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Abstract—Ultra-dense networking (UDN) is a promising tech-
nology to improve the network capacity in the next-generation
mobile communication system. However, it brings in some new
challenges to mobility management due to the frequent handovers
and heavy signaling overhead. The problem becomes severe
for vehicles owing to their fast moving speed, making it more
sensitive to the handover delay with reactive handover decision.
In this paper, driven by a real-world vehicle mobility dataset, we
propose a proactive mobility management solution based on the
virtual cell technique for vehicles. Assisted by a trajectory pre-
diction framework based on the long short-term memory neural
network, four function modules are designed in the centralized
Software-Defined Networking controller to support the proactive
solution. The corresponding signaling procedure is then carefully
designed, working with virtual cells to reduce the signaling cost.
The prediction framework can achieve satisfactory performance
of predicting the next location. The proposed proactive solution
eliminates the handover delay and reduces the handover signaling
cost by 35% compared with the reactive approach.

Index Terms—Proactive mobility management, LSTM, trajec-
tory prediction, signaling procedure, virtual cells, UDN

1. INTRODUCTION

Ultra-dense networking (UDN) is considered as a pillar
technology for the next-generation mobile communication
system to enhance the system capacity in hotspots [1]. How-
ever, mobility management becomes more complex because
of the ultra-dense and irregular deployment of the next-
generation NodeBs, i.e., gNBs. Handover happens frequently,
and a coordinated multi-cell transmission scheme has been
proposed to solve this problem [2]. Users can receive data
from multiple gNBs as if there is a virtual cell around
them [3]. The complex signaling interactions introduced by
virtual cells deteriorate mobility management. The Software-
Defined Networking (SDN) technology provides an innovation
enabler [4]. The logically centralized SDN controller maintains
a global view of the network and makes it more flexible [5].
Mobility management based on SDN-enabled virtual cells
becomes a hot research topic in UDN.

In the existing works, mobility enhancements based on
virtual cells were proposed, which are assisted by anchor
base stations in the heterogeneous network [6], [7]. Some
researches look at mobility management based on an archi-
tecture integrating the virtual cell technique and SDN [8],
[9], which mainly focused on pedestrians. There are many
bicycles, buses, and vehicles loaded with passengers in UDN.
Other researches proposed the realizations of virtual cells con-
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sidering vehicles-to-infrastructure communications [10], [11].
However, the formation of virtual cells is still reactive, i.e.,
gNBs form a virtual cell centering at the current location
of the vehicle. Besides, they did not provide a complete
mobility management solution for virtual cells. In the tra-
ditional reactive method, the selected gNBs start to provide
services after the measurement, decision and signaling inter-
action procedures. Unfortunately, the new gNBs may become
invalid soon because of the high-speed movement of cars and
dense deployment of the gNBs. It will result in more useless
handovers, and the increased handover signaling cost is a
heavy burden for the network manager.

The mobility pattern of users can be predicted efficiently
with the development of machine learning [12]. If we can start
the handover preparation in advance and reasonably select the
serving gNBs according to the predicted next location, we can
reduce the frequent handover and the signaling cost. Therefore,
we propose a proactive mobility management solution based
on virtual cells in this paper. First, we propose a prediction
framework based on the long short-term memory (LSTM)
neural network to predict the trajectory of moving vehicles
with a data-driven approach. Next, we design four function
modules for the SDN controller to measure the quality of
gNBs and build virtual cells in advance based on the predicted
next location of vehicles. It eliminates the handover delay by
starting the handover procedure before users reach the next
location. Then, we carefully design the signaling procedure
based on our virtual cell construction. The advantages of the
virtual cell architecture and the optimized signaling procedure
greatly reduce the signaling overhead in the mobility man-
agement process. The proposed solution reduces the handover
signaling cost by 35% compared with the reactive approach.

The rest of the paper is organized as follows: the system
model in Section II, our proactive mobility management solu-
tion in Section I1I, the analysis in Section I'V, numerical results
in Section V, and the conclusion in Section VI.

I1. SYSTEM MODEL
In this section, we describe the system model and as-
sumptions. As shown in Fig. I, the considered area with
radius R is covered by a centralized SDN controller and
it manages all gNBs. The virtual cell of user j is de-

signed as a circular area around the user with radius D,
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Fig. 1: The network architecture

location of gNB ¢ and user j, respectively. The gNBs with the
OpenFlow protocol are distributed with a stationary Poisson
Point Process (PPP) ® g of density Ayng. hij = mf-f.j is
the channel gain for user j from gNB i with the corresponding
path-loss l;; = |z; —z;|™%, and @ > 2 is the path-loss
exponent. Assuming a Rayleigh fading environment, {f;;}
are independently and identically distributed (i.i.d) complex
Gaussian random variables with zero mean and unit variance.
Each channel is estimated independently.

The non-coherent joint transmission (NCJT) mechanism is
used to construct virtual cells in this paper. All active gNBs in
a virtual cell create a composite channel by NCIT to provide
services for the user. The reference signal received power
(RSRP) of active gNBs needs to be larger than a threshold T'.
The indicator a"‘}i € {0, 1} reflects whether gNB i is activated.
fr}}” = 1 means active, and nf",’; = 0 is inactive. ia, is the
resource allocation scheme. ia; means the resource allocated
for NCIT cannot be reused by other inactive gNBs in a virtual
cell. ias is a reuse scheme. The optimal D, T, and ia, are
determined in [13]. We consider the channel estimation error
due to imperfect channel state information (CSI) as a new
interference source, and it cannot be ignored. Therefore, the
aggregate interference mainly includes three categories. The
first is the interference caused by inactive gNBs in a virtual cell
when the resource allocation scheme is ia-. It is noticed that it
is zero when the resource allocation scheme is ¢a;. The second
is the interference caused by gNBs outside a virtual cell. The
third is the residual interference caused by the imperfect CSIL.

S; denotes the transmission signal to user j, o3pysp 4 1S the
minimum mean-square error of the i-th channel estimate for
the j-th user, and n; is the corresponding complex Gaussian
noise with zero mean and variance 2. The received signal at
user j is given by
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For pilot-based channel estimation, ""K-IMSE.-;'_-;' has the simi-
lar form with [14]. Ny is the total number of pilot resource

blocks dedicated to channel state estimation.
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The signal-to-interference-plus-noise ratio (SINR) at user j
is shown as

D itV (1 — omumsEij°) |hij) ay:

SINR = T
Iosi+ 1.+ Ie + /r,-

y 3

where Icgr is the residual interference due to imperfect CSI,
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I, is the interference caused by inactive gNBs in a virtual cell
when ia,=taz, which is

Y byl (1 = a.j‘?) . (5)

iEP NNV

Ii=

I is the interference caused by gNBs outside a virtual cell,
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and 7 is the signal-to-noise ratio.

II1. PROACTIVE MOBILITY MANAGEMENT

In the proactive mobility management solution, the serving
base station of a user is a virtual cell, i.e., a cluster of active
gNBs in the virtual cell area. It is quite different from the
reactive approach, and we need to redefine the definition of
handover. In the proposed solution, a handover is a change of
the activation list of gNBs. When a user moves, the coverage
of its virtual cell changes but the activation list may not. The
benefit of this definition is to avoid useless handover and
reduce handover frequency. If we have an accurate prediction
of a user’s trajectory, the SDN controller can obtain an optimal
activation list of gNBs and start the signaling procedure of
handover in advance. It will greatly reduce handover delay
and improve the efficiency of handover. The proactive mo-
bility management solution consists of three aspects: 1) the
framework of trajectory prediction; 2) the design of function
modules in the SDN controller; 3) the handover signaling
procedure.

A. Framework of trajectory prediction

LSTM network is a kind of recurrent neural network (RNN).
It is well-suited for classifying and making predictions based
on time series data [15]. In this section, we build a prediction
framework based on LSTM to infer the next location of taxis
by their partial historical trajectories. The prediction will use
the real dataset of taxi rides in Rome, Italy.
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Fig. 2: Predicted trajectories

1) Dataset: The Mobility Traces of Rome Taxi Cabs
dataset contains the GPS coordinates of approximately 320
taxis collected over 30 days. We randomly choose ten taxis
(ID =2, 17, 39, 55, 68, 87, 139, 196, 222, and 361) and use
the following features as the inputs of our framework.

o Taxi ID: It contains a unique identifier for each taxi
driver;

« Location: It contains a list of GPS coordinates of each
taxi every 15 s,

2) Prediction framework: We establish a three-layer LSTM
neural network with the first layer of 20 neurons, the second
layer of 50 neurons, and a dense layer. A moving window with
19 records is used to predict the location of a taxi in the next
time slot. These optimized parameters are selected with a grid
search. We create two data sequences (coordinates: longitudes
and latitudes) and use them as the input of the framework
to predict the next location and distance. The first layer will
return the results one by one to the next layer as training data.
In the second layer, the first 18 values pass their output values
to the layer itself, as the input value for the next operation.
However, for the 19th input, the second layer passes its output
to the next dense layer. Then the dense layer uses the real value
for loss calculation and optimization.

Mean Haversine Distance (MHD) is introduced as the
evaluation metric of the prediction performance. The distance
d between two points is based on their latitude and longitude,
which can be computed as [16]

: ) , (7)
1—p

Ay — )\1)
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(8)
where ¢ is the latitude, A is the longitude, and r is the Earth’s
radius, i.e., 6,371 km.

However, the prediction errors with coordinate itself far
exceed the average coverage of a gNB (radius=0.043 km).
This cannot provide meaningful assistance for the proactive
mobility management. Therefore, we add a data sequence of
distances between two coordinates to assist the prediction and
improve the accuracy. First, we extract the angle information
between the current location and the predicted location. Then,
we combine the extracted angle information with the predicted
distance to generate a new prediction.

d =2 x r x arctan (

o o
p = sin® (%) + cos(¢1) cos(¢pg) sin” (

In Fig. 2, taking taxi 2 as an example, MHD using the
original prediction method is 0.256 km. After considering the
distance and angle information, MHD is reduced by 45%.
MHD with the proposed method is about 0.1 km on average.
From the above results, we can see that our prediction frame-
work has improved the performance by adding the sequence
of distances as well as the angle information.

B. Function modules in the SDN controller

In this paper, the SDN controller has four function mod-
ules for proactive mobility management. It is in charge of
measuring the quality of gNBs, building virtual cells, making
activation decision, and executing the handover process. The
main function modules of proactive mobility management in
the SDN controller include the following aspects.

1) Measurement control: In the measurement control mod-
ule, the controller needs to determine measurement parame-
ters, such as the measurement period, region, and report.

(i) Measurement period: Let B = 10% denote the maximal
outage probability. The probability of SINR < g is
approximately near zero in the virtual cell region. So,
we choose the mean residence time of a virtual cell as
the maximum 7. According to [17], the crossing rate of
a gNB area for a moving user is derived as

» 2v

TgNB = \/ﬁr
where a is the circle coverage of a gNB and v is the
speed with an average of 11.12 m/s. The mean residence
time of the area is: E[t] = ﬁ When D = 122 m,
the minimal E[t] = 17.22 s, which is larger than the
prediction period 15 s. Thus, we set the maximum 7. to
be 15 s. T, not only affects the signaling cost, but also has
a great influence on the transmission capacity. Function
@ is designed to choose the optimal 7., which aims to
balance the trade-off between these two metrics.

; ST:I - ST.) (CT:] — CT )
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where £ and g are the impact factors of signaling cost
and transmission capacity, respectively.

(i1) Measurement region: In order to build the next virtual cell
ahead of time, we need to measure the potential serving
gNBs in advance. The next location of a user at next T, is
predicted by our framework. In our previous work [13],
we obtained the optimal radius D of virtual cells.

(iii) Measurement report: The measurement report includes
the state information (RSRPs) of all gNBs in the mea-
surement region and the state information (locations and
traffic loads) of users.

2) Activation control: The SDN controller updates the list
of active gNBs periodically. The user compares the new list
with the old one and divides its active gNBs into three classes:
new gNBs, old gNBs, and ongoing gNBs. The old gNBs
will just transfer the buffered data packet and then release
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Fig. 3: Proactive handover signaling procedure

all resources. The new ones will synchronize with the user.
The ongoing gNBs maintain their transmissions.

3) Admission control: The SDN controller determines the
list of active gNBs. Then, the controller executes the admission
control to avoid overload. If the traffic load of a gNB exceeds
a threshold, the controller will remove it from the list. The
next available gNB will take its place.

4) Handover control: When the SDN controller updates
the list of active gNBs, the process of handover is triggered.
However, the controller still needs to wait a lime-to-trigger
(TTT) time to deliver the new list to a user. T}y is the time
of a handover procedure by the proactive solution and its value
is defined by (13). Every list has its TTT, and

TTT =T} — Tyror (11)

C. Handover signaling procedure

We design a handover signaling procedure to support our
proactive mobility management solution in this section. We
show the main steps of the process in Fig. 3.

Step 1: The SDN controller executes the module of mea-
surement control. It determines the measurement period and
measurement region. Then, the controller sends a measurement
request periodically to a user.

Step 2: The user receives the measurement request and
measures the states of gNBs. Then, it creates a measurement
report and sends it to the controller.

Step 3: The SDN controller executes the modules of ac-
tivation control and admission control. Then, it updates the
activation list of gNBs and triggers the handover control. After
a TTT time, the controller sends the new list to the user.

Step 4: The user receives the activation list and divides
the current active gNBs into three classes mentioned above.

Then, it sends connection requests and release requests simul-
taneously to new gNBs and old gNBs, respectively.

Step 5: The new gNBs which receive the activation request
send connection requests to the OpenFlow switch. At the same
time, the old gNBs which receive the release requests send
release requests to the switch.

Step 6: The OpenFlow switch respectively sends connection
replies and release replies to gNBs.

Step 7: The new gNBs build connections with the user
and transfer the data. Then, they send connection acknowl-
edgments (ACKSs) to the user. Simultaneously, the old gNBs
detach data paths. Then, they release ACKs to the user. The
ongoing gNBs transfer the buffered data continuously.

Our proposed proactive solution will be compared with the
reactive solution [8], in which a reactive handover signaling
procedure is provided.

IV. PERFORMANCE METRICS

As a user moves, the activation list of gNBs will change.
At this point, the SDN controller needs to perform the cor-
responding signaling to complete the handover. We define a
handover cost S to evaluate the signaling overhead. Besides,
we use the handover failure rate (HFR) to reflect the manage-
ment efficiency of different solutions.

A. Handover cost S8

The handover cost S is the transmission and processing time
of handover in the whole simulation area. In other words, it is
the number of handovers Npandover in the simulation area for
a typical user multiplied by the time for a handover process.

S=F [Nha,udovcr] x T1 “2)

where 7T is the time of transmission and processing latency in
a handover process. From Fig, 3 and [8], we obtain T, and
T\ea separately.

TDI’O = 4TOF—Swit.ch + 8‘PgN["s = SPSD.\'——Contrullcr‘ (1 3)

Treu = 4T()i-"—E'-iwilch + 13Pg1\8 + QPSDN—("-mII.ru]Iera (14)
where Top_switel, 18 @ transmission latency between gNB and
the OpenFlow-enabled switch, Peng is the processing latency
at the gNBs, and Pspn_controller 18 the latency at the SDN
controller. Nyandover 18 the number of handovers within the
simulation area, i.e., the number of times of a mobile user
crossing a particular gNB in the simulation area within the
time interval between the data packet sessions. It is given by

. 1
E [Nhandover] = YgNB X — XD {]5)

As

where vgng is the border crossing rate of a gNB for a user
and is obtained by (9). 5 is the Poisson session arrival rate.
With the density of gNBs A,np, we can rewrite (9) as

o _21’\/)@
ENB = ma Jr

(16)



p is the handover probability within the simulation area and
is given by
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The ongoing activation list at two adjacent T. may not
change. T}, and Tie, are the maximal numbers of handovers.
Thus, the handover signaling overhead S, and Sy, are also
the upper limit of the signaling overhead.

B. Handover failure rate

The handover failure occurs when the user equipment does
not have sufficient capacity of the current serving cells. Let
C and C,oq = wCyys denote the received capacity from the
current virtual cell and the required capacity for a successful
handover, respectively. w € (/3,1] is the proportion of Cieq in
the average system capacity Csys, which can be calculated as

Csys = E [log, (1 + SINR)]

= (20
= [5° (SINR > 27 —1)dr. )
Handover failure happens when
— <1-4. 21
Crcq { )

In this work, we do not differentiate when the handover failure
occurs. The handover failure rate (HFR) is calculated as

# of handover failures

HFR = (22)

# of handovers
V. NUMERICAL RESULTS

In this section, our proposed proactive mobility management
solution is compared with the reactive one, which is the base-
line. The resource allocation scheme is ¢a;. Other simulation
parameters are shown in Table L.

TABLE I: System parameters in the simulation

Parameter Value | Parameter Value

R 6 km AgNB 174 /lkm?
D 0.122 km A | session/s

-Npi]ot 92 C-‘sys 4.6 bps/Hz
@ 4 TO F—=Switch I ms ["‘]
n 162 Pyng 4ms [18]
4 0 dBm PspN-controller 3 ms [18]
w 0.5

A. The optimal measurement period T,

From the analysis in the previous section, the maximal T,
is 15 s. The largest T, greatly reduces the signaling cost. It
is straightforward for this relationship. When T, is large, it
means that we do not need to make handover decisions very
often, and the number of handovers is naturally reduced. The
handover signaling cost S is reduced as well.

However, a large 7. does not always bring benefits. As
shown in Fig. 4, taking taxi 2 as an example, the system
capacities under different speeds of the vehicle are investi-
gated. When v = 0.01 m/s, the vehicle is nearly stationary.
T, does not affect the system capacity. With a speed of 10.93
m/s and the increase of T, after slightly fluctuating between
4 bps/Hz and 5 bps/Hz, the capacity continuously decreases.
The capacity loss between T, = 8 s and 10 s is 50%. Under the
high speed, the capacities dramatically dropped by 85% when
T, increases to 5 s. It is obvious that the QoS requirements
cannot be guaranteed when we choose a large T,.

We consider not only the gains of signaling cost but also
the loss of capacity. Thus, we need to find an optimal T,
to balance the signaling cost gains and capacity loss. The
proactive solution needs to guarantee the performance of taxis,
especially when they are under the high mobility. Let £ = p.
Under the high mobility, i.e., v = 38.24 m/s, the optimal T,
is 3 s, which is the default in the sequel as shown in Fig. 5.

B. Handover performance

1) Signaling cost: According to (19), handover signaling
cost S is affected by both the number of handovers and
the handover execution time. When comparing the handover
signaling procedure of the proposed proactive and existing
reactive solutions, our approach simultaneously executes the
process of activating new gNBs and releasing old gNBs (step
4, 5, 6, and 7 in Fig. 3). Thus, T}, can save 17% in
handover execution time when compared with Ty, = 0.098
s. The proactive solution also helps reduce frequent handovers
by accuracy trajectory prediction. Therefore, the proposed
solution can efficiently decrease the handover cost as shown in
Fig. 6. We classify the trajectories of all taxis into four patterns
according to their characteristics, i.e., traveling in straight lines
(P1), making turns (P2), making U-turns (P3) and circling
around (P4). In the same duration (450 s), the cumulative
handover signaling costs of the two solutions decrease from
Pl to P4. As the areas taxis passing through shrink, fewer
handovers and signaling costs are needed. On the other hand,
the gaps between two solutions also decrease from P1 to P4,
e, 2.28, 2.11, 1.63, and 1.62 s. The trajectory prediction
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accuracy decreases when taxis make more turns, thus resulting
in the performance degradation in the proactive solution.
Nevertheless, under different mobility patterns, the signaling
cost can be efficiently reduced in the proactive approach. This
manifests the robustness of the proposed solution.

2) HFR: Fig. 7 shows the relationship between HFR and
the pre-defined capacity threshold 1 — 4. A small ¢ indicates
that the current capacity should be large enough to guarantee
a successful handover. Thus, with the increase of d, the
requirement relaxes and thus HFR decreases. The proactive
solution takes advantage of trajectory prediction in advance,
thus leading to a lower HFR which is reduced by 2%.
In addition, prediction deviation in the proposed proactive
solution also results in a lower capacity at certain places
especially when taxis change their direction sharply. However,
the two solutions perform similarly with the difference of
only 0.19%. The proposed solution provides an acceptable
HFR while bringing gains in the handover delay and signaling
overhead,

VI. CONCLUSION

UDN has been a promising direction of network infrastruc-
ture densification in the next-generation mobile communica-
tion system. However, the ultra-dense deployment of gNBs
brings a huge challenge in mobility management, especially
for vehicles. In this paper, we proposed a proactive mobility
management solution based on the virtual cell technique. The
SDN-enabled controller proactively measures the quality of
gNBs assisted by the trajectory prediction with a data-driven
approach. The corresponding signaling procedure is designed
to support the proposed proactive management. Simulation
results showed that the proposed solution can greatly de-
crease the handover delay and handover signaling cost when
compared with the reactive approach. In the future work, we
will further consider improving the accuracy of the trajectory
prediction.
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