match.group(3)]

 # Byte/bit

 rate *= {'Byte': 8, 'bit': 1}[match.group(4)]

 # Submit to queue

 queue.put((path, time, rate / rate_factor))

 except IOError as e:

 print(f'\nError reading {os.path.join(base_path, path)} with error: {e}\n')

Set default zoom to [end-time_window, end] on x-axis, and [0, y_max] on y-axis

p = figure(sizing_mode='stretch_both', x_range=DataRange1d(follow='end', follow_interval=time_window),

y_range=DataRange1d(start=0, end=y_max))

Set grid color, label, etc.

ECE 1545 PAGE 21 J. Liebeherr

p.grid.minor_grid_line_color = '#eeeeee'

p.grid.grid_line_color = '#888888'

p.yaxis.axis_label = f"Rate ({rate_unit})"

p.xaxis.axis_label = "time (s)"

found = False

sources = {}

Create lines to draw to graph, and their data sources

for name, path in zip(names, paths):

 if os.path.isdir(os.path.join(base_path, path)): continue # ignore directories

 # Create thread to read the file

 thread = Thread(target=filler, args=(name, path))

 thread.daemon = True

 thread.start()

 # Get first/last name for line color/style

 match = name_pattern.fullmatch(name)

 assert(match)

 first_name = match.group(1)

 last_name = match.group(2) or ''

 # Create data source, line

 sources[path] = ColumnDataSource({'x': [], 'y': []})

 p.line(x='x', y='y', source=sources[path], line_width=2, line_color=colors[first_name],

line_dash=styles[last_name], legend=dict(value=name))

 found = True

if found:

 # You need to have at least one legend, otherwise these 2 lines will crash. Make sure you created

at least one line

 p.legend.location = "top_left"

 p.legend.click_policy = "hide"

@linear()

def update(step):

 new_data = defaultdict(lambda: {'x': [], 'y': []})

 # Keep reaading from `queue`

 while True:

 try:

 name, time, size = queue.get_nowait()

 except Empty:

 # Queue empty

 break

 # Group data by source (each file has its own source)

 # data will be dictionary {'x': xdata, 'y': ydata} and xdata, ydata will have same size

 new_data[name]['x'].append(time)

 new_data[name]['y'].append(size)

 if not new_data:

 return

 for (name, data) in new_data.items():

 # Push new data onto appropriate source

 sources[name].stream(data, rollover=max_data_point)

Add `p` to current document and setup callback

curdoc().add_root(p)

curdoc().add_periodic_callback(update, 100) # Interval in ms

ECE 1545 PAGE 22 J. Liebeherr

HTB-example.sh

Editing Loopback Interface

PATH="$PATH:/usr/bin:/sbin:/bin"

INT=lo

echo Configuring interface $INT

Delete current Interface attached to `root`

sudo tc qdisc del dev $INT root

Add `netem` with major id 2:

sudo tc qdisc add dev $INT root handle 2: netem rate 10Mbit

Add htb `qdisc` with classid 1:, to class 2: (netem)

sudo tc qdisc add dev $INT parent 2: handle 1: htb

Add class 1:3 to qdisc 1: with rate/ceil/burst parameter

sudo tc class add dev $INT parent 1: classid 1:3 htb rate 10Mbit ceil 10Mbit burst 4000

sudo tc class add dev $INT parent 1:3 classid 1:1 htb rate 5Mbit ceil 10Mbit burst 2000

sudo tc class add dev $INT parent 1:1 classid 1:11 htb rate 2.5Mbit ceil 10Mbit burst 1000

sudo tc class add dev $INT parent 1:1 classid 1:12 htb rate 2.5Mbit ceil 10Mbit burst 1000

sudo tc class add dev $INT parent 1:3 classid 1:2 htb rate 5Mbit ceil 10Mbit burst 2000

sudo tc class add dev $INT parent 1:2 classid 1:21 htb rate 1Mbit ceil 10Mbit burst 1000

sudo tc class add dev $INT parent 1:2 classid 1:22 htb rate 4Mbit ceil 10MBit burst 1000

sudo tc filter add dev $INT parent 1: protocol arp u32 match u32 0 0 flowid 1:11 # arp

sudo tc filter add dev $INT parent 1: protocol ip u32 match ip dport 10000 0xffff classid 1:11

sudo tc filter add dev $INT parent 1: protocol ip u32 match ip dport 10001 0xffff classid 1:12

sudo tc filter add dev $INT parent 1: protocol ip u32 match ip dport 10002 0xffff classid 1:21

sudo tc filter add dev $INT parent 1: protocol ip u32 match ip dport 10003 0xffff classid 1:22

IDs are used to identify qdisc, class and filters

ID consists of 2 parts; 16bit major number, and 16bit of minor number, written as major:minor.

Special IDs:

- root: 65535:65535 (all ones)

- unspecified: 0:0 (all zeros)

qdisc is identified by only major number (called `handle`)

- 2: for netem and 1: for htb above

class id uses both major number and minor number

- major number is the same as qdisc it belongs to

- minor number (called classid) can be arbitrarily assigned, there is no rule regarding this.

- For example

- 1:4 corresponds to a class in qdisc 1: with class id 4

Current setting:

|interface: root|

|

|netem 2: |

|

|htb qdisc 1: ------- |

| | |

| *---------* |

| |root(htb)| |

| | 1:3 | |

| *---------* |

| | |

| *--------*----------* |

| | | |

| *-------* *-------* |

| |A | |B | |

| | 1:1 | | 1:2 | |

| *-------* *-------* |

| | | |

| *----*----* *----*----* |

| | | | | |

| *-----* *-----* *-----* *--_--* |

| |A1 | |A2 | |B1 | |B2 | |

| | 1:11| | 1:12| | 1:21| | 1:22| |

| *-----* *-----* *-----* *-----* |
