
Guaranteed Rate Scheduling

ECE 1545

University of Toronto

(J. Liebeherr)



Road Map

Goal: Design a scheduler that gives rate guarantees to traffic

1 VirtualClock Scheduling (→ Powerpoint slides)

2 Service curves of the form S(t) = Rt

3 SCED scheduling with rate guarantees

4 Rate guarantees over long-term and short-term intervals
⇒ lower vs. strict vs. adaptive service curves

5 Putting it all together
⇒ VirtualClock, Packet Scale Rate Guarantees (PSRG)



Re-visit Work-conserving Link

C Transmission rate

T pA(n) Arrival time of n-th packet

T pD(n) Departure time of n-th packet

`n Size of n-th packet (in bits)

Ln =
∑n

j=1 `n

Arrivals Departures

Backlog

C

0 0.5 1 1.5

500

1000

1500

2000

Packet
arrivals
 (bits)

2

time (ms)



Recursion for Departure time of nth Packet

T pD(n) = max
{
T pA(n), T

p
D(n− 1)

}
+
`n
C

= max
{
T pA(n) +

`n
C

, T pA(n− 1) +
`n−1 + `n

C
, . . .

. . . , T pA(1) +
`1 + . . .+ `n

C

}
= max

0≤k≤n−1

{
T pA(n− k) +

`n−k + . . .+ `n
C

}
with T pD(0) = 0.



Bit-level View of Packets

We number the bits of the packets

0, 1, . . . , `1 − 1︸ ︷︷ ︸
Packet 1

, `1, . . . , L2 − 1︸ ︷︷ ︸
Packet 2

, · · · , Ln−1, . . . , Ln − 1︸ ︷︷ ︸
Packet n

T pD(n) = TD(Ln − 1)

T pD(n) = max
{
TA(Ln − 1), TD(Ln − 2)

}
+

1

C

= max
{
TA(Ln − 1) +

1

C
, TA(Ln − 2) +

2

C
, . . .

. . . , TA(0) +
Ln
C

}
= max

κ=0,1,...,Ln−1

{
TA(Ln − 1− κ) + κ+ 1

C

}



Continuous-space View of Packets

Viewing bits as real numbers:

0  ⌫ < `1

Packet 1 Packet 2 Packet n

`1  ⌫ < L2 Ln�1  ⌫ < Ln

T pD(n) = TD(L
−
n )

T pD(n) = TD(L
−
n ) = sup

0≤κ≤L−
n

{
TA(L

−
n − κ) +

κ

C

}
= TA⊗ γ(L−

n )

with γS(ν) =
ν
C



Important relationship

We have shown:

T pD(n) = max
{
T pA(n), T

p
D(n− 1)

}
+
`n
C

= TA⊗ γ(L−
n )

with γS(ν) =
ν
C

Implication:

For the departure time of packet n, the packet-level recursion
is equal to the max-plus convolution.

We can exploit this to design a SCED scheduler.



Max-Plus SCED

Recall max-plus service curve: TD ≤ TA⊗ γS
Max-plus SCED:
Set deadlines to D`(ν) = TA⊗ γS(ν)
Then:

TD ≤ TA⊗ γS ⇐⇒ D` ≥ TD

Deadline of nth packet: D`p(n) = D`(L(n−))



Max-Plus SCED for Delay Guarantees

Delay service curve (ν ≥ 0):

γS(ν) = δd(ν) = T

Delay function

0

�1

d

SCED implementation: D`(ν) = TA⊗ γS(ν) = TA(ν) + T

=⇒ This is EDF !



Max-Plus SCED for Rate Guarantees

Rate service curve (ν ≥ 0):

γS(ν) =
ν

R

Rate function

rate 1/R

0

�1

SCED implementation:

D`p(n) = TA⊗ γS(L−
n ) = max

{
T pA(n), D`

p(n− 1)
}
+
`n
C

=⇒ This is VirtualClock (VC)

Note, however, that the deadline D`p(n) must hold for all ν 6= L−
n . To

ensure this, we need to relax the service curve to γS(ν) =
ν+`max

R



Scheduling with VirtualClock

R1 = R2 = R3 =
1
3 Mbps, C = 1 Mbps, ` = 1000 bits

p6
1

Flow 1

0 1 3 4 5 6 7 8 9 10 11 122 13 14 15 16 time (ms)

Flow 2

p1
1 p2

1 p4
1p3

1 p5
1 p6

1 p7
1 p8

1

p1
2 p2

2 p3
2 p4

2

p4
3p3

3p2
3p1

3

3 6 9 12 15 18 21 24

8 11 14 17

8 11 14 17

Transmission
order

Flow 3

p1
1 p2

1 p4
1p3

1 p5
1 p7

1 p8
1p1

2 p2
2 p3

2 p4
2 p4

3p3
3p2

3p1
3

Packet
arrivals:



Drawback of VirtualClock

VirtualClock implements a lower service curve, which gives
guarantees for all ν > 0 that

TD(ν) ≥ TA⊗ γS(ν)

This is a guarantee for intervals [0, ν]

Drawback: Receiving more than the guarantee earlier, can
result in less than the guarantee later.

Solution : Need to look at different types of service curves.



Rate Guarantees

Consider the rate guarantee achieved with service curve S(t) = Rt:

exact service curve: D = A⊗ S
good for expressing service at work-conserving buffered link
does not allow a flow to obtain more output than Rt in a time
interval of length t . . .

. . . even if bandwidth is available

lower service curve: D ≥ A⊗ S
guarantees that the the service is at least as given by
D ≥ A⊗ S

=⇒ can use more bandwidth if it is available



Lower service curve S(t) = Rt

Scenario: Large burst arrival,
a lot of service initially,
then no service in (0, S]

A(t) = N = RT ,
for 0 ≤ t ≤ T

D
K

N

0

0

Time

A

S T

Rt

Tra�c

In this scenario, for all t ≤ T :

D(t) ≥ A⊗ S(t) = Rt

=⇒ lower service curve S(t) = Rt is always satisfied



What is the problem?

Lower service curves give guarantees over the time interval [0, t).
This is fine for delay guarantees. However, for rate guarantees, we
want a rate guarantee for any time interval (s, t], where there is a
backlog

=⇒ strict service curve

A strict (min-plus) service curve S satisfies for all s, t such that there
is a backlog in (s, t] that

D(t)−D(s) ≥ S(t− s)

=⇒ No penalty (at later time) when flow gets more service than
guaranteed



Issue with strict service curves

Strict service curves are great for rates (S(t) = Rt)

They are not good for delay guarantees (S(t) = δT (t))

Consider flow that is backlogged in [s, t]:

We must have D(t)−D(s) ≥ δT (t− s)
If s− t > T , we get D(t)−D(s) ≥ ∞

=⇒ busy period cannot be longer than T

.

What we want: What we get:



Adaptive (Min-Plus) Service Curves

A network element offers an adaptive min-plus service curve S, if
arrival and departure functions A and D satisfy for all s ≤ t that

D(t) ≥ min

{
D(s) + S(t− s), inf

s≤x≤t
{A(x) + S(t− x)}

}

This can be re-written as a single condition:

D(t) ≥ sup
s≤t

[
min

{
D(s) + S(t− s), inf

s≤x≤t
{A(x) + S(t− x)}

}]



Adaptive (Min-Plus) Service Curves

A network element offers an adaptive min-plus service curve S, if
arrival and departure functions A and D satisfy for all s ≤ t that

D(t) ≥ min

{
D(s) + S(t− s), inf

s≤x≤t
{A(x) + S(t− x)}

}
Combines advantages of lower and strict service curves

S(t) = Rt guarantees

D(t)−D(s) ≥ R(t− s)

whenever there is a backlog in [s, t]

S(t) = δT (t) enforces

D(t) ≥ A(t− d)

without limiting the lengths of busy periods



Adaptive Max-Plus Service Curves

Define:

F⊗
µ
G(ν) = sup

µ≤κ≤ν
{F (κ) +G(ν − κ)}

An adaptive max-plus service curve γS satisfies for all ν ≥ 0 and
µ ≤ ν:

TD(ν) ≤ TD(µ) + γS(ν − µ) or TD(ν) ≤ TA⊗
µ
γS(ν)

This can be re-written as a single condition:

TD(ν) ≤ inf
µ≤ν

{
max

[
TD(µ) + γS(ν − µ) , TA⊗

µ
γS(ν)

]}
, ∀ν ≥ 0



Adaptive Max-Plus SCED

Set deadlines to

D`(ν) = inf
µ≤ν

{
max

[
TD(µ) + γS(ν − µ) , TA⊗

µ
γS(ν)

]}

Then:

TD(ν) ≤ inf
µ≤ν

{
max

[
TD(µ) + γS(ν − µ) , TA⊗

µ
γS(ν)

]}
⇐⇒

D`(ν) ≥ TD(ν)

Deadline of nth packet: D`p(n) = D`(L(n−))



Adaptive Max-Plus SCED

We can show

T pD(n) ≤ min
1≤m≤n

{
max

[
T pD(m− 1) +

1

R

n∑
j=m

`j , max
m≤k≤n

{
T pA(k) +

1

R

n∑
j=k

`j
}]}

︸ ︷︷ ︸
Fp(n)=

. . . and

T pD(n) ≤ F p(n) = max
{
T pA(n),min

[
T pD(n− 1), F p(n− 1)

]}
+
`n
R
,

SCED implementation

D`p(k) = max
{
T pA(k),min

{
D`p(k − 1), T pD(k − 1)

}}
+
`k
R

=⇒ This is Packet Scale Rate Guarantees (PSRG)
As with VirtualClock, we need to relax the service curve to γS(ν) = ν+`max

R



Scheduling with PSRG

R1 = R2 = R3 =
1
3 Mbps, C = 1 Mbps, ` = 1000 bits

p6
1

Flow 1

0 1 3 4 5 6 7 8 9 10 11 122 13 14 15 16 time (ms)

Flow 2

p1
1 p2

1 p4
1p3

1 p5
1 p6

1 p7
1 p8

1

p1
2 p2

2 p3
2 p4

2

p4
3p3

3p2
3p1

3

3 4

8

8

Transmission
order

Flow 3

p1
1 p2

1 p4
1p3

1 p5
1 p7

1 p8
1p1

2 p2
2 p3

2 p4
2 p4

3p3
3p2

3p1
3

Packet
arrivals:

5 6 7 8

9

10

11

12

13

14

15

16



Issue with PSRG

Deadline of nth packet requires knowledge of departure time
of (n− 1)th packet

This means that deadlines cannot be computed at arrival time

Deadline of a packet is computed is computed when previous
packet from the same flow departs

Open Problem: Schedulability condition for PSRG



Implementation of PSRG

PSRG for flow j with with guaranteed rate R and delay d:

Counter VCj keeps track of D`pj (k)

FIFO queue FIFOj for packets that are not assigned a
deadline upon their arrival

Each packet gets a timestamp (used as deadline)

A transmission queue for packets with assigned deadlines
(transmit in increasing order of deadlines)



Implementation of PSRG

If k-th packet from flow j with size ` arrives at time t:

t > T pDj (k − 1):

VCj ← t+ `
R

Timestamp packet: TSkj = VCj + d
Add packet to transmission queue

t ≤ T pDj (k − 1):

Timestamp packet: TSkj = t
Add packet to FIFOj

If k-th packet from flow j departs at time t:

t > T pAj (k + 1):

(k + 1)-th packet with length ` is at head of FIFOj
VCj ← max{TSk+1

j ,min {VCj , t}}+ `
R

TSk+1
j = VCj + d

Move (k + 1)-th packet to transmission queue


