

Packet Scheduling in Linux (Part 1)

Purpose:
Become familiar with the configuration of packet scheduling algorithms in Linux. Conduct
experiments to evaluate the impact of scheduler configuration in Linux.

This is the first part of a sequence of two labs:

• In this lab, you learn how to visualize transmissions from multiple sources in a
Linux system;

• In the next lab, you will configure scheduling algorithms, and take
measurements using the tools from this lab.

Software Tools:
• The lab/assignment assumes that there is a Ubuntu (or similar) Linux installation. On

Windows or Mac systems, you can install Ubuntu as a virtual machine.

What to turn in:
• For the lab, turn in the screenshot saved at the end of Part 5.

Version 2 (November 2019)

ECE 1545

Lab S1

ECE 1545 PAGE 2 J. Liebeherr

Table of Content

Table of Content __ 2
Overview __ 3
Part 1. Software installation __ 5
Part 2. Iperf3 – a throughput measurement tool _____________________________________ 6
Part 3. Piping the iperf3 output ___ 8
Part 4. Visualization __ 14
Part 5. A script to speed things up___ 17

bokehserver.py __ 19

startiperf.sh __ 21

ECE 1545 PAGE 3 J. Liebeherr

Overview

The objective of this lab is to measure the data rate obtained by a set of flows at a Linux
packet scheduler. The setup of the measurements involves a number of components:

• Scheduler (Qdisc) configuration using the tc (traffic control) command;
• Traffic generators and traffic sinks using the iperf3 command;
• Visualizing the transmitted and received traffic using the Python bokeh library;

In this lab/assignment, all components will be run on a single system. Since the senders
and receivers are on the same computer, we will send all transmissions to the loopback
interface. (The loopback interface – also called localhost – is a virtual network interface
with IPv4 address 127.0.0.1. All transmissions to destination address 127.0.0.1 arrive at
the local system.)

The next figure gives an overview of the components of the lab.

• A set of iperf3 clients transmits data at a given rate to iperf3 servers via the
loopback interface.

• The transmissions by the iperf3 client pass through the loopback interface and
then through a Qdisc packet scheduler.1

• Both iperf3 clients and servers generate output that plots the amount of data
transmitted over a time interval. The output is written to files.

• The visualization, done by the Python bokeh library, shows the data rate of the
iperf3 clients and servers over a moving time window.

The following exercises introduce the components of the measurement experiment one-
by-one. Initially, the scheduler (Qdisc) uses the default FIFO scheduling discipline. Once
the measurement infrastructure is in place, we move on to hierarchical scheduling
disciplines.

The lab sequence assumes that you have some familiarity with Linux. If this is not the
case, then read the “Introduction to Linux”.

1 (Normally, we would put the scheduler when the data is sent, that is, before it enters
the loopback interface. The reason that we place the scheduler at a point after the data
is received (when it departs from the loopback interface) is that there are otherwise
interactions with higher-layer protocols. For example, TCP may allow that a packet must
be transmitted from the scheduler, before the next packet from the same connection is
permitted to enter the scheduler. By moving the scheduler to the egress from the
loopback interface, such interactions are avoided.)

ECE 1545 PAGE 4 J. Liebeherr

Figure 1. Overview of measurements and their visualization.

loopback
interface

scheduler
(Qdisc)

iperf3 servers
(receivers)

iperf3 clients
(senders)

1.in
2.in
3.in

1.out
2.out
3.out

Output of iperf3
clients and servers

ra
te

time

Visualization
(Python bokeh)

1

2

3

1

2

3

ECE 1545 PAGE 5 J. Liebeherr

Part 1. Software installation

We assume that you have an operational Ubuntu Linux system available. If you are working
on a Windows or Mac, you can install the VirtualBox virtualization software and install Ubuntu
as a virtual machine.

• Install VirtualBox: https://www.virtualbox.org/wiki/Downloads

• Instructions for installing Ubuntu on VirtualBox:
https://askubuntu.com/questions/142549/how-to-install-ubuntu-on-virtualbox

Exercise 1.1 Install iperf3, python and bokeh library

Open a terminal window and type the following commands:

$ sudo apt update (updates the Ubuntu package manager)
$ sudo apt install iperf3 (installs iperf3)
$ sudo apt install python3 (installs Python)
$ sudo apt install python3-pip (installs Python package manager)
$ pip3 install bokeh (installs bokeh library)

The bokeh library is installed in the directory ~/.local/bin. To test whether the user
account is setup to search in this directory, type

$ bokeh -v

If the command is not found, then the directory ~/.local/bin must be added to the PATH
environment variable. This is done with

$ export PATH="$PATH:$HOME/.local/bin"

Re-trying

$ bokeh -v

should now be successful, and display the version of bokeh.

ECE 1545 PAGE 6 J. Liebeherr

Part 2. Iperf3 – a throughput measurement tool

Iperf3 was designed for throughput measurement over a network. A measurement is done by
first setting up an iperf3 server, e.g.,

$ iperf3 -s

and then start an iperf3 client, e.g.,

$ iperf3 -c 127.0.0.1

Here, the client transmits messages to the loopback address, that is, client and server are
running on the same system. The client transmits data as fast as possible for a duration of 10
seconds. In regular time intervals, client and server display the amount of transmitted data and
the data rate of the previous interval.

Iperf3 has many options. Default values are used when options are not specified. Here is a list
of options that are relevant for us:

-i value specifies the elapsed time (in seconds) between reports of
the data rate (default: 1)

-f value specifies units of displayed data rates
(k: kbit/s, K: kByte/s, m: Mbit/s, M: MByte/s, g: Gbit/s,
G: Gbyte/s)

--logfile filename
sends output to file filename

-u use UDP (default: TCP). This option is only specified at
the client.

-t value specifies the duration of the measurement (default: 10
sec)

-b value M specifies the target bit rate of transmission in Mbit/s,
e.g., -b 10M is 10 Mbit/s.
(default: unlimited for TCP, 1 Mbit/s for UDP; -b 0
disables the rate control)

-l value Sets size of the payload in a single transmission.

-p value specifies the port number of the iperf3 server (Default:
5201)

ECE 1545 PAGE 7 J. Liebeherr

Exercise 2.1 Throughput Measurements
Familiarize yourself with iperf3 tool by running a set of measurement tests.

Note:
• Iperf3 accounts for payload (application) data, but does not account for IP or UDP/TCP

headers. This can become an issue when the sending rate in iperf3 is close to the
transmission capacity of a link. For example, sending at a rate of 10 Mbps on a 10 Mbps
link will result in dropped packets at the link (due to IP and UDP/TCP headers).

ECE 1545 PAGE 8 J. Liebeherr

Part 3. Piping the iperf3 output

The output of iperf3 has the following format:

$ iperf3 -c 127.0.0.1 -f M
Connecting to host 127.0.0.1, port 5201
[5] local 127.0.0.1 port 53744 connected to 127.0.0.1 port 5201
[ID] Interval Transfer Bitrate
[5] 0.00-1.00 sec 6.97 GBytes 7140 MBytes/sec
[5] 1.00-2.00 sec 6.98 GBytes 7146 MBytes/sec
[5] 2.00-3.00 sec 7.15 GBytes 7324 MBytes/sec
[5] 3.00-4.00 sec 7.19 GBytes 7360 MBytes/sec
[5] 4.00-5.00 sec 7.41 GBytes 7585 MBytes/sec
[5] 5.00-6.00 sec 7.17 GBytes 7341 MBytes/sec
[5] 6.00-7.00 sec 7.11 GBytes 7278 MBytes/sec
[5] 7.00-8.00 sec 7.12 GBytes 7295 MBytes/sec
[5] 8.00-9.00 sec 7.15 GBytes 7318 MBytes/sec
[5] 9.00-10.00 sec 7.13 GBytes 7302 MBytes/sec
-
[ID] Interval Transfer Bitrate
[5] 0.00-10.00 sec 71.4 GBytes 7309 MBytes/sec sender
[5] 0.00-10.00 sec 71.4 GBytes 7308 MBytes/sec receiver

As input for the visualization, we want to write each line of output into a file, such that
each new line of output is immediately available as input to the visualization software;

The following exercise show how to accomplish these tasks.

This data will be passed to the visualizer (bokeh), which will re-format the data before plotting
it in a graph.

The following figure shows how the data is passed to bokeh:

Suppose that the output of an iperf3 command is written to the file “logfile”. We want to
graphically present the data that is written to the file. The simplest method to achieve this is to
have bokeh use “logfile” as input file. If we are doing this, then the visualization begins only
after the iperf3 command is completed. However, we want the visualization to occur while the
iperf3 command is still running. To achieve this, we redirect the data written to the logfile to a
FIFO buffer, and have bokeh read form this FIFO buffer.

Exercise 3.1 Writing output of iperf3 to a file

Set up an iperf3 server with

logfile Visualize
(bokeh)iperf3

FIFO buffer
(named pipe)

pipe

ECE 1545 PAGE 9 J. Liebeherr

$ iperf3 -s

In a separate terminal window, start an iperf3 client that writes the output to file ‘mylog’. This is
done with the --logfile option

$ iperf3 -c 127.0.0.1 --logfile mylog

Confirm that the content of the file is the expected iperf3 output.

Creating a file without content / Deleting content of a file

If the file ‘mylog’ does not exist you will see an error message. In this case, create an empty
file with that name with the command

$ touch mylog

Alternatively, you can open the file with an editor and immediately save and close the file,
without writing any characters in the file.

If you run iperf3 multiple times with the same logfile, new entries will be appended to the existing
file. To ensure that the logfile is empty and the logfile exists when you start a new iperf
measurement, use the command

$ >mylog

Alternatively, you can open the file with an editor, delete all content, and save the file. If you
issue this command when file ‘mylog’ does not exist, the file will be created with no content.

Exercise 3.2 Learning about “named pipes”

Suppose that iperf3 uses the file “mylog” to write its outpout. When iperf3 writes a new line to
the logfile, we want this line to be immediately made available to bokeh for visualization. The
latter is done by creating a named pipe.

Read the following information that provides background and information on named pipes in
Linux.

Running Multiple Linux Commands in Parallel
(Note: If you are familiar with Unix/Linux, the following description will rightfully appear overly
simplified.)

When typing commands in a terminal window, you can only type one command at a time. If
you want to run multiple commands in parallel, one option is to open multiple terminal
windows and type commands in each of the windows.

An alternative to this is to run commands “in the background”. In each terminal window you
can run one command in the foreground process and arbitrarily many commans in the
background. The commands that you usually type run in the foreground. To start a command
in the background, add an ampersand (‘&’) at the end of the command. For example,
$ cmd1 &

ECE 1545 PAGE 10 J. Liebeherr

starts the command `cmd1’ in the backround. After typing the command, the terminal window
immediately displays a command prompt, which allows you to enter a new command. To
execute two commands in parallel, you can therefore type
$ cmd1 &
$ cmd2

If you want to start both commands at the same time, you enter
$ cmd1 & cmd2

You will get a new command appears after both commands are completed. If you add an
ampersand after `cmd2’, you immediately get a command prompt.

If you are running multiple commands in the background you sometimes want to forcefully
terminate one of these commands. One option to do this is to list the currently running
processes with the command `ps’ and then terminate a process with the command `kill -9’.
For example,
$ ps

 PID TTY TIME CMD
 4886 ttys000 0:00.34 -bash
 12279 ttys002 0:00.08 -bash
 37293 ttys002 8:40.97 iperf3 -s

$ kill -9 37293

This terminates the `iperf3 -s’ process.

A generally more convenient way to control commands in execution is to work with `jobs’. In
Unix, every command that is entered at a command prompt constitutes a `job’. You can
control the execution of jobs as follows.

1. Listing current jobs
 $ jobs

 This provides a list of currently active jobs. Each entry has a job number (1,2,…) and a
 status (Running, Stopped, Done).

2. Terminating a job in the background
 $ kill %1

 This terminates the job with job number 1.

3. Stopping and terminating the foreground job
 $ Ctrl-Z

 Stops the foreground job
 $ Ctrl-C

 Terminates the foreground job.
4. Moving a job from the foreground to the background
 $ Ctrl-Z
 $ bg

ECE 1545 PAGE 11 J. Liebeherr

5. Moving a job from the background to the foreground
 $ %1
 This moves the job with job number 1 to the foreground.

Unix Pipes and Named Pipes
We next address the issue of running a sequence of commands such that the output of one
command becomes the input of another command. This can be done by using the Unix
concept of a pipeline, or, in short a pipe. Let us suppose we want to list all files in a directory
whose names contain the substring “bin”. To list all files in a directory, we use the command
 $ ls

To list all lines of a file with name file1 that contain the string “bin”, we can use the command

 $ grep bin file1

Using a pipe, we can concatenate the two commands to obtain a command

 $ ls | grep bin

The symbol “|” defines a pipe. Now, the input to the “grep” command is the output of the “ls”
command.

A named pipe, also called a FIFO special file, is a version of the Unix pipe, that appears as a
file in the operating system. That is, the named pipe has a name, it is located in a directory,
and can be read from or written to just as a regular file. Suppose we have a named pipe with
filename “mypipe”. We can `pipe’ two processes by having the first process write to “mypipe”
and the second process read from “mypipe”. The advantage of named pipes over regular files
is that

• named pipes always reside in main memory; and

• data written into the named pipe is immediately available for reading.

This is not ensured when using regular files. A named pipe with name `mypipe’ is created with
the command

$ mkfifo mypipe

Example: To see how a named pipe works open two terminal windows. In one window, type
$ ls -l > mypipe

Then, in the other window, type
$ cat < mypipe

The result is that the command `cat’, which displays the content of a file), reads and displays
the content of the directory from the first window. Now you display the file before and after
issuing the ‘cat’ command with

$ more mypipe

you will see that the named pipe contains the output of `ls -l’ before it is read, and it is empty
after it has been read. If ‘mypipe’ had been a regular file, the content would not have been
cleared by reading its content.

ECE 1545 PAGE 12 J. Liebeherr

Now we proceed with finalizing the iperf3 output processing.

Exercise 3.2 Processing the iper3 output for visualization

We complete the output processing illustrated in Error! Reference source not found.. We
first process the output of iper3 line-by-line as new lines are written to the logfile, and then write
the results into a named pipe.

1. Open two terminal windows and type the commands

$ iperf3 -s
$ iperf3 -c 127.0.0.1 --logfile mylog

(Type one command in one window and one in the other.) Extend the running time of the
client as necessary, e.g., by adding the option `-t 100’.

2. In a separate window, run the command

$ tail -f mylog

The command `tail’ displays the last (default: 10) lines of a file. With the option `-F ’, lines
are displayed as they are appended to the logfile.

Terminate the command before proceeding to the next step. If necessary, restart the iperf3
client.

3. Next, write the lines of the mylog file into a named pipe. First, create a named pipe with

$ mkfifo mypipe

And then use the redirection operator `>’ to write the ouput of the tail command to the
named pipe. This is done by typing

$ tail -F mylog > mypipe

Convince yourself that the desired content is written to the named pipe. You can do this by
creating a new terminal window and issuing

$ more mypipe

You should see how the size of file ‘mypipe’ grows when iperf3 is running.

4. Now run a sequence of commands that perform all of the above concurrently, i.e.,

• start an iperf3 server;

• start an iperf3 client that writes to a file;

• extract lines written to the file as they are written; and

ECE 1545 PAGE 13 J. Liebeherr

• write these lines into the created named pipe;

You need three terminal windows. In the first terminal window, start an iperf server with

$ iperf3 -s

In the second terminal window type the commands

$ tail -F mylog --retry > mypipe &
$ iperf3 -s -i 0.1 -f b -p 9999 &
$ iperf3 -c 127.0.0.1 -u -i 0.1 -f b -p 9999 -t 60 \
 -b 100M --logfile mylog -Z

The options of the iperf3 command direct to

• create an output line every 0.1 second (“-i 0.1”),
• use port number 9999 for the transmission (“-p 9999”),
• report the data rate in units of bits/sec (“-f b”),
• run the client for 60 sec (“-t 60”),
• transmit data using UDP (“-u”),
• set the targeted transmission rate of the client to 10 Mb/sec (“-b 100M”).

In the third terminal window, type

$ more mypipe

Observe the output of this last command.

ECE 1545 PAGE 14 J. Liebeherr

Part 4. Visualization

We will show how to visualize the transmitted and received data from an iperf3 measurement.

Creating a file without content / Deleting content of a file

If the file ‘mylog’ does not exist you will see an error message. In this case, create an empty
file with that name with the command

$ touch mylog

Alternatively, you can open the file with an editor and immediately save and close the file,
without writing any characters in the file.

If you run iperf3 multiple times with the same logfile, new entries will be appended to the existing
file. To ensure that the logfile is empty and the logfile exists when you start a new iperf
measurement, use the command

$ >mylog

Alternatively, you can open the file with an editor, delete all content, and save the file. If you
issue this command when file ‘mylog’ does not exist, the file will be created with no content.

Exercise 4.1 Visualization with bokeh

1. Go to the home directory with

$ cd

2. Set up logfiles and named pipes for an iperf3 client and an iperf3 server. The logfiles
of iperf3 are placed in directory “data”. The named pipes are placed into directory
“piple”. The filenames are:

data/1.in -- logfile for iperf client
data/1.out -- logfile for the iperf server
pipe/1.in -- named pipe for iperf client
pipe/1.out -- named pipe for iperf server

To ensure that the directories and the files exist and the logfiles are empty, issue the
commands

$ mkdir data
$ >data/1.in
$ >data/1.out

ECE 1545 PAGE 15 J. Liebeherr

$ mkdir pipe
$ mkfifo pipe/1.in
$ mkfifo pipe/1.out

Note that you need to create the directory data and the named pipes only once.

3. Download the Python file

https://www.comm.utoronto.ca/~jorg/teaching/ece1545/labs/serverbokeh.py

to the home directory. The downloaded file is a bokeh script that formats the output of
an iperf3 client or server, and then displays a plot that visualizes the amount of data
that is sent or received for a time interval.

4. From the home directory, start a bokeh server with the commands:

$ bokeh serve serverbokeh.py

5. Start a web client, e.g., Firefox, and type the following URL:

http://localhost:5006/serverbokeh

Note:
You can access serverbokeh from a remote location. In this case, you need to
add the host name where bokeh is running as an option to the bokeh command.
That is, if serverbokeh is running on the machine myserver.utoronto.ca, start the
bokeh server with
$ bokeh serve serverbokeh.py \
 --allow-websocket-origin= myserver.utoronto.ca

Then you can access the server via the URL
http://myserver.utoronto.ca:5006/serverbokeh

6. Start an iperf3 server and an iperf3 client that each write to a logfile, and write them to
the named pipes.

$ tail -F data/1.in --retry > pipe/1.in &
$ tail -F data/1.out --retry > pipe/1.out &

$ iperf3 -s -i 1 -f n -p 9999 --logfile data/1.out &
$ iperf3 -c 127.0.0.1 -u -i 1 -f bytes -p 9999 -t 60 \
 -b 100M --logfile data/1.in -Z

Note:

ECE 1545 PAGE 16 J. Liebeherr

• The tail commands are started before the iperf3 commands to ensure that all
data is captured.

• The “-Z” option enforces a zero-copy operations.

• If a Linux command gets really long and needs to be broken up into several
lines, a backslash (\) is used to indicate a line break.

7. Observe the visualization in the script.

ECE 1545 PAGE 17 J. Liebeherr

Part 5. A script to speed things up

The following file available at

https://www.comm.utoronto.ca/~jorg/teaching/ece1545/labs/startiperf.sh

is a bash script file that starts an iperf3 server and an iperf3 client, and writes the output into
a named pipe as done in Part 3 and Part 4. The bash script file takes four parameters, and is
started with the command

$./startiperf.sh class length rate offset

where

• class is the class identifier which is used for filenames and to construct the
port number;

• length is the length of experiment in seconds;

• rate is the target rate of the client in Mb/sec;

• offset is a time offset for the the start of experiment in sec.

The script cleans up files and creates directories and named pipes as necessary. When the
iperf3 client has completed, all processes started by the script – including the iperf3 server –
are terminated.

Exercise 4.1 Running the startiperf.sh script

1. Download the above file to your home directory.

2. From the home directory, start a bokeh server with the commands

$ cd ~
$ bokeh serve serverbokeh.py

If the server is already running, you may want to restart it.

3. From a web browser, go to URL http://localhost:5006/serverbokeh

4. Run the script with

$ bash startiperf.sh 5555 60 100 0

5. Observe the visualization by serverbokeh.

ECE 1545 PAGE 18 J. Liebeherr

Exercise 4.2 Visualization of multiple iperf3 transmissions

The final piece is to start multiple iperf3 clients and servers simultaneously. You can do this by
writing multiple startiperf commands in a file.

1. Start the bokeh

$ bokeh serve serverbokeh.py

2. Start a web browser, e.g., Firefox, and type the following URL:

http://localhost:5006/serverbokeh

6. In the home directory, write the following four lines into a file with name
myexperiment.sh:

./startiperf.sh 5555 60 100 0 &

./startiperf.sh 6666 60 60 10 &

./startiperf.sh 3333 60 30 20 &

./startiperf.sh 2222 60 10 30 &

Each line creates an iperf3 client and server.

7. Create named pipes for the data from the iperf3 clients and servers:

$ mkfifo pipe/2222.in
$ mkfifo pipe/2222.out
$ mkfifo pipe/3333.in
$ mkfifo pipe/3333.out
 … …

8. Run the script with the command

$ bash myexperiment.sh

9. Refresh/Reload the above URL in the browser.

10. When the iperf clients are completed, take a screen snapshot of the
visualization shown in the browser, and save it to a file.

11. Turn in the saved screen shot, as your lab submission.

ECE 1545 PAGE 19 J. Liebeherr

Appendix
bokehserver.py

The following file is a python script file that runs the visualization with the bokeh library.
The command is started by with the command

$ bokeh serve bokehserver.py

from bokeh.plotting import figure, curdoc
from bokeh.driving import linear
from bokeh.models.sources import ColumnDataSource
from bokeh.models import DataRange1d
from bokeh.palettes import Spectral

from queue import Queue, Empty
from threading import Thread
from collections import defaultdict
import os
import re

parameter
rate_factor = 1000 # Conversion factor from bps
rate_unit = 'kbps' # Unit to print to y label

time_window = 30 # time window for default boundary, in second
y_max = None # upper bound on y axis, may be None, in `rate_unit`
base_path = '.' # path to search for files, '.' for directory at start up
max_data_point = None # Max number of point to plot in each file, or None for unlimited

List all files in this directory
paths = sorted(os.listdir(base_path))
names = [os.path.basename(path) for path in paths]

Split file names into first and last name using first `.` as separator
name_pattern = re.compile('(\S+?)(\.\S*)?')
match = [name_pattern.fullmatch(name) for name in names]
first_names = sorted(set([m.group(1) for m in match]))
last_names = sorted(set([m.group(2) or '' for m in match]))

Set color/style for each first/last name
available_colors = Spectral[min(max(3, len(first_names)), 11)]
available_styles = ['solid', 'dashed', 'dotted', 'dotdash']
colors = { name: available_colors[i % len(available_colors)] for (i, name) in enumerate(first_names) }
styles = { name: available_styles[i % len(available_styles)] for (i, name) in enumerate(last_names) }

Shared queue
queue = Queue()

This thread reads each file, line-by-line, try to parse it to match `data_pattern` and not
`reject_pattern` and submit parsed data to `queue`
data_pattern = re.compile('\A\[\s*\d*\]\S*\s+\d*.?\d*-
(\d*.?\d*)\s+sec\s+\d*.?\d*\s+(?:[KMGT]?(?:Byte|bit))s\s+(\d*.?\d*)\s+([KMGT]?)(Byte|bit)s/sec\s')
reject_pattern = re.compile('(?:sender|receiver|local|remove)\\n?\Z')
def filler(name, path):
 try:
 with open(os.path.join(base_path, path), 'r') as f:
 for line in f:
 match = data_pattern.match(line)
 if not match or reject_pattern.search(line):
 continue # Skip if doesn't match, or match reject_pattern

 time = float(match.group(1))
 rate = float(match.group(2))
 # Kilo, Mega, Giga, Tera
 rate *= {'': 1, 'K': 1e+3, 'M': 1e+6, 'G': 1e+9, 'T': 1e+12}[match.group(3)]
 # Byte/bit
 rate *= {'Byte': 8, 'bit': 1}[match.group(4)]

 # Submit to queue
 queue.put((path, time, rate / rate_factor))

ECE 1545 PAGE 20 J. Liebeherr

 except IOError as e:
 print(f'\nError reading {os.path.join(base_path, path)} with error: {e}\n')

Set default zoom to [end-time_window, end] on x-axis, and [0, y_max] on y-axis
p = figure(sizing_mode='stretch_both', x_range=DataRange1d(follow='end', follow_interval=time_window),
y_range=DataRange1d(start=0, end=y_max))
Set grid color, label, etc.
p.grid.minor_grid_line_color = '#eeeeee'
p.grid.grid_line_color = '#888888'
p.yaxis.axis_label = f"Rate ({rate_unit})"
p.xaxis.axis_label = "time (s)"

found = False

sources = {}
Create lines to draw to graph, and their data sources
for name, path in zip(names, paths):
 if os.path.isdir(os.path.join(base_path, path)): continue # ignore directories

 # Create thread to read the file
 thread = Thread(target=filler, args=(name, path))
 thread.daemon = True
 thread.start()

 # Get first/last name for line color/style
 match = name_pattern.fullmatch(name)
 assert(match)
 first_name = match.group(1)
 last_name = match.group(2) or ''

 # Create data source, line
 sources[path] = ColumnDataSource({'x': [], 'y': []})
 p.line(x='x', y='y', source=sources[path], line_width=2, line_color=colors[first_name],
line_dash=styles[last_name], legend=dict(value=name))
 found = True

if found:
 # You need to have at least one legend, otherwise these 2 lines will crash. Make sure you created
at least one line
 p.legend.location = "top_left"
 p.legend.click_policy = "hide"

@linear()
def update(step):
 new_data = defaultdict(lambda: {'x': [], 'y': []})

 # Keep reaading from `queue`
 while True:
 try:
 name, time, size = queue.get_nowait()
 except Empty:
 # Queue empty
 break

 # Group data by source (each file has its own source)
 # data will be dictionary {'x': xdata, 'y': ydata} and xdata, ydata will have same size
 new_data[name]['x'].append(time)
 new_data[name]['y'].append(size)

 if not new_data:
 return

 for (name, data) in new_data.items():
 # Push new data onto appropriate source
 sources[name].stream(data, rollover=max_data_point)

Add `p` to current document and setup callback
curdoc().add_root(p)
curdoc().add_periodic_callback(update, 100) # Interval in ms

ECE 1545 PAGE 21 J. Liebeherr

startiperf.sh

#!/bin/bash

sets up an iperf3 sender and client
writes output to a named pipe in directory ./data
Arguments:
$1 - flow id used for filenames and port
$2 - length of experiment in seconds
$3 - target rate of client in Mb/sec
$4 - offset of start of experiment in sec

Check arguments
if [$# -ne 4]; then
 echo "ERROR: Incorrect number of arguments."
 echo " 1. Class id used for filenames and port"
 echo " 2. length of experiment in seconds"
 echo " 3. target rate of client in Mb/sec"
 echo " 4. offset of start of experiment"
 exit 1
fi

create "./data" directory, if necessary
if [! -d "data"]; then
 echo "Directory './data' does not exist ... will be created"
 mkdir data
fi

Portnumber is flow 10000 + classID
portno=$(($1 + 10000))

Clear output files
>in${1}.iprf
>out${1}.iprf

Create named pipes in ./data and delete if they exist
rm -f data/${1}.in
rm -f data/${1}.out
mkfifo data/${1}.in
mkfifo data/${1}.out

Start iperf3 server
iperf3 -s -i 0.2 -f bytes -p $portno --logfile out${1}.iprf & tail -F out${1}.iprf --retry >
data/${1}.out &

sleep $4

Start iperf3 client
We reverse the order of iperf3 and tail so that we can run iperf3 in foreground
tail -F in${1}.iprf --retry > data/${1}.in & iperf3 -c 127.0.0.1 -i 0.2 -u -f bytes -p $portno -t
${2} -b ${3}M --logfile in${1}.iprf

once client has completed, kill all processes started by this script
echo "Done with client of class ${1}. Kill all processes"
pkill -P $$

