Fair Bandwidth Allocation

ECE 466

University of Toronto

(J. Liebeherr)
What is fair?
Max-Min Fair Allocation

N flows, Link with rate C

- r_i: requested rate of flow i
- a_i: allocated rate of flow i
- f: fair share

1. If $\sum_j r_j \leq C$, then $a_i = r_i$ for each flows i.
2. If $\sum_j r_j > C$, then $a_i = \min\{r_i, f\}$ for i, where f is selected such that $\sum_j a_i = C$.

Goal: Find fair share f such that $C = \sum_j \min\{r_j, f\}$.
N flows, Link with rate C

$O = \{j \mid r_j > f\}$ Set of overloaded flows

$U = \{j \mid r_j \leq f\}$ Set of underloaded flows

$$C = \sum_{j \in U} r_j + |O| \cdot f,$$

$$f = \frac{C - \sum_{j \in U} r_j}{|O|}.$$
Algorithm: Fair Share Calculation

Input: \(N \) flows with request \(r_i \geq 0 \) for flow \(i \), link capacity \(C \)

Output: Fair share \(f \)

\[
f_0 \leftarrow 0 \\
n \leftarrow 0 \\
\text{repeat} \\
\quad n \leftarrow n + 1 \\
\quad U_n \leftarrow \{j \mid r_j \leq f_{n-1}\} \\
\quad O_n \leftarrow \{j \mid r_j > f_{n-1}\} \\
\quad f_n \leftarrow \frac{C - \sum_{i \in U_n} r_i}{|O_n|} \\
\quad \text{until } f_n = f_{n-1} \\
\text{return } f \leftarrow f_n
\]
Waterfilling \((C = 8)\)

\[r_1 = 1, r_2 = 2, r_3 = 3, r_4 = 4 \]
Waterfilling \((C = 8) \)

\[r_1 = 1, r_2 = 2, r_3 = 3, r_4 = 4 \]

Diagram showing the waterfilling process with buckets labeled 1 to 4.
Waterfilling ($C = 8$)

$r_1 = 1, r_2 = 2, r_3 = 3, r_4 = 4$
Weighted Max-Min Fair Allocation

\(N \) flows, Link with rate \(C \)

- \(r_i \) requested rate of flow \(i \)
- \(a_i \) allocated rate of flow \(i \)
- \(\phi_i \) weight of flow \(i \)
- \(f \) fair share

1. If \(\sum_j r_j \leq C \), then \(a_i = r_i \) for each flows \(i \).
2. If \(\sum_j r_j > C \), then \(a_i = \min\{r_i, \phi_i f\} \) for flow \(i \), where \(f \) is selected such that \(\sum_j a_i = C \).

Goal: Find fair share \(f \) such that

\[
C = \sum_j \min\{r_j, \phi_j f\}.
\]
Weighted Max-Min Fair Allocation

N flows, Link with rate C

$O = \{ j \mid r_j > \phi_j f \}$ Set of overloaded flows

$U = \{ j \mid r_j \leq \phi_j f \}$ Set of underloaded flows

\[
C = \sum_{j \in U} r_j + \sum_{j \in O} \phi_j \cdot f,
\]

\[
f = \frac{C - \sum_{j \in U} r_j}{\sum_{j \in O} \phi_j}.
\]
\(\phi_1 = \phi_2 = 1 \) and \(\phi_3 = \phi_4 = 2 \)
\(r_1 = 1, r_2 = 2, r_3 = 3, r_4 = 4 \)
\(\phi_1 = \phi_2 = 1 \) and \(\phi_3 = \phi_4 = 2 \)
\(r_1 = 1, r_2 = 2, r_3 = 3, r_4 = 4 \)
\(\phi_1 = \phi_2 = 1 \) and \(\phi_3 = \phi_4 = 2 \)

\(r_1 = 1, r_2 = 2, r_3 = 3, r_4 = 4 \)