ECE - Computer Networks II Winter 2007

Problem Set #2

To be discussed: February 1, 2007.

- 1. Textbook Problem #4.4
- 2. Textbook Problem KMK #4.9
- 3. Consider N_1 dual leaky bucket (R_1, σ_1, ρ_1) flows multiplexed with N_2 leaky bucket (σ_2, ρ_2) flows at a link with capacity C. Derive an expression for the maximum delay d_{max} in a FCFS server.
- 4. Consider a non-work-conserving FCFS server that takes vacations every other T seconds, i.e., for T seconds, the server services traffic in FCFS order at rate C, and for the next T seconds, the server services no traffic, even if traffic is queued.
 - (a) What is the lower service curve of this server.
 - (b) Derive an expression for the maximum delay d_{\max} for $N(\sigma, \rho)$ flows multiplexed at this server. Justify your answer with a graphical illustration.
- 5. Consider time to be slotted to one second and consider a fluid source that transmits a sequence $\{2, 5, 1, 3, 2, 5, 1, 3, \cdots\}$. This means that, for example, the source transmits fluid at rate 2 (bits per second) in the intervals $\{[0, 1], [4, 5], \cdots\}$.
 - (a) Sketch the empirical envelope $\mathcal{E}(t)$ for this source as well as the cumulative arrivals A(t) of the original stream.
 - (b) Determine a valid set of (R, σ, ρ) traffic parameters with a value of σ greater than 0. Sketch the resulting envelope E(t) along with the empirical envelope E(t). Make sure your parameters are tight, i.e., (10⁶, 10⁶, 10⁶) will not be given credit.
 - (c) For a link capacity C = 3 and the above (R, σ, ρ) flow, compute the maximum queueing delay.