Guaranteed Rate Scheduling

ECE 1545

University of Toronto

(J. Liebeherr)

Goal: Design a scheduler that gives rate guarantees to traffic

@ VirtualClock Scheduling (— Powerpoint slides)
@ Service curves of the form S(t) = Rt
© SCED scheduling with rate guarantees

@ Rate guarantees over long-term and short-term intervals
= lower vs. strict vs. adaptive service curves

@ Putting it all together
= VirtualClock, Packet Scale Rate Guarantees (PSRG)

Re-visit Work-conserving Link

c Transmission rate
T%(n) Arrival time of n-th packet
T7(n) Departure time of n-th packet

ly Size of n-th packet (in bits)

Ln, = Z?:l bn

Arrivals
—_—

Packet
arrivals
2000 " (pits)

1500

1000

o

—
Backlog

] : : Departures

00
I
T

| L I I O R I
0 0.5 1 15 2

Recursion for Departure time of nth Packet

Bit-level View of Packets

We number the bits of the packets

0,1,....0—1, 61,....,Lo—1, -+ Lp_1,...,Ln—1

~
Packet 1 Packet 2 Packet n

T%(”) =Tp(Ly —1)

TP (n) = maX{TA(Ln —1),Tp(L, — 2)} + é

1 2
:max{TA(Ln—1)+6,TA(Ln—2)+5,
Ly,

- Ta(Lp—1—
n:O,{I,l.?J,}Enfl{ A(Ln k) +

n—l—l}

Continuous-space View of Packets

Viewing bits as real numbers:

Packet 1 Packet 2 Packet n
~—
0§V<él £1§V<L2 L7L71SV<L71,

Th(n) = To(L,)

Th(n) = To(Ly) = sup {Tats -0+ 5}
0<k<Lp

= Ta®(Ly,)
with vs(v) = &

Important relationship

We have shown:

T (n) = max{Tﬁ(n),Tg(n — 1)} + %

=Ta®~(Ly,)
with vs(v) = &

Implication:

@ For the departure time of packet n, the packet-level recursion
is equal to the max-plus convolution.

@ We can exploit this to design a SCED scheduler.

Max-Plus SCED

@ Recall max-plus service curve: Tp < TA®ys
@ Max-plus SCED:
Set deadlines to D/(v) = Ta® vs(v)

@ Then:
Tp <Ta®~vs <<= DIL>Tp

@ Deadline of nth packet: D¢P(n) = D{(L(n™))

Max-Plus SCED for Delay Guarantees

Delay function

Delay service curve (v > 0):

SCED implementation: Dl(v) = Ta®~s(v) = Ta(v) + T
—> This is EDF !

Max-Plus SCED for Rate Guarantees

Rate function

rate 1/R

Rate service curve (v > 0):

Vs(v) =

=TS

SCED implementation:

DtP(n) = Ta®vs(L,,) = max{Tfl(n), DP(n — 1)} + %”

— This is VirtualClock (VC)

Note, however, that the deadline D¢?(n) must hold for all v # L. To
ensure this, we need to relax the service curve to vg(v) = ”M%

Scheduling with VirtualClock

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 time (ms)

Packet k t t t t + t t t + + t + + t t +
arrivals:
3 6 9 12 15 18 21 4
Flow 1
PR O A
8§ 11 14 17
Flow 2
vy Py P3Py
8 11 14 17
Flow 3
vy Py Py By
Transmission
prenswission | gt [t [t [t [ot [b [b | o8 |08 | ot | o8] 08 [o8 [0t [51 | 2

Drawback of VirtualClock

@ VirtualClock implements a lower service curve, which gives
guarantees for all v > 0 that

Tp(v) > Ta®ys(v)

@ This is a guarantee for intervals [0, V]

@ Drawback: Receiving more than the guarantee earlier, can
result in less than the guarantee later.

@ Solution : Need to look at different types of service curves.

Rate Guarantees

Consider the rate guarantee achieved with service curve S(t) = Rt:

@ exact service curve: D =A® S
e good for expressing service at work-conserving buffered link
e does not allow a flow to obtain more output than Rt in a time
interval of length ...
... even if bandwidth is available

o lower service curve: D> A® S

e guarantees that the the service is at least as given by
D>A®S
= can use more bandwidth if it is available

Lower service curve S(t) = Rt

Traffic
. N A
Scenario: Large burst arrival, .
a lot of service initially, K
then no service in (0, S] Rt
N
A(t)= N =RT ,
fOI’ O S t S T 0 | | Time

In this scenario, for all t < T
D(t)> A® S(t) = Rt

= lower service curve S(t) = Rt is always satisfied

What is the problem?

Lower service curves give guarantees over the time interval [0,¢).
This is fine for delay guarantees. However, for rate guarantees, we
want a rate guarantee for any time interval (s, t], where there is a

backlog
— strict service curve

A strict (min-plus) service curve S satisfies for all s, ¢ such that there
is a backlog in (s,t] that

D(t) = D(s) = S(t —)

— No penalty (at later time) when flow gets more service than
guaranteed

Issue with strict service curves

@ Strict service curves are great for rates (S(t) = Rt)

@ They are not good for delay guarantees (S(t) = o (t))

Consider flow that is backlogged in [s,]:
e We must have D(t) — D(s) > p(t — s)
o If s—t>T, weget D(t) — D(s) > o0
= busy period cannot be longer than T’

What we want: What we get:

Adaptive (Min-Plus) Service Curves

A network element offers an adaptive min-plus service curve S, if
arrival and departure functions A and D satisfy for all s <t that

D(t) > min {D(s) +S(t— s),S%I;fSt{A(a:) +S(t— m)}}

This can be re-written as a single condition:

D(t) > sup [min {D(s) +5(t =), inf {A(x)+ S(t - x)}}]

s<t

Adaptive (Min-Plus) Service Curves

A network element offers an adaptive min-plus service curve S, if
arrival and departure functions A and D satisfy for all s < ¢ that

D(t) > min {D(S) +S(t— s),sg;fgt{A(x) +S(t — m)}}

Combines advantages of lower and strict service curves
e S(t) = Rt guarantees

D(t) — D(s) > R(t — s)

whenever there is a backlog in [s, t]
e S(t) = dr(t) enforces

D(t) > A(t — d)

without limiting the lengths of busy periods

Adaptive Max-Plus Service Curves

Define:
FRG(v)= sup {F(k)+G(v—r)} J

I pn<k<v

An adaptive max-plus service curve g satisfies for all v > 0 and
u< v

Tp(v) <Tp(p) +vs(v —p) or Tp(v) < TA%’YS(V)

This can be re-written as a single condition:

Tp(v) < ;I%f;{max [TD(,u) +vs(v — p) ,TAgfyS(l/)} } , Yr>0

Adaptive Max-Plus SCED

@ Set deadlines to

Di(v) = ;I%fl;{max {TD(M) +7s(v —p) 7TA§’YS(V):| }

@ Then:

To(v) < inf {max|To () + 752 —) 4B 35()] }

—
Di(v) > Tp(v)

@ Deadline of nth packet: D¢P(n) = D{(L(n™))

Adaptive Max-Plus SCED

We can show

TP (n) < minn{max [Tlpj(m —-1)+ % z": 4, max {T% (k) + ! Z@}}}

1<m<

. and
TP (n) < FP(n) = max{Tg(n), min [Tg(n — 1), FP(n — 1)] } +
SCED implementation

D () = max{ T4 (k), min{ Dk — 1), Th(k — 1)} } + %

= This is Packet Scale Rate Guarantees (PSRG)

As with VirtualClock, we need to relax the service curve to vg (v) = 7”4»21‘%“”‘

Scheduling with PSRG

0 1 2 3 4 5 6 7 8 10011 12 13 14 15 16 time (ms)
Packet = @ b——————
arrivals:
3 4 5 6 7 8 11 14
Flow 1
PR O A
8 9 12 15
Flow 2
vy Py P3Py
8 10 13 16
Flow 3
vy Py Py By
Transmission
premswission | gt [[t [t [ot [b [b | ot |08 |8 | o1 | o8 [08 [ot [0] 08

Issue with PSRG

@ Deadline of nth packet requires knowledge of departure time
of (n — 1)th packet
@ This means that deadlines cannot be computed at arrival time

@ Deadline of a packet is computed is computed when previous
packet from the same flow departs

@ Open Problem: Schedulability condition for PSRG

Implementation of PSRG

PSRG for flow j with with guaranteed rate R and delay d:
o Counter VC; keeps track of D¢ (k)

@ FIFO queue FIFO; for packets that are not assigned a
deadline upon their arrival

@ Each packet gets a timestamp (used as deadline)

@ A transmission queue for packets with assigned deadlines
(transmit in increasing order of deadlines)

Implementation of PSRG

If k-th packet from flow j with size ¢ arrives at time ¢:
P (1. 1)

o t>1Tp (k—1):
e VG, + t+ %
o Timestamp packet: TS¥ = VC; +d
e Add packet to transmission queue
<TP (k—1):

0t < TD]' (k—1)
o Timestamp packet: TSF = ¢
o Add packet to FIFO;

If k-th packet from flow j departs at time ¢:
°ot> Tﬁj(kz +1):
(k 4 1)-th packet with length ¢ is at head of FIFO;
VC; < maX{TS§+1, min {VC;, t}} + £
o TSI =vC; +d
Move (k + 1)-th packet to transmission queue

