ECE 466- Computer Networks II

Problem Set #5

1. Derive the deconvolution $f \otimes g$ for functions f and g given by:

$$f(t) = \begin{cases} 0, & t \le 0\\ t+3, & t > 0 \end{cases}, \qquad g(t) = \begin{cases} 0, & t \le 0\\ 2t+1, & t > 0 \end{cases}$$

2. Consider the network with two constant rate links (with rates C_1 and C_2) and a delay element (with delay W) as shown in Figure 1.

Figure 1:

Suppose that the arrivals from A are regulated by a dual leaky bucket with peak rate $P = 1 \ Mbps$, average rate $\rho = 0.5 \ Mbps$ and burst size $\sigma = 15,000 \ bits$. Also, suppose that $W = 10 \ ms$.

Determine the minimum rates for C_1 and C_2 so that the backlog in the network does not exceed 1000 *bits*.

- 3. Consider the traffic of an MPEG video stream that is regulated with a leaky bucket with average rate $\rho = 0.15 \ Mbps$ (Mbps = Megabits per second), and maximum burst size size $\sigma = 15,000 \ bits$.
 - (a) The output of the regulator feeds into a constant rate link with capacity $C = 300 \ kbps$. Determine the maximum backlog and the maximum delay at the link.
 - (b) Suppose that the regulator is a dual leaky bucket with peak rate P = 1 Mbps (in addition to $\rho = 0.15$ Mbps and $\sigma = 15,000$ bits). Determine the maximum backlog and the maximum delay at the link.
 - (c) Continue with the assumptions in (b). Instead of a single link, now assume that the traffic goes through a sequence of three links with rates $C_1 = 400 \ kbps$, $C_2 = 200 \ kbps$, and $C_3 = 300 \ kbps$, for the first, second and third link, respectively. Determine the maximum backlog and the maximum delay in the network.