Problem Set #1

This problem set contains exercises with the convolution operator \(\otimes \), defined as follows.

Definition: For two traffic processes \(f \) and \(g \) the (min-plus) convolution is defined by:

\[
f \otimes g(t) = \inf_{0 \leq s \leq t} \{ f(s) + g(t - s) \}
\]

Problem 1. Show that for two non-decreasing functions that satisfy \(f(t) = g(t) = 0 \) for \(t \leq 0 \), the following holds:

\[
f \otimes g(t) = \inf_{0 \leq s \leq t} \{ f(s) + g(t - s) \} = \inf_{s \in \mathbb{R}} \{ f(s) + g(t - s) \}.
\]

Note: A function \(f \) for which \(f(t) = 0 \) if \(t < 0 \) is called one-sided or **causal**.

Problem 2. Given the functions \(S_1 \) and \(S_2 \) with

\[
S_1(t) = \begin{cases}
0, & \text{if } t \leq 1, \\
t + 1, & \text{if } t > 1.
\end{cases} \quad S_2(t) = \begin{cases}
0, & \text{if } t \leq 2, \\
3, & \text{if } t > 2.
\end{cases}
\]

Compute the min-plus convolution \(S_1 \otimes S_2 \).

Problem 3.

Given the functions

\[
A(t) = (\sigma + \rho t)I_{t>0} \\
S(t) = (C \cdot t)I_{t>0}
\]

where \(\sigma, \rho \) and \(C \) are non-negative constants and \(C > \rho \).

(a) Sketch the function \(A \otimes S \).

(b) Use Reich’s backlog equation to show that the queue length at any time \(t \) is bounded by \(\sigma \).