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Abstract—Mobile edge computing (MEC) offloads
computation-intensive applications and overcomes the long
latency by pushing data traffic towards the network edges.
With base stations (BSs) densely deployed in a hot-spot
area to improve user experience, mobile user equipments
(UEs) have multiple choices to offload tasks to edge servers
by jointly considering both the channel condition and the
computing capacity. However, precise full system information
is hard to be synchronized between BSs and UEs for mobility
management decision making. In this paper, a Q-learning based
mobility management scheme is proposed to handle the system
information uncertainties. Each UE observes the task delay as
an experience and automatically learns the optimal mobility
management strategy through trial and error. Simulations show
that the proposed scheme manifests the superiority in dealing
with the uncertainties. Compared with the traditional received
signal strength-based handover scheme, the proposed scheme
reduces the task delay by about 30%.

Index Terms—Mobility management, mobile edge computing,
handover decision, Q-learning

I. INTRODUCTION

Mobile edge computing (MEC) has been considered as a
promising solution for next-generation mobile networks where
various kinds of resource-hungry and computation-intensive
applications emerge, such as face recognition and virtual
reality [1]. MEC pushes the data traffic towards the network
edges by distributing the computing capabilities closer to the
mobile user equipments (UEs), such as the base stations (BSs)
equipped with the edge servers. As the transmission of data
between UEs and BSs does not need to go through the core
networks, it overcomes long service latency [2].

With BSs densely deployed in a hot-spot area to increase
the system capacity and improve user experience, mobile UEs
have multiple choices to offload tasks to edge servers. Driven
by the dense deployment, handover decision has gradually
evolved from the traditionally cell-centric to a more flexible
user-centric mobility management [3], [4]. In the traditional
handover scheme, when more and more UEs move toward
the region of a certain BS, UEs keep connecting to the BS
based on the received signal strength (RSS), making certain
BSs overloaded. However, UEs could have the opportunities
to offload the tasks to other neighboring BSs whose resources
remain unused. Thus, not only the channel condition but also
the computing capacity should be considered when associating
a UE with the appropriate BS. Since UEs connect to different

BSs due to the location alteration, user mobility aggravates
the rapid alteration of the system, making it hard to obtain an
accurate full network information for an appropriate UE-BS
association. Therefore, faced with the performance deteriora-
tion and system uncertainties, mobility management is still of
great importance and should be redesigned in MEC scenarios.

The majority of the existing work addressed mobility issues
such as whether and where to hand over. Demarchou et al. [5]
proposed a user-centric handover scheme where a handover
occurs according to UE’s future location predicted by the
trajectory and velocity. Hasan et al. [6] adjusted handover
parameters depending on the overloaded BSs and adjacent
BSs by employing an adaptive threshold to determine the
overloaded BSs. The current literature is based on full system
information, such as predictable UE’s mobility pattern and BS
side information. To handle the system uncertainties where the
network conditions, BS workloads and the future information
are unknown, pioneering studies worked on reinforcement
learning where each UE interacts with the environment and
identifies the optimal action-selection policy [7]–[10]. How-
ever, how to adjust the handover criteria in MEC scenario to
achieve a better quality of service (QoS) is not well studied in
the literature. This motivated us to propose a generic solution
for mobility management to handle the system information
uncertainties in MEC.

In this paper, a Q-learning based mobility management
scheme is proposed to handle the uncertainties of the MEC-
enabled networks. In order to shorten the service latency, each
UE makes handover decisions based on the observed task
delay from the environment in the past and selects the action
with the highest Q-values in the current state. Each UE keeps
exploring different BSs with a probability ϵ as well as trying
to connect to the optimal BS in the current experience. When
UEs move to another BS, Q-values are updated to keep up
with the dynamic system.

The rest of the paper is organized as follows. The com-
munication model and the computation model are introduced
in Section II. The Q-learning based mobility management
scheme is proposed in Section III. The performance of the
proposed algorithm and the impact of key parameters are
evaluated in Section IV. Finally, the conclusion and future
work are summarized in Section V.
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Figure 1. The architecture of MEC with UEs.

II. SYSTEM MODEL

In this section, the user mobility model and the task gen-
eration model are first introduced. Then, the communication
model and the computation model ensue.

A. User Mobility and Task Generation
As shown in Fig. 1, BSs N = {1, 2, ..., N} equipped with

computing capabilities are densely deployed in a hexagonal
grid. UE i ∈ I = {1, 2, ..., I} can access the edge server
through a cellular BS and then a wired connection [11]. UEs
are moving around randomly.

As shown in Fig. 2, each UE alternates between the idle
state and the execution state. The task intensity p per hour
per UE is the rate of the transition from the idle state to the
execution state, and µ otherwise. During the execution state,
the task can be executed locally or offloaded to the edge server.
After executing the task, the UE will return to the idle state.

B. Communication Model
The path loss (in dB) between BS n and UE i at time t can

be expressed as

PLt,n,i = PL(d0) + 10θlog
(
dt,n,i
d0

)
, i ∈ I, n ∈ N , (1)

where dt,n,i ≥ d0 is the distance between BS n and UE i at
time t, θ is the path loss exponent, and d0 is the reference
distance.

Based on the path loss model, the RSS (in dBm) from BS
n for UE i at time t is calculated as

PU
t,n,i =PU − PLt,n,i

−Xσ − 10 log10 h, i ∈ I, n ∈ N ,
(2)

where Xσ denotes the shadowing loss (in dB) and obeys a
Gaussian distribution with zero mean and standard deviation
σ. h denotes the multipath fast fading, which can be modeled
as Rician distribution with K-factor, and PU (in dBm) is the
transmitted power of UE i. For simplicity, we assume that all
UEs have the same transmission power.

On the other hand, according to Shannon’s Theory, the
maximum uplink transmission rate for UE i at time t can
be calculated as

rt,n,i = W log2

(
1 +

10P
U
t,n,i/10

It,n,i +N0

)
, (3)
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Figure 2. Transition diagram of task generation.

where W is the channel bandwidth, It,n,i is the mutual
interference caused by other UEs [12] and N0 is the noise
power. PU

t,n,i is the RSS (in dBm) from UE i for BS n, which
can be calculated as in (2) with UE transmission power PU.

C. Computation Model
1) Local task execution: With the dynamic voltage and

frequency scaling (DVFS) technology, each UE adjusts its
computing capacity for different tasks [12]. Therefore, the
local task execution time is denoted as

DL
t,i,m =

ξmλm

ft,i,m
, (4)

where ξm and λm is the computation intensity and the data
size of task m executed in UE i, and ft,i,m is the allocated
CPU frequency for task m.

The energy consumption with the local task execution [13]
is calculated as

EL
t,i,m = (ηi(ft,i,m)Xi + βi)D

L
t,i,m, (5)

where Xi, ηi and βi are the parameters determined by the
CPU processing model [13].

2) Task execution on the edge server: The computation
delay is computed as

DC
t,i,m =

ξmλm

F
, (6)

where ξm is the computation intensity of task m, and λm is
the data size of task m offloaded to BS n. The first come
first serve (FCFS) principle is considered as the scheduling
strategy for edge users where requests are served in the order
of their arrival [14]. For simplicity, we assume all BSs are
equipped with the computing capacity F .

For UE i, the transmission delay of task m at time t is
given by

DT
t,i,m =

λm

rt,n,i
, (7)

As multiple UEs are competing for the limited computation
resources at the edge server, the task queuing delay of BS n
at time t is considered as follows

DQ
t,i,m =

Bt,n

F
, (8)

where Bt,n is the current workload of BS n at time t, which
is changing with time.

As shown in Fig. 3, the overall time delay of the edge
service DE

t,i,m consists of the transmission, queuing and
computation delay

DE
t,i,m = DT

t,i,m +DQ
t,i,m +DC

t,i,m. (9)
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Figure 3. Delay model of task offloading.

Similar to [12], [15], the data transmission also consumes
the tail energy in practice. Thus, the energy consumption for
the transmission of task m is

ET
t,i,m = PT

i ·DT
t,i,m + P tail

i ·Dtail
i , (10)

where PT
i is the transmission power of UE i, P tail

i is the
cellular tail power consumption of UE i, and Dtail

i is the tail
time.

For real-time applications offloaded to the edge server, the
energy consumption during the queuing and execution time
cannot be ignored. Thus, the energy consumption during this
time is

EQ
t,i,m = P idle

i (DC
t,i,m +DQ

t,i,m), (11)

where P idle
i is the idle power of UE i.

Thus, the total energy consumption of offloading a task to
the edge server consists of the transmission energy consump-
tion and idle energy consumption, which is calculated as

EE
t,i,m = ET

t,i,m + EQ
t,i,m, (12)

Considering that the result of a task is relatively small
compared with the transmitted data, similar to the previous
studies [12], [16], the downlink transmission delay is not
considered in this work.

III. MOBILITY MANAGEMENT SCHEME

Unmanaged mobility in the wireless environment causes
communication disruption while the UE moves around [17].
In the mobility management, handover allows the UE to link to
the target BS from the serving BS in a connected mode. In the
existing network, a handover procedure is triggered when the
RSS of the serving BS drops below a certain threshold than the
best available BS. However, in the MEC-enabled networks, as
BSs provide both communication and computation services,
using the same set of handover criteria may degrade the QoS.
In this section, we adapt the handover criteria to the MEC
scenario. As the whole system changes rapidly, an online
learning based mobility management scheme is proposed to
handle the uncertainties.

A. Mobility Management with Full Information

As BSs are densely deployed in a hot-spot area, UEs have
multiple choices to offload their tasks. If the UE can connect
to a BS whose edge server can complete the task rapidly when
compared with other available BSs, the task delay can be
reduced, as long as it is under the constraint of the total energy
budget. Thus, to fully utilize the advantages of MEC, the
handover trigger criteria should be adapted to MEC-enabled
networks. This motivated us to propose a simple but efficient

mobility management scheme if the accurate full network
information is available and can be synchronized in real time
as a benchmark.

Algorithm 1 Delay-Based Moblity Management Scheme
1: Initialize the UE connection state by associating the UE

to the BS with the strongest RSS;
2: for Time t = 1, . . . T do
3: if ∃ Task m then
4: Calculate the expected delay for each available BS

as in (9);
5: Select the BS with the shortest expected delay;
6: else
7: Select the BS with the strongest RSS in excess of

a certain threshold when compared with the serving
BS;

8: end if
9: end for

The delay-based mobility management scheme with full
information (DFI) is summarized in Algorithm 1, which can
be considered as a greedy optimization approach. Each UE is
initially connected to the BS with the strongest RSS. In each
time slot, each UE calculates the expected task delay based
on the task information, channel condition and BS workloads,
and then greedily chooses the BS with the shortest task delay.
If there is no task to offload, UE will choose the target BS
with the strongest RSS.

B. Mobility Management with Partial Information

The main challenges in the mobility management decision
making are the uncertainties of the whole network information
such as the BS workload and the future channel condition.
Even if the whole information is available, the rapid changes
are hard to be synchronized with UEs for decision making.
Our objective is to create an intelligent scheme that automati-
cally learns the handover strategy through trials and feedbacks
to shorten the latency only based on the local observations.
Learning-based algorithms, especially the reinforcement learn-
ing, can help users learn from the previous experience and
make decisions without the complete information. Q-learning,
a typical algorithm to identify the optimal action-selection
policy, is introduced to solve the cell selection problem with
partial information. Each UE interacts with the environment,
which conversely provides a reward, to learn how to take
actions in the specific state to maximize its reward.

The parameters of the Q-learning algorithm are defined as
follows:

1) Agent: The agent is UE i ∈ I who decides to select
the most appropriate BS to achieve the shortest task delay in
MEC.

2) State: The state is defined as S = {s = n × l | n ∈
N , l ∈ L}, jointly considering the serving BS n and the
current channel state l.



3) Action: The action, which is the target BS, is the
decision made by the agent. The set of actions per state is
defined as A = {a = n′|n′ ∈ N}. By taking action a ∈ A,
the agent transitions from the current state to the next state.

4) Reward: The reward for executing an action a in state
s is the task execution speed, which is defined as R(s, a) =
λm/DE

t,i,m.
At time t, UE i is in state st and takes an action at to

connect to BS n′ for task offloading. UE i thus observes the
throughput as the reward of taking action at in the current state
st and then updates the action-value accordingly. Therefore, at
time t, when visiting state-action pair (st, at), the action-value
function Q is then updated after observing the corrseponding
reward, which can be denoted as

Q(st, at) =(1− α)Q(st, at)

+ α
{
R(st, at) + γ

[
max
a′

Q(st+1, a
′)
]}

,
(13)

where α ∈ (0, 1] is the learning rate which determines to
what extent the recent observation overrides the experience,
and γ ∈ [0, 1] is the discount factor which denotes the effect
of the future reward on the current state value.

Algorithm 2 Q-Learning-Based Mobility Management
Scheme

1: Initialize action-value function Q(s, a)← 0.
2: Initialize state s by associating the UE to the BS with the

strongest RSS;
3: for Time t = 1, . . . T do
4: if ∃ Task m then
5: With probability ϵ select a random action at, other-

wise select action at = max
a

Q(st, a);
6: Execute action at, observe reward R(st, at) and

obtain the next state st+1;
7: Update action-value Q according to (13);
8: else
9: Select the BS with the strongest RSS in excess of

a certain threshold when compared with the serving
BS;

10: end if
11: end for

The proposed Q-learning based mobility management
scheme with partial information (QPI) is summarized in Algo-
rithm 2. The action-value function and each UE’s starting state
are first initialized. At the beginning, each UE is connected
to the BS with the strongest RSS. In each time slot, ϵ-
greedy policy is introduced to solve the trade-off between
exploitation and exploration where the UE keeps exploring
different BSs as well as trying to connect to the optimal
BS according to the experience. Each UE selects an action
between exploration (select a random action with a small
probability) and exploitation (select the best action in the
current state). Thus, UEs could not only adapt to the changes
of the system but also behave in an optimal way. Then, the

reward of the action is observed and the action-value function
is updated accordingly. If there is no task to offload, UEs will
choose the target BS with the strongest RSS.

In theory, Q-learning algorithm has been proven to con-
verge towards the optimum when the state-action pair is
infinitely visited and the learning rate is decreased to zero [18].
However, when UEs move to another BS, the environment
varies and Q-values need to be updated to keep up with the
dynamic system. In this case, the UE’s adaption to the system
also changes the system itself, which triggers other UEs to
readjust their strategies. This indicates that the estimation
is never completely convergent but continues to change in
response to the dynamic system, which is desirable in the
nonstationary system [19]. On the other hand, the exploration
step encourages the UE to select an action independently
of the state-action estimates, making it more flexible if an
alternative strategy appears.

IV. PERFORMANCE EVALUATION

In this section, extensive simulations are conducted to
evaluate the performance of the proposed scheme.

A. Simulation Setup
Considering an exhibition event scenario in Fig. 4, 4 BSs

are deployed in the hexagonal grid with radius 80 m and
350 UEs are moving around in between the BSs. Random
waypoint model is used as the UE mobility model with speed
v ∈ [0.2, 2.2] m/s, walk interval w ∈ [2,6] s, and pause interval
p ∈ [0,1] s. A typical computation-intensive application, face
recognition, is considered in this scenario, which requires
the comparison with a large database stored on the edge
server [20], [21]. Other simulation parameters are selected
based on [12], [16].

For comparisons, two other benchmarks are introduced to
evaluate the performance of the two proposed algorithms: 1)
RSS-based mobility management scheme with full informa-
tion (RFI): as shown in Fig. 5, when the UE moves from BS
1 to BS 2, the RSS from the serving BS (BS 1) decreases
and that from the target BS (BS 2) increases. Here, UEs
always connect to the best available BS based on the channel
condition; 2) Local task execution (LOC): UEs always execute
tasks locally and select BSs based on RSS.

B. BS-Side Performance Evaluation
From the BS’s point of view, the decision making of

different schemes has an impact on the workloads of each
BS. As shown in Fig. 6, the variance of the BS workload
is evaluated. A higher variance indicates the unbalanced
workload among different BSs. When more and more UEs
move towards a certain BS, the BS may be overload with RFI.
However, DFI shows the ability to balance the BS workload
because the UE with full system information always chooses
the BS which can complete the task as soon as possible.
Compared with DFI, QPI manifests the capability of handling
the system uncertainties with some learning loss. As executing
task locally does not affect the BS workload, LOC is not
evaluated in this performance metric.
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C. UE-Side Performance Evaluation

The impact of the task intensity on the average per-task
delay is shown in Fig. 7(a). The larger the task intensity is, the
more tasks generated by UEs, which indicates that the edge
server who helps offload tasks receives more task requests.
The average per-task delay in LOC remains constant, since the
UEs executing tasks locally are not affected by the edge server
and are limited by their local capacity which is assumed to be
stable in this case. Although a higher BS workload increases
the average per-task delay when more and more tasks are
offloaded to the edge server, in DFI, QPI and RFI, offloading
tasks to the edge server helps reduce the average per-task
delay when compared with LOC. On the other hand, both
the QPI algorithm and DFI algorithm perform better than RFI
by jointly considering the channel condition and computing
capacity. Moreover, the RFI algorithm is more sensitive to
the task intensity while QPI and DFI can balance the BS

workload effectively. That is, if all users select a BS which
provides the best wireless channel condition, the BS may be
overloaded and the tasks need to wait for a relatively long time
to be processed at the edge server. In addition, the channel
conditions become worse when more UEs get involved in
the network, thus increasing the data transmission time in
task offloading. What excels the QPI algorithm is that it does
not need to know the full system information and each UE
makes a decision based on their experience while observing
the reward as well as updating the experience.

The impact of the task intensity on the per-UE energy
consumption is shown in Fig. 7(b). With the increase of
the task intensity, the average per-UE energy consumption
increases. As the face recognition task is offloaded to the
edge server, the UE only needs to transmit the task to the
BS and waits until the task is accomplished. A high delay
aggravates the energy consumption. However, considering the



sharp difference when compared with LOC, the other three
schemes all maintain a relatively low energy consumption
level, where the proposed QFI scheme does not require any
prior knowledge of the system.

The impact of the task intensity on the handover frequency
is shown in Fig. 7(c). DFI and QPI are sensitive to the
disturbance of the system as the workload of the edge server
changes over time. With the increase of the task intensity,
handover frequency increases dramatically in DFI and QPI
because the UE always tries to connect with the BS that
completes the tasks earlier. RFI is quite stable because the
decision making is triggered based on the RSS, which mainly
depends on the relative location between the UE and the
BS, thus ignoring the BS workload. As LOC and RFI both
make a handover decision based on the RSS, their handover
performance stays the same.

The impact of three parameters, i.e., ϵ, γ and α, on Al-
gorithm 2 is shown in Fig. 8. The change of the energy
consumption is consistent with that of the task delay. As
shown in Fig. 8(a), the larger ϵ is, the higher the probability
that a UE randomly chooses a BS to fully explore the state
space is. When ϵ is 0 in QPI, the UE makes the decision
only based on the experience and takes the action with the
largest Q-values. However, excessive ϵ introduces a stronger
randomness. Thus there is a trade-off between the exploitation
and the exploration. Choosing an appropriate ϵ encourages
the UE to both explore the state space and try to connect to
the highest ranked BS according to the experience. As shown
in Fig. 8(b), a small discount factor γ makes the UE near-
sighted by only considering the current rewards, while with
the increase of γ, the UE values future rewards more than the
current rewards and strives for a long-term reward. Fig. 8(c)
evaluates the impact of learning times and learning rate. The
Q-values keep increasing and then become stable when the
UE interacts with the environment with more and more tasks.
Moreover, a higher learning rate α accelerates the learning
procedure as the UE learns more about the difference between
the recent observation and the experience.

V. CONCLUSION AND FUTURE WORK

In this paper, a Q-learning-based mobility management
scheme is proposed to tackle the challenges of mobility man-
agement in the MEC as the full system information changes
rapidly due to the user mobility. To handle the uncertainties
of the system information, UEs make decisions by interacting
with the environment and keep updating their experience
based on the observation of the task delay. Simulations show
that the proposed scheme is superior to the traditional RSS-
based mobility management scheme in reducing the task delay
while maintaining a relatively low energy consumption. For
the future work, experience replay and neural network can
be introduced to speed up the convergence and avoid bad
feedback loops. Moreover, this problem can also be addressed
in a more complex offloading scenario where multiple servers
help offload a task simultaneously when given a certain task
execution deadline constraint.
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