ECE - Computer Networks II Winter 2008

Problem Set #3

- 1. Consider the graph of the evolution of an arrival sample path at a buffered leaky bucket regulator with burst size L and rate r, as shown in Figure 1. The figure shows the arrivals A(t) as solid line, and the cumulative amount of tokens entering the leaky bucket as a dashed line. Figure 2 shows the leaky bucket and the arrivals.
 - (a) In Figure 1, draw the departure function D(t), i.e., the output from the regulator.
 - (b) Use Figure 2, to indicate the content of the leaky bucket and the backlog at times t1, t2, t3, t4, t5.
 - (c) Provide a drawing that depicts the content of the backlog X(t) and the content of the leaky bucket LB(t) as a function of time.

Figure 2:

- (a) Suppose that the arrivals are regulated by a buffered leaky bucket regulator with parameters $\sigma = 2$ and $\rho = 1$. Indicate in the figure the content of tokens in the leaky bucket for the time interval [0, 13] (starting with a full bucket at time t = 0).
- (b) Indicate in the figure the maximum backlog and the maximum delay for arriving traffic.
- (c) Draw the empirical envelope for the arrivals shown in Figure 3.
- (d) Select values σ and ρ for the regulator so that traffic is never backlogged at the regulator.

Figure 4:

- 3. Consider the network with two constant rate links (with rates C_1 and C_2) and a delay element (with delay W) as shown in Figure 3.
 - (a) (4 marks) Express the service curve of the entire network in terms of C_1 , C_2 , and W.
 - (b) (1 marks) Determine the value of the network service curve at time t = 10 with parameters $C_1 = 20$ kbps, $C_2 = 30$ kbps, and W = 5 ms.
 - (c) (5 marks) Suppose that the arrivals from A are regulated by a dual leaky bucket with peak rate P = 1 Mbps, average rate $\rho = 0.5$ Mbps and burst size $\sigma = 15,000$ bits. Also, suppose that W = 10 ms.

Determine the minimum rates for C_1 and C_2 so that the backlog in the network does not exceed 1000 *bits*.