Delay Bounds for Scheduling Algorithms
The importance of a delay bound analysis for link schedulers is that it can be used to devise conditions that determine whether a scheduler can satisfy given delay requirements for a set of flows at a link scheduler with capacity C.

These conditions are called **schedulability conditions**.

A set of flows or traffic classes is said to be **schedulable** (with respect to a given scheduling algorithms) if all flows satisfy the schedulability conditions.
\[N = \{1, 2, \ldots, N\} \] is set of flows

- Each flow \(j \) has a traffic envelope \(E_j \) (\(A_j \sim E_j \))

- **Goal:** Compute a condition so that the delay of any arrival does not exceed \(d \).
First-In-First-Out (FIFO)

- If we set
 \[A(t) := \sum_{k=1}^{N} A_k(t) , \quad E(t) := \sum_{k=1}^{N} E_k(t) , \]
 we obtain a buffered link with a single arrival flow.

- The delay bound \(d^* \) is the smallest number \(d \) such that
 \[\forall s \geq 0 : E(s - d) \leq Cs \]

- Substitute \(s - d \rightarrow s \):
 \[d \geq \sup_{s>0} \left\{ \frac{E(s) - Cs}{C} \right\} \]
First-In-First-Out (FIFO)

Suppose

\[E(t) := \sum_{k=1}^{N} (b_j + r_j t), \quad t \geq 0 \]

We get the FIFO delay bound:

\[d^* = \frac{\sum_{k=1}^{N} b_j}{C} \]
P priority classes ($1 =$ lowest, $P =$ highest)

Each class p has a traffic envelope E_p ($A_p \sim E_p$)

Ignore fact that packet transmission cannot be preempted.

Goal: Compute a condition so that the delay from priority p does not exceed d_p.
Consider a system with two priorities (H = High, L = Low)

\[A_H \sim E_H \]
\[A_L \sim E_L \]

Lower service curve for the low-priority traffic:

\[S_L(t) = \left[C \cdot t - E_H(t) \right]^+ \]

→ This is called the **residual service curve** or **leftover service curve**.
Static Priority (SP)

- Suppose

\[E_H(t) = b_H + r_H t , \quad t \geq 0 \]
\[E_L(t) = b_L + r_L t , \quad t \geq 0 \]
\[C - r_H \geq 0 \]

- The delay bound \(d_L \) for low priority traffic is the smallest number \(d \) such that

\[E_L \odot S_L(-d) \leq 0 \]

- This yields

\[d_L = \frac{b_L + b_H}{C - r_H} \]
Back to multiple priorities. Suppose that for all p:

$$E_p(t) = b_p + r_p t, \quad t \geq 0$$

Mapping to a 2-priority system, we get for any class p

$$E_L(t) = b_p + r_p t, \quad t \geq 0$$

$$E_H(t) = \sum_{q=p+1}^{P} (b_q + r_q t), \quad t \geq 0$$

The SP delay bound d_p ($d_p = d_L$) for class p then is

$$d_p = \frac{\sum_{q=p}^{P} b_q}{C - \sum_{q=p+1}^{P} r_q}$$
Each class j has a delay index d_j (Assume: $i < j \Rightarrow d_i < d_j$)

Each class j has a traffic envelope E_j ($A_j \sim E_j$)

Goal: Compute a condition so that the delay for class j does not exceed d_j

\Rightarrow All class-j traffic meets its deadline!
We skip the analysis of EDF, and only discuss results.

With EDF, the values for d_1, d_2, \ldots are interdependent.

The delay bounds must be selected so that:

$$\sup_{s \geq 0} \left\{ \sum_k E_j (s - d_j) - Cs \right\} \leq 0$$
Suppose

\[E_j(t) = b_j + r_j t \quad \forall j, \quad t \geq 0 \]

\[\sum_j r_j \leq C \]

Then, the EDF delay bound for class \(j \) is

\[
d_j \geq \sum_{k=1}^{j} b_k - \sum_{k=1}^{j-1} r_k d_k \\
C - \sum_{k=1}^{j-1} r_k
\]