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What you will learn in this lab: 
• The differences between data transfers with UDP and with TCP 

• Impact of IP Fragmentation on TCP and UDP 

• How to analyze measurements of a TCP connection 

• The difference between interactive and bulk data transfers in TCP 

• How TCP performs retransmissions 

• How TCP congestion control works 
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 Study Material for Lab 6 
1. iPerf: Read about the iPerf tool for diagnosing network performance at  

iperf - The Easy Tutorial 

2. Path MTU discovery: Refer to the Wikipedia entry for Path MTU Discovery. 
https://en.wikipedia.org/wiki/Path_MTU_Discovery  

3. TCP and UDP: Read  the Wiki pages on TCP and UDP available at  
https://en.wikipedia.org/wiki/Transmission_Control_Protocol 

https://en.wikipedia.org/wiki/User_Datagram_Protocol 

More detailed descriptions can be found in Chapters 11-12 of  

http://intronetworks.cs.luc.edu/1/html/ 

4. Network emulation (netem). Read about the network emulation (netem) functionality in Linux 
at  

https://wiki.linuxfoundation.org/networking/netem 

5. TCP Congestion Control: Read the Wiki page on TCP Congestion control at 
https://en.wikipedia.org/wiki/TCP_congestion_control 

For a detailed description of TCP congestion control, refer to Chapters 13-16 of  

http://intronetworks.cs.luc.edu/1/html/ 

The standard TCP congestion control algorithm is specified in RFC 5681 

https://tools.ietf.org/html/rfc5681 
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Prelab 6 
Answer the questions in the space provided below. Use extra sheets if needed and attach them to this 
document. 

1. Explain the role of port numbers in TCP and UDP. 

2. Provide the syntax of the iPerf command for both the sender and receiver, which executes the 
following scenario: 
A TCP server has IP address 10.0.2.6 and a TCP client has IP address 10.0.2.7. The TCP server is 
waiting on port number 2222 for a connection request. The client connects to the server and 
transmits 2000 bytes to the server, which are sent as 4 write operations of 500 bytes each.  

3. Answer the following questions on Path MTU Discovery: 

a. How does TCP decide the maximum size of a TCP segment? 

b. How does UDP decide the maximum size of a UDP datagram? 

c. What is the ICMP error generated by a router when it needs to fragment a datagram with 
the DF bit set? Is the MTU of the interface that caused the fragmentation also returned? 

d. Explain why a TCP connection over an Ethernet segment never runs into problems with 
fragmentation. 

4. Assume a TCP sender receives an acknowledgement (ACK), that is, a TCP segment with the ACK 
flag set, where the  acknowledgement number is set to 34567 and the window size is set to 
2048. Which sequence numbers can the sender transmit? 

5. What is the purpose of selective acknowledgements in TCP? Describe a scenario where a TCP 
receiver sends a selective acknowledgement. 

6. Briefly describe the following heuristics used in TCP and explain why they are used: 

a. Nagle’s algorithm 

b. Karn’s Algorithm 

7. Answer the following questions about TCP acknowledgements:  

a. What is a delayed acknowledgement? 

b. What is a duplicate acknowledgement? 

8. Describe how the retransmission timeout (RTO) value is determined in TCP. 

9. Answer the following questions on TCP congestion control: 

a. Describe the concepts of slow start and congestion avoidance in TCP. 

b. Explain the concept of fast retransmit and fast recovery in TCP. 
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Lab 6 – Transport Layer Protocols: UDP & TCP 
This lab explores the operation of the Transmission Control Protocol (TCP) and the User Datagram 
Protocol (UDP), the two main transport protocols of the Internet protocol architecture.  

UDP is a simple protocol for exchanging messages from a sending application to a receiving application. 
UDP adds a small header to the message, and the resulting data unit is called a UDP datagram. When a 
UDP datagram is transmitted, the datagram is encapsulated in an IP header and delivered to its 
destination.  There is one UDP datagram for each application message.  

The operation of TCP is more complex.  First, TCP is a connection-oriented protocol, where a TCP client 
establishes a logical connection to a TCP server, before data transmission can take place. Once a 
connection is established, data transfer can proceed in both directions.  The data unit of TCP, called a 
TCP segment, consists of a TCP header and payload which contains application data. A sending 
application submits data to TCP as a single stream of bytes without indicating message boundaries in the 
byte stream. The TCP sender decides how many bytes are put into a segment.   

TCP ensures reliable delivery of data, and uses checksums, sequence numbers, acknowledgements, and 
timers to detect damaged or lost segments. The TCP receiver acknowledges the receipt of data by 
sending an acknowledgement segment (ACK). Multiple TCP segments can be acknowledged in a single 
ACK. When a TCP sender does not receive an ACK, the data is assumed lost, and is retransmitted.  

TCP has two mechanisms that control the amount of data that a TCP sender can transmit.  First, TCP 
receiver informs the TCP sender how much data the TCP sender can transmit. This is called flow control. 
Second, when the network is overloaded and TCP segments are lost, the TCP sender reduces the rate at 
which it transmits traffic. This is called congestion control.  

This lab covers the main features of UDP and TCP. Part 1 explores the exchange of TCP segments during 
a Web access. Part 2 inspects the performance of data transmissions in TCP and UDP. Part 3 explores 
how TCP and UDP deal with IP fragmentation. The remaining parts address important components of 
TCP. Part 4 explores connection management, Parts 5 and 6 look at flow control and acknowledgements, 
Part 7 explores retransmissions, and Part 8 is devoted to congestion control. 
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Part 1. TCP traffic at a web server 
As a first exercise, you set up a web server and a web client and observe the TCP traffic generated by a 
web access. The network topology is as shown in Figure 6.1, where PC1 runs the web client, PC2 runs a 
web server, and PC3 is set up as an IP router. The address configuration is shown in Tables 6.1 and 6.2.  

The network topology in Figure 6.1 is used in Parts 1-6.  

 

 

Figure 6.1. Network topology. 

 

Table 6.1. IPv4 Addresses of the Linux PCs. 

Linux PC Ethernet interface eth0 Ethernet interface eth1 Default gateway 

PC1 10.0.1.11/24 10.0.5.11/24 10.0.1.33 

PC2 10.0.2.22/24 10.0.5.22/24 10.0.2.33 

PC3 10.0.1.33/24 10.0.2.33/24 – 

 

Table 6.2. IPv6 Addresses of the Linux PCs. 

Linux PC Ethernet Interface eth0 Ethernet Interface eth1 Default gateway 

PC1 fd01:0:0:1::11/64 fd01:0:0:5::11/64 fd01:0:0:1::33 
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PC2 fd01:0:0:2::22/64 fd01:0:0:5::22/64 fd01:0:0:2::33 

PC3 fd01:0:0:1::33/64 fd01:0:0:2::33/64 – 

Exercise 1-a. Network setup   
Connect the Ethernet interfaces of the Linux PCs as shown in Figure 6.1.  Configure the IP addresses of 
the interfaces as given in Tables 6.1 and 6.2.  

Step 1: Create a network topology for the Linux PCs as shown in Figure 6.1.  Configure the IPv4 
addresses of the interfaces as given in Table 6.1, and the IPv6 addresses as shown in Table 6.2. 
For reference, the commands for the eth0 interface of PC1 are 

PC1$ sudo ip addr add 10.0.1.11/24 dev eth0 
PC1$ sudo ip addr add fd01:0:0:1::11/64 dev eth0 

 
Step 2: All PCs must have IPv6 enabled. On PC1, IPv6 is enabled with the command 

PC1$ sudo sysctl -w net.ipv6.conf.all.disable_ipv6=0 
PC1$ sudo sysctl -w net.ipv6.conf.default.disable_ipv6=0 

 
Step 3: PC3 is configures as an IPv4 and IPv6 router, and PC1 and PC2 should be set up as hosts. To 

query the status of IPv4 and IPv6 forwarding on PC3 issue the commands  

PC3$ sysctl net.ipv4.ip_forward 
PC3$ sysctl  net.ipv6.conf.all.forwarding 

IPv4 and IPv6 forwarding are enabled when the displayed value is “1” and disabled when the value is 
“0”.  
If necessary, enable IPv4 and IPv6 forwarding on PC3 with the commands 

PC3$ sudo sysctl -w net.ipv4.ip_forward=1 
PC3$ sudo sysctl -w net.ipv6.conf.all.forwarding=1 

You may also want to make sure that IPv4 and IPv6 forwarding are disabled on PC1 and PC2 by 
setting the above system parameters to “0”. 
 

Step 4: Add default routes to the routing tables of PC1 and PC2, so that PC3 is the default gateway. For 
PC1, the commands are  

PC1$ sudo ip route add default via 10.0.1.33 
PC1$ sudo ip route add default via fd01:0:0:1::33 

 
Step 5: Verify that the setup is correct by issuing a ping command from PC1 to PC2 over both paths: 

PC1$ ping –c2 10.0.2.22 
PC1$ ping –c2 10.0.5.22 
PC1$ ping6 –c2 fd01:0:0:2::22 
PC1$ ping6 –c2 fd01:0:0:5::22 
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Exercise 1-b. Web access   
Next you set up a web (HTTP) server on PC2 and run a web (HTTP) client on PC1. The web server is a 
simple Python HTTP server, which serves web pages from the directory where the web server is started. 
For the web client, you use the command wget instead of a web browser with a graphical user 
interface.  

 

Step 1: On PC2, go to the home directory of the labuser account. Use a text editor to write a short HTML 
file with name “index.html”. Here is a sample of a simple HTML page: 

 

 
 

Step 2: On PC2, start an HTTP server with the command  

PC2$ sudo python3 -m http.server 80  
This starts a web server that listens on port 80 of all its network interfaces for a web request by a 
web client.  

Step 3: Start a Wireshark session to capture traffic on the eth0 interface of PC1. Set a display filter to 
capture only TCP traffic (“tcp”). 

Step 4: On PC1, issue a web access for the HTML file on PC2 with the command  

PC1$ wget http://10.0.2.22/index.html  
Step 5: Observe the TCP traffic captured by Wireshark after the web access: 

• Explore the packets involved in the three-way handshake for opening a TCP connection. 
Determine the flags that are set in the involved packets.  

• Explore the TCP header options that appear in the three-way handshake and describe 
the role they play in configuring the TCP connection.  

• Determine the window size of sliding window flow control (in bytes) for both directions 
of the TCP connection.  

• How many packets with a TCP payload are sent by the client? How many are sent by the 
server?  

<HTML> 
<HEAD> 
<TITLE>Your Title Here</TITLE> 
</HEAD> 
<BODY> 
<H1> Large Header</H1> 
<H2> Medium Header</H2> 
<P> This is a paragraph. </P> 
<HR> 
</BODY> 
</HTML> 
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• Is the TCP connection closed at the end of the web access? Explain the outcome. Explore 
the relevant packets and determine the flags that are set in these packets.  
 

Step 6: Wireshark has features for tracking the packets of a TCP connections.  

• View the transmitted TCP payload:  Select one of the TCP packets captured by Wireshark.  
Then select “Analyze® Follow®TCP Stream”.  
Take a screen snapshot of the displayed window.  

• View the Flow Graph (time-sequence diagram):   In the menu bar of Wireshark,   select 
“Statistics® Flow Graph”. In the displayed window, under “Flow Type” select “TCP Flows”.  
Take a screen snapshot of the displayed window. 

 

Step 7: Save the captured TCP packets, as you may need them for the lab report.  

Step 8: Terminate the web server on PC2 with Ctrl-C and terminate the Wireshark session.  

 

Lab Question/Report 

1. Answer the questions in Step 5. Support the answers with the Wireshark data saved in Step 8. 

2. Provide the screen snapshots from Step 6 with a brief description.  
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Part 2. Working with iPerf 
The iPerf utility is a Linux tool for generating synthetic traffic loads with the transport protocols TCP and 
UDP. It can be used for measuring packet transmissions between a client and a server. Together with 
ping and traceroute, iPerf is an essential utility program for debugging problems in IP networks. Running 
iPerf consists of setting up an iPerf server (or receiver) on one host and an iPerf client (or sender) on 
another host. Once the iPerf client is started, it sends data to the iPerf server.  

By default, iPerf transmits data over a TCP connection. The iPerf client (sender) opens a TCP connection 
to the iPerf receiver, transmits data as fast as is possible and then closes the connection. The iPerf server 
must be running when the iPerf client is started. UDP data transfer is specified with the -u option. Since 
UDP is a connectionless protocol, the iPerf client (sender) starts immediately sending UDP datagrams at 
a specified rate, even if there is no iPerf server.  

 
Syntax of the iPerf command 
 
An iPerf server is started with the command  
iperf -s [-u] [-p port] [-B iface] -p port 

An iPerf client is started with the command  
iperf -c host [-u] [-p port] [-B iface] [-b Bandw] [-l Buflength] [-t Time]  
  [-L port]  
 
The options of the command are: 
-u  Uses UDP instead of TCP. By default, iPerf uses TCP to send data. 
 
-V  Uses IPv6 addresses. 

 
-p port  Connects with or expects data packets on the specified port (default 5001). 
 
-c host  Starts iPerf in client mode, where host specifies the IP address of the server.  

  
-b n [KM] Limits transmission rate of the client when using UDP (default is 1 Mbps) and sets a 

target rate when using TCP (default is as fast as possible). Here, `n K’ limits the rate to n 
kbps and `n M’ limits the rate to n Mbps.  

 
-l n [KM] Sets  the buffer size (TCP) or datagram length (UDP) to n (TCP default 128K, UDP default 

1470).  
 
-n num [KM] Number of bytes to be transmitted by the client (overrides the –t option).  

Note: `-n 1’ sends a single byte of payload. 
 
-M num Sets the maximum segment size for TCP transmissions 

 
-t time  Sets the duration of the data exchange in seconds (default 10 seconds).  
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Exercise 2-a. Transmitting data with UDP   
This exercise consists of setting up a UDP data transfer between PC1 and PC2 and observe the UDP 
traffic.  

Step 1: On PC1, start Wireshark to capture packets on interface eth1 between PC1 to PC2. Set a display 
filter to UDP traffic (“udp”).  
 

Step 2: On PC2, start an iPerf server that receives UDP traffic with the command 

PC2$ iperf -s -u 
 
Step 3: On PC1, start an iPerf client that transmits UDP traffic to PC2 by typing 

PC1$ iperf -c 10.0.5.22 -l 1000 -n 10000 -u 
 

Observe the traffic captured by Wireshark. 

a. How many packets are exchanged in the data transfer?  How many packets are transmitted for 
each UDP datagram? What is the size of the UDP payload of these packets? 

b. Compare the total number of bytes transmitted including Ethernet, IP, and UDP headers, to the 
amount of application data transmitted. 

c. Inspect the fields in the UDP headers. Which fields in the headers do not change in different 
packets? 

d. Observe the port numbers in the UDP header. How did the iPerf client select the source port 
number? 

Take screen snapshots from Wireshark (for the lab report) that support your answers above.  

Step 4: Create a flow graph of the UDP data exchange (by following Step 6 in Exercise 1-b). To limit the 
graph to UDP packets, select “Limit to display filter” in the flow graph window.  Take a snapshot of 
the flow graph.  
 

Step 5: Terminate iPerf on PC2 by entering Ctrl-C.  
 

Step 6: Repeat the iPerf experiment, but use IPv6 this time. For this you start the iPerf server on PC2 
with  

PC2$ iperf -s -u -V 
and the iPerf client on PC1 with  

PC1$ iperf -c fd01:0:0:5::22 -l 1000 -n 10000 -u -V 
Here, the option -V forces iPerf to use IPv6.  
 
Observe the traffic captured by Wireshark. 
• Comment on the similarities and differences of the data exchange using IPv4 (in Steps 2 and 3) 

and IPv6. Take one or more screen snapshot from Wireshark to support your answer(s).  



 
LAB6 – PAGE 12 

 

• Create a flow graph of the data exchange as in Step 4. To limit the flow to the IPv6 packets with 
UDP payload, set the display filter in Wireshark to “UDP && IPv6” and “Limit to display filter” in 
the flow graph window. Take a screen snapshot.  

 
Step 7: Terminate the iPerf server on PC2 with Ctrl-C. 

 

Lab Question/Report:  

1. Provide the answers in Step 3 and Step 5, and support your answers with the screen snapshots.  
2. Include the flow graphs from Step 4 and Step 6.  

Exercise 2-b. Transmitting data with TCP  
Here, you repeat the previous exercise using TCP as transport protocol.  

Step 1: Set the display filter in the Wireshark window to “TCP”. 
Step 2: Start an iPerf server on PC2 with  

PC2$ iperf -s  
 

Also, start an iPerf client on PC1 that transmits packets to PC2 with  

PC1$ iperf -c 10.0.5.22 -n 10000  
 

Observe the traffic captured by Wireshark. 

a. How many packets are exchanged in the data transfer?  What are the sizes of the TCP 
segments? 

b. Describe the order of packets with TCP payload (sent by PC1) and the acknowledgements for 
these packets (sent by PC2). What can explain this sequence.  

c. How many packets do not carry a payload, that is, how many packets are control packets? 

d. Inspect the TCP headers. Which packets contain flags in the TCP header? Which types of flags do 
you observe?  

e. Observe the packets involved in closing the TCP connection. Do you observe a difference to the 
closing of the TCP connection in Exercise 1-b.  

Take screen snapshots from Wireshark (for the lab report) that support your answers above.  

Step 3: Create a flow graph of the TCP data exchange (see Step 7 in Exercise 1-b). To limit the graph to 
TCP packets, select “Limit to display filter” in the flow graph window.  Take a snapshot of the flow 
graph.  
 

Step 4: Terminate the iPerf server on PC2 by hitting CTRL-C and terminate the Wireshark session.  
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Lab Question/Report:  

1. Provide the answers in Step 2 and support your answers with the screen snapshots.  
2. Include the flow graph from Step 3, and compare it with the  flow graph of the UDP data 

exchange.  
3. Compare the amount of data transmitted in the TCP and the UDP data transfers.  
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Part 3.  IP Fragmentation of UDP and TCP traffic 
In this part of the lab, you observe the effect of IP Fragmentation on UDP and TCP traffic. Fragmentation 
occurs when the transport layer sends a packet of data to the IP layer that exceeds the Maximum 
Transmission Unit (MTU) of the underlying data link network. For example, in Ethernet networks, the 
MTU is 1500 bytes. If an IPv4 datagram exceeds the MTU size, the datagram is fragmented into multiple 
datagrams, or, if the Don’t fragment (DF) flag is set in the IPv4 header, the datagram is discarded. 

When an IP datagram is fragmented, its payload is split into multiple IP datagrams, each satisfying the 
limit imposed by the MTU. Each fragment is an independent IP datagram, and is routed in the network 
independently from the other fragments. In IPv4, fragmentation can occur at the sending host or at 
intermediate IP routers. Fragments are reassembled only at the destination host.  

Even though IP fragmentation provides flexibility that can hide differences of data link technologies to 
higher layers, it incurs considerable overhead, and, therefore, should be avoided.  Transport protocols 
seek to avoid fragmentation with a Path MTU Discovery scheme that determines the smallest MTU 
found on any interface on the path from the source to the destination, referred to as Path MTU.  

In IPv6, fragmentation only occurs at the source host, but is not performed at intermediate routers. 
Here, performing Path MTU Discovery is crucial, otherwise, payloads in packets that are too big for some 
intermediate router are never delivered to the destination.  

You will explore the issues with IP fragmentation of TCP and UDP transmissions in the network from 
Figure 6.1, with PC1 as sending host, PC2 as receiving host, and PC3 as intermediate IP router. 

Exercise 3-a. Fragmentation of UDP traffic 
In this exercise you observe fragmentation of UDP traffic. In the following exercise, iPerf is used to 
generate UDP traffic between PC1 and PC2 via IP router PC3. You gradually increase the size of UDP 
datagrams until fragmentation occurs. You can observe that IP headers do not have the DF bit set for 
UDP payloads.  

Step 1: Verify that the network is configured as shown in Figure 6.1 and Table 6.1. The PCs should be 
configured as described in Exercise 1-a. 

Step 2: Check the MTU value on all interfaces of all PCs. The MTU is displayed when you show the IP 
configuration of an interface, e.g,  

PC2$ ip addr show eth0 
 

Step 3: Start Wireshark to capture traffic on the eth0 interfaces of both PC1 and PC2.  

Step 4: Use iPerf to generate UDP traffic between PC1 and PC2. The connection parameters are selected 
so that IP Fragmentation does not occur initially. 

• On PC2, execute the following command:  

PC2$ iperf -s -u 
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• On PC1, execute the command: 

PC1$ iperf -c 10.0.2.22 -l 1000 -n 5000 -u 
 
Step 5: Vary the size of the UDP datagrams by increasing and decreasing the argument given with the 

“-l” option.  
• Determine the size of the largest IPv4 datagram (which includes the IP header) which is not 

fragmented at PC1?  Compare this to the MTU value of the eth0 interface at PC1. 

Take screen snapshots from Wireshark (for the lab report) that support your answer.  

Step 6: Change the MTU value of the eth1 interface of PC3 to 600 bytes with the command  

PC3$ sudo ip link set dev eth1 mtu 600 
 

Step 7: Rerun the iPerf client on PC1 as given in Step 4 (with the option “-l 1000”).  
 

Step 8: Observe the traffic that is captured in both Wireshark sessions.  
a) Explore the first datagram sent by PC1 and the reaction of PC3. 

• Determine the size of the datagram. 
• Check the value of the DF flag in the datagram. 

b) In the ICMP Destination Unreachable message that is sent by PC3, identify the MTU value at 
PC3.  

c) When PC1 receives the ICMP message, it changes the Path MTU that it uses for destination 
10.0.2.22. This is stored in the routing cache of PC1, which you can retrieve with the 
command 
PC1$ ip route show cache  

d) Explore the next datagrams sent by PC1 and how it is processed by PC3. 
• Determine the size of the datagrams. 
• Check the value of the DF flags in the datagram. 

e) Where does fragmentation occur? Explain.  
 

Take multiple screen snapshots from Wireshark (for the lab report) that document your 
observations in (a)–(e).  

 

 

Resetting the route cache 
The MTU value in the route cache is kept for a few minutes (default: 10 minutes). You can 
reset this by deleting the route cache with the command 
PC1$ sudo ip route flush cache 
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Minimum MTU enforcement in IPv4 
If you set the MTU value of PC3 (eth1) to 400 and then repeat Step 6, the outcome (under 
recent Linux distributions), you observe fragmentation at PC1 to an IP datagram size of 552, 
and at PC3 to an IP datagram size of 400.  
As background,  IPv4 requires the MTU to be set to at least 576 bytes. While this limit is 
generally not enforced by hosts or routers, Linux seems to enforce a smallest MTU of 552 
byte. This raises two questions: (1) Why does Linux not enforce the minimum MTU of 576 
byte? (2) Why does Linux accept a command that sets the MTU to a value below the limit. 

 

 

Lab Question/Report: 

1. Provide your answer to Step 5 and add the supporting screen captures.  
2. Report your observations in Step 8, to create a timeline of the events at PC1 and PC3 for dealing 

with the reduced MTU value at PC3. Use screenshots to support your observations.  

Exercise 3-b. Avoiding fragmentation in TCP  
TCP tries to completely avoid fragmentation with the following two mechanisms: 

1. When a TCP connection is established, it negotiates a maximum segment size (MSS). Both the 
TCP client and the TCP server send the MSS in an option that is attached to the TCP header of 
the first transmitted TCP segment. Each side sets the MSS so that no fragmentation occurs at 
the outgoing network interface, when it transmits segments. The smaller value is adopted as the 
MSS value for the connection. 

2. The exchange of the MSS only addresses MTU constraints at the hosts, but not at the 
intermediate routers. To determine the smallest MTU on the path from the sender to the 
receiver, TCP employs a method which is known as Path MTU Discovery, and which works as 
follows. The sender always sets the DF (Don’t Fragment) bit in all IP datagrams. When a router 
needs to fragment an IP packet with the DF bit set, it discards the packet and generates an ICMP 
error message of type “Destination unreachable; Fragmentation needed”. Upon receiving such 
an ICMP error message, the TCP sender reduces the segment size. This continues until a 
segment size is determined which does not trigger an ICMP error message.  
 

Step 1: Verify that the MTU all interfaces of the topology in Figure 6.1 are set to 1500 bytes. You can 
view the MTU by typing, for example for the eth1 interface of PC3, 

PC3$ ip addr show eth1 
 

To set the MTU value of interface eth1 on PC3 to 1500 bytes, use the ip link command as follows: 

PC3$ sudo ip link set dev eth1 mtu 1500 
 
Step 2: Start Wireshark traffic captures on the eth0 interfaces of PC1 and PC2. 
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Step 3: Start an iPerf receiver on PC2, and a iPerf sender on PC1 that generate TCP traffic with the 
commands 

PC2$ iperf -s   
PC1$ iperf –c 10.0.2.22 –n 4000  

 
Observe the output of Wireshark, where you focus on the TCP segments with a payload that are 
sent by PC1. 

a. Check the DF flags in the TCP segments with a payload.  

b. Then, check the sizes of the TCP segments with a payload that are sent by PC1. Compare the 
sizes to the MTU limit.  

Step 4: Change the MTU of the eth0 interface of PC2 to 600 bytes with the command  

PC2$ sudo ip link set dev eth0 mtu 600 
Then rerun the iPerf client on PC1 with  

PC1$ iperf –c 10.0.2.22 –n 4000  
 

In Wireshark, check the sizes of  TCP segments sent by PC1 that carry a payload. Observe that 
segment sizes are such they fit the MTU limit at PC2.  

a. Are there any ICMP messages sent to PC1?  

b. Determine how PC1 learns that the MTU limit of PC2 has changed and that it should send 
smaller segments.  

Take screen snapshots from Wireshark (for the lab report) that support your answers above.  
 

Step 5: Now change the MTU size of interface eth0 on PC2 back to 1500 bytes. Then, change the MTU 
size on interface eth1 of PC3 to 600 bytes.  

Step 6: Repeat the iPerf transmission in Step 4.  
Observe the traffic captured by Wireshark, where you should focus on the differences of the iPerf 
transmissions from Step 4 

a. Do you observe fragmentation? If so, where does it occur and what are the consequences. 
Explain your observation. 

b. Describe how the observed ICMP messages are used for Path MTU Discovery.  

Take screen snapshots of both Wireshark sessions showing the packet list (top pane) of all TCP packets. 
For one observed ICMP message,  

Step 7: Terminate the iPerf server on PC2. If you do not continue with Exercise 3-c, terminate the 
Wireshark sessions, and reset all MTU values that you have changed to 1500. 
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Lab Question/Report:   

1. In Step 4, you explored how TCP determines the Path MTU if the smallest MTU is at the 
destination. Provide the answers to the questions in Step 4 and use the screen snapshots to 
support your answers.  

2. In Step 6, you observed how TCP determines the Path MTU if the smallest MTU is found at an 
intermediate router. Provide the answers to the questions in Step 6 and use the screen 
snapshots to support your answers.  

Exercise 3-c. Fragmentation of UDP traffic in IPv6 
In IPv6, routers never perform fragmentation. Fragmentation is limited to the source host. The following 
explores how IPv6 handles UDP datagrams whose size exceeds the MTU at an intermediate router.   

 

Minimum MTU enforcement in IPv6 
In IPv6, the minimum MTU of an interface is 1280 bytes. Linux systems enforce the MTU 
limit of IPv6 better than they do for IPv4. This is done by disallowing the configuration of an 
IPv6 address if the MTU is less than 1280 bytes. If an IPv6 address has been configured for 
an interface and the MTU is set to a value below the minimum size, the configured address 
is deleted.  

 

Step 1: On PC3, check the IP addresses and MTU of interface eth1 at PC1 with the command  

PC3$ ip addr show eth1 
You should see that the MTU is set to 600 bytes (as configured in Exercise 3-b), that the IPv4 address is 
as it was configured in Part 1, but that the configured IPv6 address is no longer present.  

Step 2: Unless the MTU is increased to at least 1280 bytes, Linux refuses to accept the configuration. So, 
set the MTU of the eth1 interface to the minimum value with  

PC3$ sudo ip link set dev eth0 mtu 1280 
 

Step 3: Make sure that Wireshark traffic captures on the eth0 interfaces of PC1 and PC2 are running. If 
necessary, restart the traffic captures.  

• As in Exercise 3-a, run iPerf to generate UDP traffic over IPv6 between PC1 and PC2. On PC2, 
execute the following command:  

PC2$ iperf -s -u -V 
 

• On PC1, send UDP datagrams of with a payload of 1400 bytes with the iPerf client command  

PC1$ iperf -c fd01:0:0:2::22 -l 1400 -n 5000 -u -V 
 
Observe the traffic that is captured in both Wireshark sessions, where you should focus on the 
differences to the observations in the UDP/IPv4 experiment from Exercise 3-a. 
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a. Check the first datagram sent by PC1 and the reaction of PC3. 

• Determine the size of the datagram. 
• Obviously, there is no DF flag set. This is implicit for each IPv6 datagram.  

b. PC3 sends an ICMPv6 Packet Too Big message to PC1, which includes the MTU value set at PC3.  

c. When PC1 receives the ICMPv6 message, it changes the Path MTU that it uses for destination 
fd01:0:0:2::22. Different from IPv4, the Path MTU is not stored routing cache of PC1. You can 
access the stored MTU value by querying the routing table lookup for the given destination. The 
command is 
PC1$ ip route get to fd01:0:0:2::22 

 
d. The following datagrams sent by PC1 are fragmented by PC1. The information about the 

fragments is sent in a so-called fragment header, which follows the IPv6 header.  

• Explore the fragment headers of the UDP datagram. Match the fields in the fragment 
header with the corresponding fields in the IPv4 header.  

e. Check the traffic that is forwarded by PC3 to PC2, to verify that there is no additional 
fragmentation taking place at intermediate router PC3. 

 

Take screen snapshots from Wireshark (for the lab report) that support your answers above.  

 

Step 5: Terminate the iPerf server on PC2 by hitting CTRL-C and terminate the Wireshark sessions.  
Also, reset all MTU values that you have changed in Part 3 to 1500. 

 

Lab Question/Report:   

1. Provide the answers to the questions in Step 3. Support your answers with the screen 
snapshots.  
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Part 4.  TCP connection management 
TCP is a connection-oriented protocol. The establishment of a TCP connection is initiated when a TCP 
client sends a request for a connection to a TCP server. The TCP server must be running when the 
connection request is issued.  

TCP requires three packets to open a connection. This procedure is called three-way handshake. During 
the handshake, the TCP client and TCP server negotiate essential parameters of the TCP connection, 
including the initial sequence numbers, the maximum segment size, and the size of the windows for the 
sliding window flow control. TCP requires three or four packets to close a connection. Each end of the 
connection is closed separately, and each part of the closing is called a half-close. 

TCP does not have separate control packets for opening and closing connections. Instead, TCP uses bit 
flags in the TCP header to indicate that a TCP header carries control information. The flags involved in 
the opening and the closing of a connection are: SYN, ACK, and FIN. 

Here, you use Telnet to set up a TCP connection and observe the control packets that establish and 
terminate a TCP connection. The experiments involve PC1 and PC2 in the network shown in Figure 6.1.  

Exercise 4-a. Opening and Closing a TCP Connection 
Here, you establish a Telnet session, which create a TCP connection. You will inspect the packets that 
open and close the TCP connection, and determine the parameters of the connection that are 
negotiated between the TCP client and the TCP server.  

Step 1: Verify that the network is configured as shown in Figure 6.1 and Table 6.1. The PCs should be 
configured as described in Exercise 1-a. 

Check that that the MTU values of all interfaces of PC1 and PC2 are set to 1500 bytes, which is the 
default MTU for Ethernet interfaces.  Running `ip addr show’ on a Linux PC displays the MTU 
values of all interfaces. 

Step 2: Start Wireshark on the eth1 interface of PC1. Set the display filter to `tcp’. 

Step 3: Establishing a TCP connection: Start a Telnet server on PC2 with the command   

PC2$ sudo service xinetd start 
 

 

Telnet 
Telnet is a remote terminal program that operates over a TCP connection. Since 
Telnet does not encrypt the payload, it is not widely used anymore, and has largely 
been replaced by ssh. TCP servers bind to the well-known TCP port 23.  
Telnet performs a login on the remote system. On the Linux PCs, the username 
and password are both `labuser’. After the login, you can enter commands on the 
remote system.  
To terminate a Telnet session, type exit or Ctrl-d. 
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Step 4: On PC1, establish a set of Telnet session by starting a Telnet client on PC1 with the command  

PC1$ telnet 10.0.5.22 
The Telnet client now establishes a TCP connection to the Telnet server. Do not complete the login, 
when so prompted.  

Observe the TCP segments of the packets that are transmitted: 

a. Identify the packets of the three-way handshake. Which flags are set in the TCP headers? 
Explain how these flags are interpreted by the receiving TCP server or TCP client. 

b. During the connection setup, the TCP client and TCP server tell each other the first sequence 
number they will use for data transmission. What is the initial sequence number of the TCP 
client and the TCP server?  

c. Determine the configurations of the TCP connection that are set during the three-way 
handshake. 

d. The TCP client and TCP server exchange window sizes to get the maximum amount of data that 
the other side can sent at any time. Given the configuration of the TCP connection, determine 
the values of the window sizes for the TCP client and the TCP server. With this, determine the 
range of sequence numbers that client and server can send to each other, once the three-way 
handshake is completed.  

e. Compare the exchanged windows sizes as they are displayed by Wireshark with the actual 
hexadecimal values in the TCP header fields. Describe the difference.  

f. Identify the first packet that contains application data? Compare the sequence number used in 
the first byte of application data sent by the TCP client to the TCP server and compare it to the 
initial sequence number.  

g. How long does it take to open the TCP connection, i.e., how much time elapses before the 
three-way handshake is completed?  

Take multiple screen snapshots from Wireshark (for the lab report) that document your 
observations in (a)–(f).  

Step 5: Closing a TCP connection (initiated by server):  If the TCP client does not complete the login, 
the Telnet session is terminated by the server, and the TCP server closes the established TCP 
connection. A message is displayed at the Telnet client application, that the session is closed.  

Identify the packets that are involved in closing the TCP connection. Which flags are set in these 
packets? Explain how these flags are interpreted by the receiving TCP client and TCP server. 

Take screen snapshots of the TCP headers in Wireshark of those TCP segments that are involved in 
closing the TCP connection.  
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Exercise 4.b- Requesting a connection to non-existing host 
Here you observe how often a TCP client tries to establish a connection to a host that does not exist, 
before it gives up.  

Step 1: Start a new traffic capture with Wireshark on interface eth1 of PC1.  

Step 2: Set a static entry in the neighbor cache for the non-existing IP address 10.0.5.100. Note that 
neither the IP address nor the MAC address exist in the network. 

PC1$ sudo ip neigh add 10.0.5.100 lladdr 01:02:03:04:05:06 dev eth1 
 

Display the neighbor cache to make sure the entry is correct 

PC1$ ip neigh show 
 
Step 3: From PC1, establish a Telnet session to the non-existing host with the command  

PC1$ telnet 10.0.5.100 
 
Observe the TCP segments that are transmitted. The TCP client retransmits the SYN segments if there is 
no reply. Each retransmission is a retry to open the connection.  

a. How often does the TCP client try to establish a connection? How much time elapses between 
repeated attempts to open a connection? 

b. Does the TCP client terminate or reset the connection, when it gives up with trying to establish a 
connection? 

c. Why does this experiment require to set a static neighbor cache entry?  

Take a screen snapshot in Wireshark of the packet list, showing all attempts by PC1 to establish the 
TCP connection.   

Step 4: Remove the neighbor cache entry that you added in Step 2. 

PC1$ sudo ip neigh del 10.0.5.100 dev eth1 
 
 

Exercise 4.c- Requesting a connection to a non-existing port 
When a host tries to establish a TCP connection to a port at a remote server, and no TCP server is 
listening on that port, the remote host terminates the TCP connection. This is observed in the following 
exercise. 

Step 1: Make sure the Telnet server on PC2 is still running, and re-start it if necessary. Establish a TCP 
connection to port 80 of PC2 by typing  

PC1$ telnet 10.0.5.22 80 
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Observe the TCP segments of the packets that are transmitted: 

• How does TCP at the remote host (PC2) terminate this connection? How is this different from 
closing the connection in Exercise 4-a and from what you observed in Exercise 4-b.  

Take a screen snapshot in Wireshark of the packet list, showing all TCP segments that are exchanged 
between PC1 and PC4.   

Step 2: Terminate the Wireshark session.  

 

Lab Question/Report: 

• Answer the questions in Exercise 4-a (Steps 4 and 5), Exercise 4-b (Step 3), and Exercise 4-c (Step 
1). Include Wireshark screen snapshots to support your answers. 

 

Exercise 4-d. Configuration parameters of TCP  
TCP is a complex protocol with a large number of tunable parameters. On Linux systems, some, but far 
from all, parameters can be globally modified through system parameters. A few system parameters can 
be tuned with the ip route command by attaching parameter settings to a routing table entry. 
Application programs can modify TCP parameters individually for each stream socket, where each 
stream socket establishes one TCP connection.  

In addition to tunable parameters, TCP connections maintain numerous internal variables. For active  
TCP connections the current value of these variables can be displayed with the command “ss -i”.  

Step 1: On PC1, list the Linux system parameters that are available to modify TCP configuration settings 
with the command 

PC1$ sudo sysctl -a | grep tcp | less 
and view the output.  

Save the output to a file, e.g., with the command  

PC1$ sudo sysctl -a | grep tcp > myfile.txt 
Step 2: Next, set up a TCP connection between PC1 and PC2 using the Telnet application. Start a Telnet 

server on PC2 with the command  

PC2$ sudo service xinetd restart 
 
Then, start a Telnet client on PC1 with the command  

PC1$ telnet 10.0.5.22 80 
Complete the login with the “labuser” account.  

Step 3: On PC2, display the current values of TCP variables and configuration parameters with the 
socket statistic (ss) command 
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PC2$ ss -i 
The command displays the state of configuration parameters (which remain unchanged during a 
data transfer) as well as variables (which change during a data transfer). 

• Using your knowledge of TCP, identify state information that is relevant to flow control, 
congestion control, and error control. 

• Take a snapshot of the displayed information.  

Step 4: (Optional) To distinguish immutable configuration parameters from variables, you can initiate a 
data transfer and repeatedly run “ss -i” on PC2.  This can be done by creating a large file in the 
Telnet session on PC1, and then displaying the file.  

On PC1, create a large text file with the command and then display the text file with the commands 

PC2$  yes "Put some text here" | head -n 1000000 > tmp.txt 
PC2$  cat tmp.txt 
Since PC1 is logged into PC2, it shows the prompt of PC2. 

While the display is running, switch to PC2 and repeatedly run the socket statistic command  

PC2$ ss -i 
 
Observe that some information changes and some remains the same. The former are the 
configuration parameters and the latter are the variables.  

Lab Question/Report: 

• Provide the list of system parameters from Step 1. For 5 of the listed parameters, explain their 
meaning.  

• Go to the Linux man page for the TCP protocol at 
https://man7.org/linux/man-pages/man7/tcp.7.html 
which lists TCP parameters than be accessed as Linux system parameters, as well as TCP 
parameters that are accessed by setting options of a stream socket (using setsockopt). 
Identify parameters that can only be set via setsockopt. 

• Provide the snapshot from Step 3. Identify and explain the configuration parameters and time-
varying variables that are relevant to flow control, error control, and congestion control. You 
may want to refer to the Linux man page  
https://man7.org/linux/man-pages/man8/ss.8.html 
for an explanation of the parameters.  
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Part 5. TCP data exchange – Interactive applications 
In Parts 5 and 6 you study acknowledgments and flow control in TCP. In TCP, the receiver of data segments 
acknowledges the receipt by sending segments that have the ACK flag set in the TCP header. These 
segments are called acknowledgements or ACKs. In TCP, each transmitted byte of application data has a 
sequence number. The sender of a segment writes the sequence number of the first byte of transmitted 
application data in the sequence number field of the TCP header. When a receiver sends an ACK, it writes 
a sequence number in the acknowledgement number field of the TCP header. The acknowledgement 
number is by one larger than the highest sequence number that the receiver wants to acknowledge. A 
TCP receiver can acknowledge multiple segments in a single ACK. This is called cumulative 
acknowledgements or cumulative ACKs. 

With cumulative ACKs, the receiver can acknowledge a sequence number only if all bytes with a smaller 
sequence number have been received. If a TCP segment has been lost, but later TCP segments were 
delivered, cumulative  ACKs  do not allow the receiver to acknowledge these later TCP segments. TCP has 
an (optional) feature, referred to as selective ACKs, that allows the receiver to acknowledge ranges of 
sequence numbers that are smaller than the last correctly received sequence numbers. Selective ACKs are 
carried as options in a TCP header.  

In TCP,  different mechanisms are at play for sending acknowledgements of interactive applications and 
bulk data transfers.  This part of the lab addresses acknowledgments interactive applications, such as 
Telnet. Interactive applications typically generate a small volume of data, e.g., one byte at a time. Since 
interactive applications are generally delay sensitive, a TCP sender does not wait until the application data 
fills a complete TCP segment, and, instead, TCP sends data as soon as it arrives from the application. This, 
however, results in an inefficient use of bandwidth where small segments with only one byte of payload 
mainly consist of protocol headers.  

TCP has mechanisms that keep the number of segments with a small payload small.  One such mechanism, 
called delayed acknowledgements, requires that the receiver of data waits for a certain amount of time 
before sending an ACK. If, during this delay, the receiver has data for the sender, the ACK can be 
piggybacked to the data, thereby saving the transmission of a segment. Another such mechanism, called 
Nagle’s algorithm, limits the number of small segments that a TCP sender can transmit without waiting 
for an ACK. 

Today, most TCP connections deal with bulk data transfers. Also, the waste of bandwidth consumed by 
interactive applications appears negligible in the light of high data rates available to even end users. For 
this reason, the relevance of TCP mechanisms for interactive applications is diminished, and many 
operating systems disable these mechanisms by default or allow users to disable them. 

The interactions between TCP client and TCP server depend on the delay as well as the available 
bandwidth rate between client and server. The maximum amount of data that can be in transit (in one 
direction) between client and server is the product of the available bandwidth and delay, referred to 
bandwidth-delay product. To test a network under a variety of network environments, the experiments 
in this lab increase the bandwidth-delay product by configuring a rate limit as well as a delay on PC3, 
which is the IPv4 router between PC1 and PC2 in Figure 6.1. The rate limit and delay are configured on the 
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network interfaces of PC3 by attaching a network emulation (netem) queueing discipline (qdisc) to the 
network interfaces. 

 

 
Configuring a netem qdisc 
 
tc qdisc show  
tc qdisc show eth0 

Displays the current configuration of scheduling components on all interfaces and on 
interface eth0. The command tc, which stands for traffic control, provides commands for 
modifying packet classification and scheduling methods. In Linux, qdisc is an acronym for 
queuing discipline, which refers to a packet scheduling or shaping method.  
 

sudo tc qdisc add dev eth0 root netem delay 30ms rate 10Mbit 
The command adds a network emulation qdisc to interface eth0 that imposes a delay of 30ms 
and a rate limit of 10 Mbps. All traffic that is sent on this interface experiences the configured 
delay and rate limit. 

sudo tc qdisc change dev eth0 root netem delay 30ms  
sudo tc qdisc change dev eth0 root netem rate 10Mbit 

Changes an existing network emulation on interface eth0. Here, the change is to impose a 
delay without a rate limit, and a rate limit without a delay.  

sudo tc qdisc change dev eth0 root netem rate 10Mbit limit 100 
Changes an existing network emulation on interface eth0 to set a rate limit of 10 Mbps and to 
limit the buffer size to hold at most 100 packets.  

tc qdisc add dev eth0 root netem loss 0.1% 
tc qdisc change dev eth0 root netem loss 0.1% 

Adds a network emulation, that drops packets with a probability of 0.1 %. The change option 
must be used in case a netem qdisc is already configured.  

sudo tc qdisc del dev eth0 root netem  
Deletes a configured network emulation.  
There are many additional configuration options available for network emulation.  

 

Exercise 5-a. Interactive Applications (low latency, high data rate) 
Here you observe interactive data transfer in TCP by establishing a TCP connection from PC1 to PC2 
across PC3 as IP router.  

Step 1: Continue with the network setup from Part 1. Make sure that the IP configuration is as given in 
Exercise 1-a. 

Step 2: Start or restart a Telnet server on PC2 with the command   

PC2$ sudo service xinetd restart 
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Step 3: Start a traffic capture with Wireshark for interface eth1 of PC1 for interface eth1.  Limit the 
displayed packets to TCP traffic by setting a display filter to “tcp”.  

Step 4: Disable Telnet display in Wireshark. As seen earlier, the traffic of a Telnet session uses a single 
TCP connection. However, Wireshark displays TCP segments that carry Telnet data differently than 
TCP segments that only has control information, e.g., SYN, ACK, etc. This can be disabled by 
deselecting Telnet as a recognized protocol. To do this, select “Analyze " Enabled Protocols”, then 
unselect the protocol “TELNET”. Note that this setting is permanent and remains when you restart 
Wireshark.   

Step 5: On PC1, establish a Telnet session to PC2 by typing: 

PC1$ telnet 10.0.2.22 
 

Complete the login with username and password “labuser”.  

Step 6: On PC1, type a few characters in the window with the Telnet session.  The Telnet client sends 
each typed character in a separate TCP segment to the Telnet server, which, in turn, echoes the 
character back to the client. Including ACKs, one would expect to see four packets for each typed 
character. However, due to delayed acknowledgments, this is not the case.  
 
Observe the output of Wireshark: 

• Observe the number of packets exchanged between the PCs for each keystroke. Describe the 
payload of the packets. Use your knowledge of delayed acknowledgements to explain the 
sequence of segment transmissions. Explain why you do not see four packets per typed 
character. 

• Which flags, if any, are set in the TCP segments that carry typed characters as payload? Explain 
the role of these flags. 

• Why do segments that have an empty payload carry a sequence number? Why does this not 
result in confusion at the TCP receiver? 

• Create a flow graph that shows the transmission pattern of packets and the timing. When the 
TCP client (PC1) receives the echo of a character, it waits a certain time before sending the ACK. 
How long is this delay? How much does the delay vary? 
 
 

Step 7: Type characters in the Telnet client program as fast as you can, e.g., by pressing a key and 
holding it down.  Do you observe a difference in the transmission of segment payloads and ACKs? 

Step 8: Take screenshots from the Wireshark display and the flow graph that support your answers in 
Steps 6 and 7.  

Step 9: If the observed three packets per typed character are due to delayed acknowledgements, then 
disabling delayed acknowledgements should lead to different observations.  
Delayed acknowledgements are disabled by setting the QUICKACK option. If enabled at the receiver, 
the receiver immediately acknowledges every arriving TCP segment. The QUICKACK option can be 
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modified via the routing table by setting the option for a particular routing table entry. To enable 
QUICKACK at the TCP server on PC2 for a client on PC1, type the command 

PC2$ sudo ip route change default via 10.0.2.33 quickack 1 
 
This command applies QUICKACK to all outgoing packets that use the default gateway. Run the 
command `ip route show’ to verify the setting.  

 
Step 10: As in Step 6, type a few characters in the window with the Telnet session, and observe the 

output in Wireshark.  
Create a flow graph that shows the transmission pattern after you changed the QUICKACK setting.  

• Compare the flow graph to the previous flow graph.  
• Take a snapshot of the flow graph. The graph should show the packets resulting from a few 

character strokes on PC1.  
 

Step 11: Re-enable delayed acknowledgments by disabling QUICKACK on PC2 for the default route. 
This is done with the command   

PC2$ sudo ip route change default via 10.0.2.33 quickack 0 
 
Now, the packet transmissions when typing characters at the Telnet client on PC1 should return 
to the pattern observed in Step 5. Verify this by observing the captured traffic on Wireshark, 
and, possibly, creating another flow graph.  

Step 12: You may leave the Telnet session on PC2 in place for the next exercise. Also, you may keep 
the Wireshark traffic capture running.  

 

Lab Question/Report: 

1. Include your answers to the questions in Steps 6 and 7. Include screenshots from Step 8 that 
support your answers. 

2. For one character typed at the Telnet client, include a drawing that shows the transmission of 
TCP segments between PC1 and PC2 due to this character. 

3. Describe your observations from Step 10 and compare them to the earlier observations. Use the 
screen capture of the flow graph to support your observation. Comment on the validity of the 
conclusion that QUICKACK disables delayed acknowledgements.  

Exercise 5-c. Interactive Applications (high latency) 
This exercise repeats the previous exercise, but establishes a data connection over link with a latency of 
50ms. Due to the long delay, one would expect that the TCP sender transmits multiple segments, each 
carrying a payload of one typed character. However, this is not always the case. A heuristic in TCP, called 
Nagle’s algorithm, forces the sender to wait for an ACK after transmitting a small segment that carries 
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only one byte of payload, even if the window size would allow the transmission of multiple segments. 
Therefore, when sending small TCP segments, you should only observe one TCP segment in transmission 
at a time, no matter how slow or fast you type.  

Step 1: On PC3, impose a delay of 50ms on both interfaces with the commands  

PC3$ sudo tc qdisc add dev eth0 root netem delay 50ms  
PC3$ sudo tc qdisc add dev eth1 root netem delay 50ms  

Step 2: Check that the Wireshark traffic capture on interface eth0 of PC1 is running. If necessary, restart 
the traffic capture. The display filter should be set to “tcp”.  

Step 3: On PC1, establish a Telnet session to PC2 by typing 

PC1$ telnet 10.0.2.22 
 

As done earlier, complete a login as labuser.  

Step 4: As in the previous exercise, type a few characters in the console window with the Telnet session.  
Vary the rate at which you type characters in the Telnet client program.  
 
Observe the output of Wireshark. Also, create a flow graph of the data exchange. 

a. Observe the number of packets that are exchanged between the PCs for each keystroke? 
Observe how the transmission of packets changes when you type characters more quickly.  

b. Do you observe delayed acknowledgments? Why is the outcome expected? 

c. If you type very quickly, i.e., if you hold a key down, you should observe that multiple characters 
are transmitted in the payload of a segment. Explain this outcome.  

Step 5: Take screenshots from the Wireshark display and the flow graph that support your answers in 
Step 4. Include a screen snapshot or an excerpt from the flow graph showing that Nagle’s algorithm 
is used by the TCP sender.  

Step 6: Terminate the Telnet session by typing exit and stop the traffic capture with Wireshark. 

 

 

Lab Question/Report: 

1. Include your answers to the questions in Step 4. Use the Wireshark screen captures and the flow 
graph to support your answers. 

2. Include the screen snapshot or flow graph showing that Nagle’s algorithm is used by the TCP 
sender. Provide an explanation.  
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Part 6. TCP data exchange – Bulk data transfer 
Flow control enables a receiver of data to control the transmission rate of the sender of data in order to 
avoid getting overwhelmed with data. Flow control is not an issue with interactive applications, since 
the traffic volume of these applications is small, but plays an important role in bulk data transfers.  

In TCP, the receiver controls the amount of data that the sender can transmit using a sliding window 
flow control scheme, with the acknowledgement and the window size fields in an ACK segment. The 
number of bytes that the receiver is willing to accept is written in the window size field. An ACK that has 
values (250, 100) for the acknowledgement number and the window size is interpreted by the TCP 
sender, that the sender is allowed to transmit data with sequence numbers 250, 251, …, 349. The TCP 
sender may have already transmitted some data in that range.  

The amount of data that can be in transit in each direction of a TCP connection can be increased up to 
the bandwidth-delay product between TCP client and TCP server, marking the point where the efficiency 
of a network is maxima. With a 16-bit long window size field, the maximum data in transit allowed by 
window flow control is 65,535 bytes, which is well below the bandwidth-delay product in modern 
networks (Note that a 300 km long link operating at 1 Gbps already has a bandwidth-delay product of at 
least 1 Mb). For this reason, TCP uses window scaling, where the window flow control field is multiplied 
by a power of 2. The value of the power of 2, referred to as scaling factor, is negotiated between TCP 
client and server in TCP options during the connection establishment phase.  

In current Linux systems, the default scaling factor of the window size field is set to 7 (or a multiplying 
factor of 27=128), which permits up to ~8.4 MB in transit. With window sizes up to this range, the 
mechanisms of sliding window flow control can be observed only when transmitting massive amounts of 
data and when transmitting at a very high data rate. By disabling window scaling, we will make the 
mechanisms of window flow control observable at lower rates and data volumes. We can further limit 
the sliding windows by configuring limits on the maximum window size.  

In this part of the lab, you observe acknowledgements and flow control for bulk data transfers, where 
traffic is generated with the iPerf tool. Not that bulk data transfers generally transmit full segments, that 
is, segments whose size is equal to the MSS. To observe the bulk data transfer, we introduce a feature of 
Wireshark that allows you to view the data of a TCP connection in a graph.   

 

Observations depend on network equipment 

The outcomes of the experiments in this part depend on the maximum data rate 
between PC1 and PC2, which is determined by the network interface cards, and 
intermediate switches and routers. If the configured network is run as an emulation, 
the data rate is limited by the CPU where the emulation is running. 
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Exercise 6-a. TCP Data Transfer – Fast link 
The purpose of this exercise is to observe the operation of the sliding window flow control scheme in a 
bulk data transfer, where PC1 sends a large number of segments to PC2 using the iPerf traffic generation 
tool. 

Step 1: Continue with the network setup from Part 1. Make sure that the IP configuration is as given in 
Exercise 1-a. 

Step 2: Start Wireshark on PC1 for interface eth1, and start to capture traffic. Do not set any display 
filters. 

Step 3: Use iPerf to generate TCP traffic between PC1 and PC2.  

• On PC2, start a iPerf receiving process by typing:  

PC2$ iperf -s  
 

• On PC1, start a iPerf sender process that sends 500 kB of application data by typing: 

PC1$ iperf –c 10.0.5.22 -n 500K 
 

By using 10.0.5.22 as destination address, traffic will go over through the direct Ethernet link 
between PC1 and PC2. 

Step 4: From the output of Wireshark on PC1, observe the sliding window flow control scheme.  The 
sender transmits data up to the window size advertised by the receiver and then waits for ACKs.  
1. Display the flow graph of the TCP connection (by selecting a packet in Wireshark and then 

selecting Statistics"FlowGraph). Observe the transmission of TCP segments and ACKs. How 
frequently does the receiver send ACKs? Is there an ACK sent for each TCP segment, or less 
often. Can you determine the rule used by TCP to send ACKs? Can you explain this rule? 

2. How much data (measured in bytes) does the receiver acknowledge in a typical ACK? What is 
the most data that is acknowledged in a single ACK? 

3. What is the range of the window sizes advertised by the receiver? How does the window size 
vary during the lifetime of the TCP connection?  
Note: You can use a display filter, e.g., “ip.src==10.0.5.22”, to only show packets sent by PC2 to 
PC1. 

4. Select an arbitrary ACK packet in Wireshark sent by PC2 to PC1. Locate the acknowledgement 
number in the TCP header. Now relate this ACK to a segment sent by PC1. Identify this segment 
in the Wireshark output. How long did it take from the transmission of the segment, until the 
ACK arrives at PC1?  

5. Determine whether, or not, the TCP sender generally transmits the maximum amount of data 
allowed by the advertised window. Explain your answer. 

Step 5: Take screen snapshots Wireshark windows and excerpts of the flow graph so that you can 
support your answers above.  
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Lab Question/Report: 

1. Include your answers to the questions in Step 4. Include screen captures from Step 5 to support 
your answers. 

 

Exercise 6-b. Generating graphs of TCP data transfer  
In addition to the flow graphs, Wireshark can generate graphs that plot details of the transmissions on a 
TCP connection. This exercise familiarizes you with these graphing capabilities of Wireshark and shows 
how you can extract information from these graphs.  

Step 1: Select a TCP connection: In the Wireshark packet list, select a packet from the TCP connection 
of the iPerf measurement in Exercise 6-a. 

Step 2: Select the type of graph: From the Wireshark menu, select Statistics"TCP Stream Analysis in 
the pull-down menu. This show the available graphs for selections, which are all plotted as functions 
of time.  

• Time-Sequence (Stevens): Displays the transmission of sequence numbers, with one data point 
for each transmission of a TCP segment.  

• Time-Sequence (tcptrace): In addition to showing the transmissions of TCP segments, the graph 
also includes acknowledgements, the window size advertised by the receiver, and selective 
acknowledgements.  

• Throughput: Displays the average throughput of data transmissions.  

• Round Trip Time: Displays the roundtrip time (RTT) as a function of time.  

• Window Scaling: Displays the advertised window size (received by the sender) and the number 
of transmitted but unacknowledged bytes (transmitted by the sender). The latter can be 
thought of as the bytes in transit, and are also referred to as the “bytes in flight”.  

 

Stream analysis graphs 

• You can switch between the different types of graphs by selecting the pull-
down menu shown with the graphs.  

• For each TCP connection, you get different graphs for each direction of data 
transmission. Once a graph is displayed, selecting “Switch Direction” displays 
the graph for the other direction.  
For all iPerf  measurements in this lab, select the direction that shows the 
transmissions from the iPerf client to the iPerf server. 
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This lab uses the graphs for Time-Sequence (tcptrace) and Window Scaling, which are shown in 
Figure 6.2.  

 
 

(a) Time-Sequence (tcptrace) 
 

 
 

(b) Window Scaling. 
 

Figure 6.2. Wireshark graphs for TCP connection. 
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The time-sequence graph uses colors to distinguish different types of data: 

Color codes of time-sequence graphs: 
Blue vertical lines  Range of sequence numbers of transmitted TCP segments  

Green line Max. sequence number that permitted by window flow control 
Brown line Sequence number of the maximum contiguous data that has 

been acknowledged (not accounting for selective 
acknowledgements)  

Red vertical lines Range of sequence numbers that are acknowledged via 
selective acknowledgments 

 

The colors used in the window scaling graph is as follows:  

Color codes of window scaling graphs: 
Green line Size of the advertised window (received from the other end of 

the connection) 
Blue line  Number of bytes in transit, i.e., bytes that are transmitted but 

have not been acknowledged. Dots on the line indicate 
transmissions of TCP segments.  

 

Step 3: Navigate the graphs: Create a time-sequence graph for the iPerf transmissions from the 
previous exercise. Learn how to navigate the graphs generated by Wireshark, to display certain 
ranges of the displayed data. Options for navigating these graphs are as follows: 

• A menu at the bottom of the graph allows to select “drag” or “zooms”. When selecting 
“drag”, holding the left mouse button in the displayed graphs allows to move the displayed 
data. When “zooms” is selected, selecting an area in the graph zooms while holding the left 
mouse button enlarges that section of the graph.  

• Selecting the right mouse button (when the mouse is located on the graph) displays all 
available options and shortcuts.  

• The displayed data is reset to the original graph by selecting “Reset” or typing the shortcut 
“0”. 

• The displayed graph can be saved to a file by selecting the “Save as …” button.  
 

Step 4: Interpret the graphs: Explore the graphs for time-sequence (tcptrace) and window scaling for 
the TCP connection of the iPerf transmissions from PC1 to PC2 in Step 3 of Exercise 6-a.  
 
1. Take screen snapshots of the graphs or save the graphs as PDF files. 
2. Review the questions in Step 4 of Exercise 6-a and determine which answers you can obtain 

directly from the graphs, possibly by using the navigation features to focus on certain parts of 
the graph. 
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Lab Question/Report: 

1. Include the graphs from Step 4.  
2. Which of the questions in Step 4 of Exercise 6-a (if any) cannot be provided easily from the two 

graphs. Justify your answer. 

 

Exercise 6-c. TCP Data Transfer – Small receiver windows 
This experiment repeats the iPerf measurements with a smaller window size at PC2. 

 

Step 1: Terminate the iPerf server on PC2 with Ctrl-C. Then disable TCP window scaling on PC2 with the 
command 

PC2$ sudo sysctl -w net.ipv4.tcp_window_scaling=0 
Then, restart the iPerf server. 

Step 6: Check that the Wireshark session for PC1 (eth1) is still active and that the iPerf  server on PC2 is 
still running. If not, restart the Wireshark traffic capture and start an iPerf server by typing 

PC2$ iperf -s  
 
Step 2: On PC1, start an iPerf client with the command  

PC1$ iperf –c 10.0.5.22 -n 500K 
 
Step 3: Create graphs for time-sequence (tcptrace) and window scaling for the TCP connection of the 

data transfer and take snapshots of the graphs.  

 Compare the graphs to those created in Exercise 6-b:  

1. Does the iPerf client (on PC1) saturate the advertised window of the iPerf server (on PC2)?  

2. How does the pattern of data segments and ACK change, as compared to the fast link in the 
previous exercise?  Does the frequency of ACKs sent by PC2 change?  

3. How does the range of window sizes advertised by the receiver differ from the range seen in 
Exercise 6-a?  

4. Does the TCP sender generally transmit the maximum amount of data allowed by the 
advertised window? Explain your answer. 
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Step 4: The maximum size of the advertised window can be reduced further by imposing a limit on the 
maximum window advertisement. This can be done by limiting the amount of allocated memory for 
the receive buffer for a TCP connection, which is controlled by the system parameter 
net.ipv4.tcp_rmem. First terminate the running iPerf server. Then view the current setting of the 
parameter on PC2 with the command   

PC2$ sudo sysctl net.ipv4.tcp_rmem 
 
The parameter stores three values: (1) the minimum size (in bytes) of the receive buffer for each 
TCP connection, (2) the default size, and (3) the maximum size.  
 

Step 5: On PC2, change the size of the receive buffer to 20 kB with the command  

PC2$ sudo sysctl -w net.ipv4.tcp_rmem =“4096 20000 20000” 
 

Since TCP advertises roughly one half of the available buffer space to the sender, this setting sets 
the maximum advertised window to around 10kB.  

 
Step 6: Restart the iPerf server on PC2 with  

PC2$ iperf -s  
 

and start another iPerf client on PC1 with  

PC1$ iperf –c 10.0.5.22 -n 500K 
 

Step 7: Create graphs for time-sequence (tcptrace) and window scaling for the TCP connection of the 
data transfer and take snapshots of the graphs.  

Compare the graphs to the graphs in Step 3:  

1. Determine the range of window sizes advertised by PC2. What is the maximum window 
size?  

2. The iPerf client (on PC1) should now saturate the advertised window of the iPerf server (on 
PC2). Can you confirm this? (Hint: The packet list in Wireshark displays when the TCP sender 
saturates the window.) 

3. Does the limit on the window size have an impact on the throughput or the completion time 
of the iPerf client. Note that, for each iPerf client, the iPerf server displays the throughput of 
once the transmission is completed. The completion time of transmissions can be obtained 
from the x-axis of the graphs.  

Step 8: Terminate the Wireshark traffic capture. On PC2, terminate the iPerf server on PC2 and reset 
net.ipv4.tcp_rmem to the original default values. If you do not recall the default values, run the 
command  of Step 4 on another PC. 
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Lab Question/Report: 

1. Include the graphs from Step 3 and use them to answer the questions of Step 3.  
2. Include the graphs from Step 7 and use them to answer the questions of Step 7.  

 

Exercise 6-d. TCP Data Transfer – Slow link 
The last data transfer in this part considers data transmissions across a slow link. This is done by 
configuring the IP router on PC3 bandwidth throttle.  

 

Step 1: Start two traffic captures with Wireshark for the eth0 interfaces of  PC1 and PC2.  

Step 2: On PC3, impose a rate limit of 100 kbps on both interfaces with the commands  

PC3$ sudo tc qdisc change dev eth0 root netem rate 100kbit 
PC3$ sudo tc qdisc change dev eth1 root netem rate 100kbit 

Note that the “change” command assumes that a qdisc has been previously configured on PC3. If 
this is not the case,  use the “add” command instead. 

Step 3: On PC2, ensure that window scaling is disabled.  

Step 4: Start an iPerf session that traverses PC3. 

• On PC2, start a iPerf receiving process by typing  

PC2$ iperf -s  
 

• On PC1, start a iPerf sender with the command 

PC1$ iperf –c 10.0.2.22 -n 500K 
 
Step 5: Create graphs for time-sequence (tcptrace) for the TCP connection of the data transfer for both 

traffic captures at PC1 (eth0) and PC2 (eth0). 

• First compare the graph from PC1 (eth0) to the previously constructed graphs:  
 
1. How does the pattern of data segments and acknowledgements change, as compared to the 

previous data transfers?  

2. Is the range of window sizes advertised by the receiver different from what you have 
observed before?  

3. What would be the impact of changing the maximum window size at PC2  (e.g., by enabling 
window scaling or by setting the advertised window to a small value as in Exercise 6-c) on 
the outcome of the experiment ? 
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• Next, compare the time-sequence graph for the traffic captures at PC1 (eth0) and PC2 (eth0). 
Observe that one graph shows the transmissions of segments hugging the upper bound (green 
line), while the other graph is very close to the lower bound (brown line).  

4. Explain the source of the differences of the graphs, and explain why this result should be 
expected.  

 

Step 6: On PC2, terminate the iPerf server on PC2. Also, terminate the Wireshark traffic captures.  

 

 

Lab Question/Report: 

1. Include the graphs from Step 5 and use them to answer the questions of Step 5.  
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Part 7.  Retransmissions in TCP  
Next you observe retransmissions in TCP.  TCP uses ACKs and timers to trigger retransmissions of lost 
segments. A TCP sender retransmits a segment when it assumes that the segment has been lost. This 
occurs in two situations:  

1. No ACK has been received for a segment. Each TCP sender maintains a retransmission timer for 
the connection. When the timer expires, the TCP sender retransmits the earliest segment that 
has not been acknowledged. The timer is started when a segment with a payload is transmitted 
and the timer is not running, when an ACK arrives that acknowledges new data, and when a 
segment is retransmitted.  The timer is stopped when all outstanding data has been 
acknowledged. 

The retransmission timer is set to a retransmission timeout (RTO) value, which adapts to the 
current network delays between the sender and the receiver. A TCP connection performs round-
trip measurements by calculating the delay between the transmission of a segment and the 
receipt of the acknowledgement for that segment. The RTO value is calculated based on these 
round-trip measurements. Following a heuristic which is called Karn’s algorithm, measurements 
are not taken for retransmitted segments. Instead, when a retransmission occurs, the current 
RTO value is simply doubled.  

2. Multiple ACKs have been received for the same segment. A duplicate acknowledgment for a 
segment can be caused by an out-of-order delivery of a segment or by a lost packet. A TCP 
sender takes multiple, in most cases three, duplicates as an indication that a packet has been 
lost. In this case, the TCP sender does not wait until the timer expires, but immediately 
retransmits the segment that is presumed lost. This mechanism is known as fast retransmit. The 
TCP receiver expedites a fast retransmit by sending an ACK for each packet that is received out-
of-order.  

A disadvantage of cumulative acknowledgements in TCP is that a TCP receiver cannot request the 
retransmission of specific segments. For example, if the receiver has obtained segments 1, 2, 3, 5, 6, 7 
cumulative acknowledgements only permit to send an ACK for segments 1, 2, 3 but not for the other 
correctly received segments. This may result in an unnecessary retransmission of segments 5, 6, and 7. 
The problem can be remedied with an optional feature of TCP, which is known as selective 
acknowledgement (SACKs). Here, in addition to acknowledging the highest sequence number of 
contiguous data that has been received correctly, a receiver can acknowledge additional blocks of 
sequence numbers. The range of these blocks is included in TCP header options.  Whether SACKs are 
used or not, is negotiated in TCP header options when the TCP connection is created. 

The network topology for Part 7 is shown in Figure 6.3, which adds PC4 to the network. PC4 will be 
configured as an IP router and PC2 will use this router as the default gateway.  
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Figure 6.3. Network topology for Part 7. 

 

Table 6.3. IPv4 Addresses of PC4. 

Linux PC Ethernet Interface eth0 Ethernet Interface eth1 

PC4 10.0.1.44/24 10.0.2.44/24 

 
 

Exercise 7-a. TCP Retransmissions 
The purpose of this exercise is to observe when TCP retransmissions occur.  As before, you transmit data 
from PC1 to PC2 via PC3. As in Exercise 6-d, the link rates at PC3 are set to 100 kbps. The path from PC2 
to PC1 will go through the newly added PC4.  

During the data transfer, PC4 will be disconnected so that ACKs cannot reach PC1. As a result, a timeout 
occurs and PC1 performs retransmissions. 

Step 1: Add PC4 to the network topology as shown in Figure 6.3. Configure PC4 IPv4 addresses as shown 
in Table 6.3. Set PC4 up as an IPv4 router with  

PC4$ sudo sysctl -w net.ipv4.ip_forward=1 
 

Step 2: Check and modify the configurations of PC1, PC2, and PC3. 
• On PC2, change the address of the default gateway to 10.0.2.44 by typing  

PC2$ sudo ip route add default via 10.0.2.44 
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• Disable window scaling on PC1 and PC2. For PC1, the command is 

PC1$ sudo sysctl -w net.ipv4.tcp_window_scaling=0 
 

• On PC3, make sure that as in Exercise 6-d, a rate limit of 100 kbps is running on both interfaces. 
You can check the status with the command  
PC3$ sudo tc qdisc show  
If necessary, configure the rate limit with the commands from Exercise 6-d (If a Netem is already 
configured, but with a different configuration, replace the “add” in the command with 
“change”). 
 

Step 3: Start a Wireshark traffic capture for interface eth0 of PC1.  Set a display filter to TCP traffic 
(“tcp”).  

Step 4: Start an iPerf receiving process on PC2 with the command  

PC2$ iperf -s  
 

Step 5: Start an iPerf sender on PC1 with  

PC1$ iperf –c 10.0.2.22 -n 500K -b 1M  
 

This command sends 500 kB at a target rate of 1Mbps to the iPerf server on PC2. With this, the 
experiment should last around 40s. 

• Create a graphs time-sequence (tcptrace) graph or the TCP connection to get an overview of the 
transmissions. You should see that the rate of data transmissions (blue lines) is faster than the 
rate at which acknowledgements return (brown line). With window scaling enabled, you should 
see that the data transmissions do not fill up the advertised window (green line). 

 

 

Step 6: Now, repeat Step 5. After about 10 seconds, disconnect the link from the eth1 interface of PC3 
to the switch. Wait until the iPerf client on PC1 terminates and shows a command prompt. This can 
take more than 10 minutes. 
 
Observe TCP retransmissions from PC1 in the output of Wireshark.  

• For the first observed retransmission determine the elapsed time since the original 
transmission. 

• Observe the time instants when retransmissions take place. How many packets are 
retransmitted at one time? 

• Try to derive the algorithm that sets the time when a packet is retransmitted. (Repeat the 
experiment, if necessary). Is there a maximum time interval between retransmissions? 
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• After how many retransmissions, if at all, does the TCP sender give up with retransmitting the 
segment? Describe your observations.  

• Create a graphs time-sequence (tcptrace) for this TCP connection. The graph shows the time 
between retransmission events.  

• Take a snapshot of the Wireshark packet list pane, showing the retransmission events.  

• Take a screen snapshot of the time-sequence (tcptrace) graph or save the  graph to a file.  

 

 

 

Locating retransmissions in Wireshark 

• You can set a display filter to only show retransmissions. The filter is 
“tcp.analysis.retransmission”.  With “tcp.analysis.fast_retransmission” the 
display filter displays only fast retransmits. 

• In the Wireshark window, selecting “Analyze"Expert Information”, displays 
certain events that are observed by Wireshark, including retransmissions.  
 
Note: Since Wireshark only observes traffic it can only infer the reason for a 
retransmission. For example, when a repeated duplicate ACK is followed by a 
retransmission, Wireshark marks this event as a fast retransmit.  

 

Step 7: Reconnect the eth1 interface of PC3. Then, repeat Step 6, by disconnecting the link of the eth1 
interface of PC3 to the switch after 10 seconds. After 60 seconds, reconnect the link. You observe 
that the iPerf client resumes. Wait until the transmissions are completed.  
 
Observe the TCP retransmissions from PC1 in the output of Wireshark.  

• Create a graphs time-sequence (tcptrace) for this TCP connection. Take a screen snapshot of the 
graph or save the graph to a file.  

• Observe which packets are retransmitted when the link is disconnected, and which packets are 
retransmitted when the link is reconnected. Does PC1 at any time retransmit multiple packets at 
a time or does it wait for an acknowledgement before retransmitting the next packet?  

•  Do you observe selective acknowledgements (indicated by red vertical lines)? If so, explain why 
selective acknowledgements occur. 
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Step 8: This is another repetition of the same experiment.  Here, after 10 seconds, disconnect the link 
that connects the eth0 interface of PC4. Reconnect the link after 60 seconds. Wait until the 
transmissions are completed. 
Again, observe the TCP retransmissions from PC1 in the output of Wireshark.  

• Create a graphs time-sequence (tcptrace) for this TCP connection. Take a screen snapshot of the 
time-sequence (tcptrace) graph or save the graph to a file.  

• Describe the events that are captured when the link is reconnected.  

• Compare the retransmission events to those in Step 7. Explain the different outcomes.  

 

Step 9: Terminate the Wireshark traffic captures and close the time-sequence (tcptrace) graphs.  

 

Lab Question/Report: 

1. Include the answers to the questions from Steps 6, 7 and 8. Include the graphs and other screen 
captures to time-sequence (tcptrace) your answers.  
Annotate the tcptrace graphs to emphasize your answers. In particular, indicate all 
retransmissions by arrows.  

Exercise 7-b. TCP performance with sporadic packet losses  
The next experiment explores retransmission events when an intermediate router sporadically drops 
packets. This is done by configuring a fixed loss probability at PC3. You also observe how TCP 
performance degrades when the loss probability is increased.  

Step 1: Change the network emulator on both interfaces of PC3 so that it drops packets with a 
probability of 5%.  The commands for PC3 are  

PC3$ sudo tc qdisc change dev eth0 root netem rate 100kbit loss 5% 
PC3$ sudo tc qdisc change dev eth1 root netem rate 100kbit loss 5% 

 

Step 2: Start a Wireshark traffic capture for interface eth0 of PC2.  Set a display filter to TCP traffic 
(“tcp”). By capturing traffic at PC2, you can observe which packets are dropped by PC3.  

Step 3: Start an iPerf receiving process on PC2 with the command  

PC2$ iperf -s  
 

Step 4: Start an iPerf sender on PC1 with  

PC1$ iperf –c 10.0.2.22 -n 500K  
 

• Identify the retransmissions that are captured by Wireshark by setting a display filter to 
“tcp.analysis.retransmission”. In the Wireshark window, select “Analyze"Expert Information”, 
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and expand the retransmission events. Determine the type of retransmissions (fast retransmit, 
retransmission after an RTO timeout). Take a screenshot of the retransmission events for 
reference. 

• Create time-sequence (tcptrace) graph or the TCP connection to get an overview of the 
transmissions. Take a screenshot of the entire graph.  

• For each fast retransmission event determine (and record) how many duplicate 
acknowledgements (DUP ACKs) are observed before the retransmission occurs.  

• Relate the observed duplicate acknowledgements with transmissions of selective 
acknowledgements (red vertical lines).  

• Try to identify duplicate acknowledgments that acknowledge multiple ranges of sequence 
numbers. In the time-sequence graph, zoom into such an area and take another screen 
snapshot. (If you do not find multiple SACK ranges, find an interesting area with a single SACK 
range). 

• Select one packet containing a selective acknowledgement (ideally, a packet that acknowledges 
multiple ranges of sequence numbers) check the details of the packet in Wireshark. The 
selective acknowledgement is in an option of the TCP header. Take a snapshot of the TCP header 
of this packet showing the details of the TCP header options. 

 

 
Step 5: Terminate the Wireshark traffic captures and close the time-sequence (tcptrace) graphs. Also, 

terminate the iPerf server on PC2. 

 

Lab Question/Report: 

1. Describe the type of retransmissions observed in this experiment. (There is no need to include 
the screen shot of the “Expert Information” window.) 

2. Include the time-sequence (tcptrace) graph of the complete data exchange from PC1 to PC2. 
Annotate the screenshot to answer the following questions from Step 4:  

a. How many duplicate acknowledgements (DUP ACKs) are observed before a fast 
retransmit.  

b. Indicate in the graph where duplicate acknowledgements are sent with an selective 
acknowledgement.  

3. Use the detailed (zoom in) screenshot of a retransmission event with one or more SACK ranges. 
Which event stopped the transmission of SACKs. Indicate this in the figure.  

4. Include the snapshot of the TCP header containing a selective acknowledgement. Describe 
which data is acknowledged in the ACK field and the sequence number range of the selective 
acknowledgement(s).  
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Exercise 7-c. TCP retransmissions at an overloaded link  
Next you observe loss events at an overloaded link. This is done by limiting the data rate of PC3 and 
introducing an overload which results in losses and retransmissions. 

In this exercise, PC4 is used as an iPerf client that sends UDP traffic to PC2 via PC3. 

 

Step 1: On PC3, change the network emulation so that it has a rate limit of 100 kbps and a buffer size 
limit of 30 packets on each interface, using the commands 

PC3$ sudo tc qdisc change dev eth0 root netem rate 100kbit limit 30 
PC3$ sudo tc qdisc change dev eth1 root netem rate 100kbit limit 30 

With the low rate and small buffer size, we expect to see a buffer overflow when PC1 sends data to 
PC2. 

Step 2: On PC2, change the default route to 10.0.2.33 with the command  

PC2$ sudo ip route change default via 10.0.2.33 
 Then, start an iPerf server process with  

PC2$ iperf -s  
 
Step 3: Start a Wireshark traffic capture for interface eth0 of PC1 and PC2.  Set a display filter to TCP 

traffic (“tcp”).  

Step 4: Start an iPerf client on PC1 with  

PC1$ iperf –c 10.0.2.22 -n 1M 
The number of packets is set large to ensure that an overflow occurs at PC3. When the data 
transfer is completed check the throughput that is reported by the iPerf server on PC2. It will be 
slightly below 100 kbps.  

 
• Identify the retransmissions that are captured by Wireshark. Determine the type of 

retransmissions. 

• Create time-sequence (tcptrace) graphs of the TCP connection for both traffic captures at 
PC1 and PC2. Take screen snapshots of the entire graph.  

• You will observe multiple time periods in the graphs where you see duplicate ACKS, SACKs, 
and retransmissions. These time periods follow a buffer overflow event. Zoom in on the first 
such time period (in both graphs) and take screen snapshots.  

• Describe the differences observed of the occurrences of retransmissions if compared to 
Exercise 7-b. 
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Step 6: Terminate the Wireshark traffic captures and close the time-sequence (tcptrace) graphs. Also, 
terminate the iPerf server on PC2. 
 

 

Lab Question/Report: 

1. Describe the type of retransmissions observed in this experiment. Describe the differences 
observed of the occurrences of retransmissions if compared to Exercise 7-b. 

2. Include the time-sequence (tcptrace) graphs of the complete data exchange from PC1 to PC2. 
Use the graphs to confirm that the retransmissions follow a buffer overflow.  

3. Provide the detailed (zoom in) screenshots of the time-sequence (tcptrace) from both PC1 (eth0) 
and PC2 (eth0). Annotate the graphs and describe the events that you observe in the graphs 
(e.g., buffer size limit is exceeded, retransmission, duplicate ACK, SACK, etc.)   
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Part 8. TCP Congestion Control 
TCP congestion control adapts the sending rate of a TCP sender to the current conditions in the network. 
When the network is highly loaded (congested), the TCP sender reduces its rate. When the network is 
not congested, the TCP sender increases its sending rate.  Each TCP sender maintains a congestion 
window that limits the number of segments that can be sent without waiting for an acknowledgement. 
The actual number of segments that can be sent is the smaller of the congestion window and the flow 
control window that is advertised by the receiver.  

In standard TCP congestion control (TCP Reno or TCP NewReno), the TCP sender keeps two variables, a 
congestion window (cwnd) and a slow-start threshold (ssthresh). The initial value of cwnd is set to one or 
a few segments of maximal size (MSS), and that of ssthresh is set to the maximum window size. The 
congestion control algorithm operates in two phases, called slow start and congestion avoidance. The 
sender is in the slow start phase when cwnd ≤ ssthresh. Here, cwnd is increased by one segment for 
each received ACK that confirms receipt of previously unacknowledged data. This results in a doubling of 
cwnd for each roundtrip time. When cwnd > ssthresh, the TCP sender is in the congestion avoidance 
phase.  Here, the cwnd is incremented by one segment only after cwnd ACKs of new data.  

The TCP sender assumes that the network is congested when a segment is lost, where a segment loss is 
inferred when the retransmission timer has a timeout or when a third duplicate ACK has arrived. When a 
timeout occurs, the TCP sender sets ssthresh to half the current value of cwnd and then sets cwnd to 
one. This puts the TCP sender in slow start mode. When a third duplicate ACK arrives, the TCP sender 
performs what is called a fast recovery. Here, ssthresh is set to half the current value of cwnd, and cwnd 
is set to the new value of ssthresh. The full congestion control algorithm has additional tweaks, and 
details differ slightly from the above description.  

Standard TCP congestion control is not ideal for all connections. If a TCP connection is short-lived, the 
congestion window remains small, hence limiting the rate of TCP data exchanges. Also, for fast networks 
with a large bandwidth-delay product, TCP congestion avoidance increases too slowly to exploit the 
available network bandwidth efficiently. Today there many alternative congestion control algorithms, 
which all seek to improve TCP performance for specific settings.  

The earlier encountered “ss -i” Linux command displays the current values of cwnd and ssthresh.  
However, there is no convenient method to track these variables during a data transfer. Therefore, in 
can only infer the cwnd values from observing transmissions. Note, however, that the observed traffic 
results from both the congestion window and the advertised window.  

  

Table 6.4. IPv4 addresses and default routes of PC1 and PC2. 

Linux PC Ethernet Interface eth0 Default gateway 

PC1 10.0.1.11/24 10.0.1.44 

PC2 10.0.2.22/24 10.0.2.33 
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Exercise 8-a. Network setup and congestion parameters 
For the experiments in this part the routing table entries are set so that traffic from PC2 to PC1 traverses 
the path PC2"PC3"PC1, and the reverse path is PC1"PC4"PC2.  

Step 1: Continue with the network from Part 7.  

Step 2: Change the routing tables of PC1 and PC2 so that the paths between the two PCs are 
PC1"PC4"PC2 and PC2"PC3"PC1. This can be done by adding routing table entries for the 
subnets of the PCs with the commands 

PC1$ sudo ip route add 10.0.2.0/24 via 10.0.1.44 
PC2$ sudo ip route add 10.0.1.0/24 via 10.0.2.33 

 
Use traceroute to verify that traffic from PC1 to PC2 passes through PC4, and traffic from PC2 to PC1 
passes through PC3. 

 

 

 

Step 3: Selecting the congestion control algorithm. Linux supports a large number of congestion 
control algorithms.  The congestion control algorithm can be changed globally or locally for a specific 
routing table entry (except the default route).  
 
• The default congestion control algorithm is kept in net.ipv4.tcp_congestion_control. 

Display the current congestion control at PC1 with the command 

PC1$ sysctl net.ipv4.tcp_congestion_control 
 

 

Supported congestion control algorithms 
Current Linux distributions support a long list of congestion control algorithms. Here is a 
small election of prominent algorithms: 
• reno – TCP Reno/New Reno. This algorithm has been standardized by the IETF 

 and was earlier referred to as Standard TCP congestion control. 
• cubic – TCP Cubic is currently the default TCP congestion control algorithm in  

 Linux systems.  
• bbr – TCP BBR stands for bottleneck bandwidth and round-trip propagation 

 time. It is a recent addition that currently enjoys considerable buzz. 
The acronyms of other algorithms, some of which are specialized for certain network 
conditions are bic, westwood, vegas, illinois, veno, and hybla.  
Note:  
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• Since the algorithm is configured on a local system, the two sides of a TCP 
congestion may run different congestion control algorithms.  

• On Linux systems, TCP congestion control cannot be disabled. 

 

 

• Change the congestion control algorithm at PC1 to TCP Reno by typing  

PC1$ sudo sysctl -w net.ipv4.tcp_congestion_control=reno 
 

•  The congestion control algorithms and some parameters of congestion control can be 
configured for specific routes. To change the algorithm to TCP Reno on PC2 with an initial 
congestion window of one segment for the route to PC 1, run the command  

PC1$ sudo ip route change 10.0.2.0/24 via 10.0.1.44 congctl reno initcwnd 1  
If the route does not already exist, replace “change” by “add”. Then, verify the route-specific 
change by displaying the routing table with  

PC1$ ip route show  
 
 

Step 4: Viewing state variables of congestion control. The Linux command “ss -i” (see Exercise 4-d) 
displays state information of currently active TCP connections, which includes information about 
congestion control. Here, you will explore the TCP connection of a Telnet session.  
• Start a Telnet server on PC1 with the command   

PC1$ sudo service xinetd start 
 

• On PC2, establish a set of Telnet session to PC1 with the command  

PC2$ telnet 10.0.1.11 
Complete the login as labuser.  
 

• After the login is completed, on PC1,  type  

PC1$ ss -i 
 
Explore the output and parse it for information on the congestion control. Relevant fields are 
the congestion control algorithm, the congestion window (cwnd), and the slow start threshold 
(ssthresh). Take a screen snapshot of the output.  
 

• Next, initiate a data transfer from PC2 to PC1. This can be done by displaying a lot of data on the 
console.  For example, the command  

PC(via telnet)$  yes "Put some text here" | head -n 1000000 > tmp.txt 
PC(via telnet)$  cat tmp.txt 
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creates a large file and then displays it.  The prompt ` PC1(via telnet)$’ indicates that this is the 
Telnet client at PC2 that has logged into PC1. 
 

• On PC1, after the file listing is completed, repeat the socket statistic command   

PC1$ ss -i 
 
Check how the information on congestion control has changed. Take another snapshot.  

Step 5: On PC2, terminate the Telnet session with the command  

PC1(via telnet)$ exit 

 
 

Lab Question/Report: 

1. Include the snapshot from Step 4, and highlight the variables that relate to congestion control. 
Can you determine if the TCP connection is in slow start or in congestion avoidance?  

 

 

Results may depend on data rates of the network  
The outcomes of some of the following experiments depend on the data rate of the 
Ethernet interfaces of the PCs.  If the Lab is run in a virtual environment, the data rate 
may be variable.  

 

Exercise 8-b. Observing TCP congestion control  
To observe the growth of the congestion window during data transmissions, PC2 will send data to PC1 
via PC3.  The ACKs from PC1 to PC2 travel on the path PC1→PC3→PC2, where we introduce a delay at 
PC3. When PC2 sends data to PC1, data segments can be transmitted quickly to PC1, but ACKs only 
return to PC2 with a considerable delay. The sender will therefore transmit a full congestion window 
worth of packets up to the threshold of the congestion window, and then be forced to wait for ACKs 
before transmitting the next batch of packets.  

Step 1: On PC3, change the network emulation so that a delay of 100 ms is imposed on the traffic on 
both interfaces. The commands are  

PC3$ sudo tc qdisc change dev eth0 root netem delay 100ms limit 1000 
PC3$ sudo tc qdisc change dev eth1 root netem delay 100ms limit 1000 
The commands also reset the buffer size to the default limit of 1000 packets.  If PC3 has been 
rebooted since Part 7, replace “change” with “add”. 
 

Step 2: Start a Wireshark traffic capture on interface eth0 of PC2. Set a display filter to TCP traffic. 
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Step 3: Start an iPerf server on PC1 with the command  

PC1$ iperf -s  
 
Step 4: Start an iPerf client process on PC2 that transmits 1 MB of data at transmission rate of 10 Mbps 

with  

PC2$ iperf –c 10.0.1.11 -n 1M -b 10Mbit 
 

• Create time-sequence (tcptrace) graph of the TCP connection for the transmissions from PC2 to 
PC1. Take a screenshot of the entire graph (or save the graph as a PDF file). 

• Observe the batches of packets that are transmitted by PC2. Zoom into the graph so that you 
can determine how many packets are transmitted in a batch. Do this for the first 3 batches.  
Take a screenshot (or save as PDF) for each batch. 

• Count the number of packets that you observe in each batch and record the results. How many 
packets are sent in the first batch? Can you infer from the size of the first three batches whether 
the TCP connection at PC2 is in the slow start or congestion avoidance phase?  

 

 

Displaying cwnd and ssthresh 
Since the  socket statistic command command displays the values of cwnd and ssthresh 
for active connections only, the command must be run while the iPerf client is still 
transmitting. The command can be issued in an additional console window. Alternatively, 
the command can be issued together with iPerf in one console window. For example, 
PC1$ iperf –c 10.0.2.22 & ss -i 
Runs the iPerf client as a background process and then starts “ss-i”. To prevent that the 
“ss -i” command completes  before the data transfer is started, a delay can be added. For 
example, typing  
PC1$ iperf –c 10.0.2.22 & sleep 0.2; ss -i 
Delays the socket statistic command by 0.2 seconds.  

 

 

 

Step 5: Next, change the size of the initial congestion window at PC2 for destination 10.0.1.0/24 to one 
segment by typing  

PC2$ sudo ip route change 10.0.1.0/24 via 10.0.2.33 initcwnd 1 
Step 6: Then, repeat Step 4 and explore the tcptrace graphs. Specifically, start an iPerf client with  

PC2$ iperf –c 10.0.1.11 -n 1M -b 10Mbit 
 

• Create time-sequence (tcptrace) graph of the TCP connection for the transmissions from PC2 to 
PC1. Take a screenshot of the entire graph (or save the graph as a PDF file). 
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• Zoom into the graph to determine how many packets are transmitted in a batch. Do this for the 
first 3 batches.  Take a screenshot (or save as PDF) for each batch. 

• Count the number of packets that you observe in each batch and record the results. How many 
packets are sent in the first batch? Can you infer from the size of the first three batches whether 
the TCP connection at PC2 is in the slow start or congestion avoidance phase?  

• Compare the duration of the transmissions for the iPerf commands in Step 4 and Step 5. 
 

Step 7: Terminate the iPerf server on PC1. (You may leave the Wireshark capture on PC (eth0) running.) 

 

Lab Question/Report: 

1. Include the screenshots from Steps 4 and 5, and discuss the graphs. Provide answers to the 
questions in both steps.  

 

  

Exercise 8-c. Fairness of congestion control  
 

 

Figure 6.4. Network topology for Part 8. 
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A goal of congestion control is to ensure that all traffic flows sharing a bottleneck resource obtain the 
same transmission rate at that resource. Here, you test this having two iPerf clients running on PC1 and 
PC4 compete for resources at PC3.  

Step 1: On PC4, disable interface eth1 and configure PC3 as the default gateway with the commands 

PC4$ sudo ip link set dev eth0 down  
PC4$ sudo ip route add default via 10.0.1.33 
 

Step 2: On PC1 and PC2, disable the routes that were added in Exercise 8-a with  

PC1$ sudo ip route del 10.0.2.0/24 via 10.0.1.44 
PC2$ sudo ip route del 10.0.1.0/24 via 10.0.2.33 

 

Check the congestion control algorithms on PC1 and PC2. Set the algorithm on both PCs to the default 
Cubic algorithm. 

With this, all traffic between PC1 and PC2, and between PC4 and PC2 goes through PC3.  

Step 3: On PC3, impose a rate limit of 10 Mbps and a buffer limit of 100 packets on both interfaces of 
PC3 by typing  

PC3$ sudo tc qdisc change dev eth0 root netem rate 10Mbit limit 100 
PC3$ sudo tc qdisc change dev eth1 root netem rate 10Mbit limit 100 

 
Step 4: Check if the Wireshark traffic capture on interface eth0 of PC2 is still active. If necessary, start a 

new traffic capture.  

Step 5: Start an iPerf server on PC2 with  

PC2$ iperf -s  

Step 6: On PC1, run an iPerf client that transmits a large amount of data (10 MB) at a rate that saturates 
the link rates of PC3 with the command 

PC1$ iperf –c 10.0.2.22 -n 20M -b 10Mbit 
 

Step 7: After about 5 seconds, start an iPerf client on PC4 that also saturates PC3 by typing  

PC4$ iperf –c 10.0.2.22 -n 10M -b 10Mbit 
When PC4 starts transmitting, its traffic will compete with that from PC1 for the 10 Mbps link at PC3. 
Ideally, the available link rate is split evenly. Your task is to determine how fairly the bandwidth is 
divided between PC1 and PC4.   

Step 8: Once the iPerf clients have completed, create time-sequence (tcptrace) graphs of the TCP 
connections of the iPerf clients. Create throughout graphs by selecting “Throughput” in the type 
window.  
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• Take screenshots of the tcptrace graphs and the throughput graphs (or save the graphs as PDF 
files). For the throughput graphs, unselect “Segment Length”. Also, the averaging window (“MA 
window”) should be set to 1 second.  

• Use the graphs to explain how the bandwidth is split between the transmissions. What is the 
throughput that each TCP connection obtains when both connections are active.  

• In the tcptrace graphs you can observe the retransmission events that occur in the experiment, 
which point to loss events at PC3.  

• Take this into consideration when determining the throughput observed of the two TCP 
connections.  

 

Lab Question/Report: 

1. Include the screenshots from Steps 4 and 5, and discuss the graphs. Provide answers to the 
questions in both steps.  

 

Exercise 8-d. TCP competing with UDP traffic  
UDP does not perform congestion control. Therefore, if a TCP traffic flow competes with a UDP flow at a 
bottleneck resource, the TCP flow will reduce its traffic rate if a loss is experienced, while the UDP flow 
continues sending. This exercise creates such a scenario. It repeats the same transmission scenario as Exercise 
8-c, with the difference that the iPerf client at PC4 sends UDP traffic.  

Step 1: Check that the network setup is the same as in Exercise 8-c (Steps 1–3). Make sure that there is 
a Wireshark traffic capture for the eth0 interface of PC2.  

Step 2: Check that the iPerf server is running on PC2. If necessary, start a new iPerf server with  

PC2$ iperf -s  

Step 3: On PC1, run an iPerf client that transmits a large amount of data (10 MB) at a rate that saturates 
the link rates of PC3 with the command 

PC1$ iperf –c 10.0.2.22 -n 20M -b 10Mbit 
 

Step 4: After about 5 seconds, start an iPerf client on PC4 that sends UDP traffic which saturates PC3 by 
typing  

PC4$ iperf –c 10.0.2.22 -n 10M -b 10Mbit -u  
 

Step 5: Once the iPerf clients have completed, create Throughput graph of the TCP connections of the 
iPerf client at PC1.   
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• Describe the throughput graph for the duration of the experiment. What happens to the traffic 
from the iPerf client on PC1, when the UDP traffic at PC4 is activated.  

• Take screenshots of the Throughput graphs where you unselect “Segment Length” and set the 
averaging window (“MA window”) to 1 second.  

 

Lab Question/Report: 

1. Include the screenshots from Steps 4 and 5, and discuss the graphs. Provide answers to the 
questions in both steps.  

 

 

 


