
Learning-based Cooperative Sound Event Detection
with Edge Computing

Jingrong Wang†, Kaiyang Liu†∗, George Tzanetakis†, Jianping Pan†
†Department of Computer Science, University of Victoria, Victoria, Canada

∗School of Information Science and Engineering, Central South University, Changsha, China
Email: {jingrongwang, liukaiyang, pan}@uvic.ca, gtzan@cs.uvic.ca

Abstract—In this paper, we propose a novel real-time sound
event detection framework, which combines multi-label learning
and edge computing, to classify and localize abnormal sound
events for city surveillance. Multiple devices equipped with
acoustic sensors are deployed to collect the audio information. A
learning-based approach is introduced to address the difficulties
of accurately classifying the temporally overlapping acoustic
events in a noisy environment. Then, edge computing is adopted
to handle the high processing complexity of the learned analytics.
Computation-intensive tasks of classification and localization
can be offloaded to the nearby edge server for low-latency
sound detection. An ensemble-based cooperative decision-making
algorithm is also presented to aggregate the information from
distributed devices in order to obtain better classification results.
Extensive evaluations show the effectiveness of edge computing
which helps reduce the time latency as well as the superiority of
cooperative post-processing on the edge server to obtain a high
accuracy.

Index Terms—Sound event detection, cooperative processing,
edge computing, audio classification, deep learning

I. INTRODUCTION

City security has been an important concern due to the
violent crimes and especially gun violence. In 2017, there
were more than six thousand shootings reported and confirmed
in the US [1]. Traditional alarm process consists of an
incoming call, security notification, finding cameras nearby
and starting an investigation, which delays the response time
to gun violence incidents. Compared to video surveillance
which is not sensitive to abnormal sounds and is limited by
blind areas, sound event detection has been utilized in recent
years for city surveillance.

In a complex auditory environment, multiple sound events
may be temporally overlapping. To detect these sound events,
deep learning is widely used to provide intelligent detection
analytics. In most of the existing work, end devices equipped
with acoustic sensors keep streaming the audio to the applica-
tions for processing, which can be run locally or remotely [2].
Applications such as Google Translate choose to compress
the deep learning algorithms and execute the task locally,
i.e., run on the front-end devices. However, this approach
may fail to meet the requirements of the processing latency
and classification accuracy. Furthermore, it also incurs a high
energy consumption when continuously running for a long
time [3]. On the other hand, interactive smart assistants such
as Apple Siri and Microsoft Cortana send the raw input data

to the remote cloud for storage, processing and analysis. The
limitation of this approach is that the performance will be
severely affected by the network conditions and may lead to
a high latency due to the transmission congestion or limited
bandwidth [4].

The front-end devices often have limited computation capa-
bilities, whereas utilizing the cloud may incur high communi-
cation latencies. To cope with these challenges, edge comput-
ing is considered as a promising solution for delay-sensitive
computation-intensive services. It enhances and extends the
cloud services at the edge of the network. More specifically,
edge computing deploys computation capacity closer to where
the data are captured and generated. This meets the real-time
processing requirements of abnormal sound event detection.

In this paper, a learning-based sound event detection frame-
work is proposed to classify and localize abnormal events
in real time. It utilizes edge servers to help offload the
computation-intensive tasks. The extracted audio features are
fed into a frame-level deep neural network for sound event
classification. The evaluation shows that the classification
results from various acoustic devices are biased due to the
different distances of the sound propagation. An ensemble-
based algorithm is deployed on the edge server for cooperative
classification, which combines the information aggregated
from multiple acoustic devices to obtain an accurate result.
Then, we formulate the sound source localization problem
with the time difference of arrival (TDOA) and solve it by the
least-squares minimization method. The main contributions of
this paper are as follows:

• Leveraging edge computing, a learning-based sound
event detection framework is proposed to classify and
localize abnormal sounds in real time.

• Ensemble learning is employed to improve the classifi-
cation accuracy.

• Extensive evaluations show that the performance of
the latency and the detection accuracy are considerably
improved by 64% and 48%, respectively.

The remainder of this paper is structured as follows. The
related work is introduced in Section II. The system model is
presented in Section III. The algorithms for sound classifica-
tion and source localization are proposed in Section IV. The
setup and the performance evaluation are analyzed in Section

978-1-5386-6808-5/18/$31.00 c©2018 IEEE

End
Devices

Edge Server Core Network

Figure 1. Abnormal sound detection in edge computing.

V. Section VI concludes the paper and puts forward some
future work.

II. RELATED WORK

A. Audio Analysis

In the audio analysis, classifiers are trained to differentiate
sounds by utilizing extracted features such as Mel-Frequency
Cepstral Coefficients (MFCC) and spectral centroid [5]. Guo
et al. [6] trained support vector machines (SVMs) to classify
the acoustic events and achieved a lower error rate when com-
pared with nearest neighbor (NN), k-NN and nearest center.
Clavel et al. [7] built Gaussian mixture models (GMMs) for
each sound class based on MFCC extracted from the audio
and selected the sound class with the highest Maximum A
Posteriori (MAP) score as the classification result. Heittola
et al. [8] modeled feature distributions as continuous-density
hidden Markov models (HMMs) by recognizing the context
and utilizing the specific context information. However, in a
noisy environment, the traditional methods are not accurate
enough to detect temporally overlapping sound events.

To address this problem, deep learning approaches are
widely used in sound event detection. Cakir et al. [9] trained
multi-label deep feed-forward neural networks (DNNs) with
frame-wise spectral-domain features in polyphonic sound
event classification and showed that their approach outper-
forms the more traditional HMM. Hershey et al. [10] classified
the sounds through convolutional neural networks (CNNs) in
which common structures can be efficiently captured by the
convolutional units. To reduce the classification error rate, Xu
et al. [11] proposed a convolutional gated recurrent neural
network (CGRNN) leveraging the capability of recurrent units
to learn long-term sound patterns. Similar to the approaches
mentioned above, deep learning is used in our work for sound
detection. Although learning-based approaches obtain high
accuracies, they are computation-intensive and require high
CPU and memory cost. The main challenge we tackle in this
work is how to provide low latency for audio stream analysis
while maintaining high classification accuracy.

B. Task Offloading and Edge Computing

Edge computing has been an effective solution to reduce
the latency of computation-intensive applications. Noble et
al. [12] showed its potential by offloading the speech recog-
nition task to a resource-limited mobile device. The client
can either recognize the utterance locally or send it to the
remote server equipped with a speech recognition system
based on HMM. Hu et al. [13] evaluated the performance
of edge computing over both Wi-Fi and LTE with three
statically pre-partitioned applications, i.e., face recognition,
augmented reality and fluid simulation. The results showed
that compared to local execution, offloading the task to a
nearby computation node significantly reduced the response
time and energy consumption. Ran et al. [3] designed an
offloading framework to run deep learning algorithms for
video object recognition. The task can be executed on front-
end devices or the remote cloud based on the client-side
decisions. However, the extra transmission delay may lead
to data staleness in real-time processing, decreasing the
accuracy of object recognition. Wang et al. [14] addressed the
computation-intensive transcoding with edge computing and
proposed an adaptive wireless video transcoding framework.
The source video stream only needs to be sent to the
edge server once and the edge server can transcode videos
according to the requests.

Similar to the literature, we leverage the emerging edge
computing for intensive computation and communication in
the learning-based audio analysis. In contrast to the multi-
media applications mentioned above, real-time sound event
detection highlights the similarity of the audio recordings
captured by nearby acoustic devices. Considering the high
computation capability, edge computing has a natural advan-
tage in cooperative processing and thus provides a quick and
precise response to the abnormal sound. In this paper, we
focus on the learning-based sound event detection that takes
advantage of edge computing. A cooperative post-processing
step on the edge server based on an ensemble approach is
proposed.

III. SYSTEM MODEL

In this section, the system architecture followed by the
communication and computation model is introduced.

A. System Architecture

The system model for abnormal sound detection in edge
computing is illustrated in Fig. 1. Front-end acoustic devices
N = {1, 2, ..., N} equipped with a microphone and limited
computation capabilities are deployed to capture and detect the
abnormal sound in real time with machine learning algorithms.
The devices can access the edge server through a wireless base
station (BS) and then a wired connection [15]. In distributed
audio acquisition scenarios, we assume that the devices can
communicate with each other. The devices can either process
the data locally or offload the task to the edge server. The edge
server has higher computation capabilities and thus provides
low-latency services.

(a) Spectrogram (b) Mel spectrogram (c) Log-scale mel spectrogram

Figure 2. Audio feature extraction.

B. Communication Model
The surveillance devices keep detecting the environment

and sending the data to the edge server. The received signal
strength (in dBm) for BS from device n ∈ N can be calculated
based on the path loss model, which is expressed as [16]

Pn = PTX − PLn −Xσ1 , (1)

where PTX (in dBm) is the transmitted power of device n.
For simplicity, we assume that all devices have the same
transmission power, Xσ1

denotes the shadowing fading (in
dB) subject to the Gaussian distribution with zero mean and
standard deviation σ1, and PLn denotes the path loss (in dB)
between device n and the BS

PLn = PL(d0) + 10θ log

(
dn
d0

)
, (2)

where dn (in m) ≥ d0 is the distance between them, θ is the
path loss exponent, and d0 is the reference distance for the
antenna far-field propagation effect.

Based on Shannon’s Theory, the maximum uplink transmis-
sion rate for device n can be calculated as

γTXn =W log2(1 +
10Pn/10

In +N0
), (3)

where W is the channel bandwidth, N0 is the noise power
and In is the interference signal from other devices within
the radius r when transmitting simultaneously

In =

N∑
n′=1

10Pn′/10, n′ 6= n, n′ ∈ N . (4)

In the transport layer, UDP is used for communication.
Compared to TCP which requires a 3-way handshake and is
suitable for delay-tolerant applications, UDP is more suitable
for applications that are delay-sensitive.

C. Computation Model
Three different modes can be used to process the data:

1) each device classifies the sound event individually and
localizes the sound source after communicating with other
devices, 2) the data gathered by multiple end devices are sent
to the edge server for processing, and 3) the BS is treated
as a relay to send the data to the cloud for classification and
localization.

1) Local task execution: The local task execution time is
denoted as

DLP =
C

f
, (5)

where C is the computation cycles of the task and f is a
default set of the allocated computation speeds in terms of
cycles per second for all devices. Therefore, the total response
time of local execution on device n is

DL = DS +DLP, (6)

where DS is the sound travel time determined by the sound
speed and the distance between the sound source and the end
device. The cost for synchronization among sensors is ignored
due to the relatively small data size.

2) Task execution on the edge server: In this mode, the
end device needs to transmit the data to the edge server. The
transmission delay of the task is given by

DTX =
D

γTX
, (7)

where D is the data size transmitted to the edge server and
γTX is the data transmission rate.

The computation delay of the task executed at the edge
server consists of the time for both classification and local-
ization, which is computed as

DEP = η
C

λf
, (8)

where η is the computational gain when compared with
the first-come-first-serve sequential approach [17], λ is the
computation capability ratio between the edge server and the
end device, and λf is the allocated computation speeds for
the task on the edge server.

Thus, the overall response time of executing the task at the
edge service DE consists of the sound travel, transmission and
computation delay

DE = DS +DTX +DEP. (9)

3) Task execution on the cloud server: The latency in the
core network is given by

DI = DQ +DR, (10)

where DQ is the queueing delay in the BS and DR = D
γI

is the transmission delay in the core network. γI denotes the
transmission rate in the core network.

As the computation capability in the cloud could be more
powerful, we assume the computation capability ratio between
the cloud and the edge is µ. The total response time in cloud
computing is expressed as

DC = DS +DTX +DI +DCP, (11)

where DCP = DEP/µ.
For all three modes, considering the relatively small data

size of the detection results, similar to the previous stud-
ies [18], the response time of reporting the result is not
considered in this work.

IV. SOUND EVENT DETECTION

A. Sound Event Classification

1) Dataset: The Google AudioSet [19] used in this work
consists of 2.1 million 10-second audio excerpts that are
collected from YouTube videos, providing large-scale eval-
uation tasks for the sound event detection. There exist 632
human-labeled sound event classes covering numerous human
sounds, daily environmental sounds and abnormal sounds such
as fusillade, gunfire, explosion and fire alarm. The balanced
dataset provided by Google contains the segments of each
class with at least 59 examples. Therefore, the unbalanced
dataset contains the remainder of the dataset. The Google
Audioset provides audio features extracted from the video and
describes YouTube video with video ID, start time, end time
and its corresponding labels. Audio features are extracted by
the VGG acoustic model [10] and the labels of sound classes
are mapped to integers.

2) Feature extraction: The features used for sound event
detection are vectors in a 128-dimensional space. The audio
is first divided into non-overlapping frames with a default
length of 960 ms. As shown in Fig. 2(a), the spectrogram
is then calculated by a Short-time Fourier Transform with a
periodic Hann window. The window size is 25 ms and the
window hop is 10 ms. To obtain a mel spectrogram shown in
Fig. 2(b), the spectrogram is mapped to 64 mel-bins, which
varies from 125Hz to 7500 Hz. After taking a logarithm 1,
the resulting log-mel spectrogram contains 96 × 64 bins. A
batch of 128 patches is randomly sampled from all patches,
which constitute the input of the classifier.

3) Algorithm: As shown in Fig. 3, Deep Bag-of-Frames
(DBoF) is proposed in YouTube-8M model to classify and
determine different sounds [20].

The 128-dimensional frame-level features as the input
extracted above are first projected onto a higher dimensional
space through a fully connected layer with shared parameters.

1To avoid the logarithm of zero, 0.01 is added in the VGG model.

Frame-level
Features

Up-projection
Layer

Pooling Classifier

Figure 3. The network architecture of the DBoF [20].

Then, a pooling layer converts the frame-level sparse codes
into a video-level representation. It aggregates the codes of
the all frames into a single fixed-length video representation.
Next, max pooling is used to perform the aggregation where
the score for each class is the maximum value across all
classifiers. To improve the stability and speed up convergence,
a batch normalization layer is used before pooling. Last, the
obtained fixed length descriptor of the audio is fed into a
few hidden layers, and a classification layer provides the final
video-level predictions.

B. Sound Source Localization

Considering the sound propagation model, the spreading
loss model is applied in this work. The equation to compare
the sound pressure levels at two different locations is

Lp1 − Lp2 = 20 log(
r1
r2

), (12)

where Lp is the sound pressure level (dB re 2×10−5 N/m2).
This means doubling the distance from the source, e.g., r2 =
2r1, corresponds to a loss of 6 dB.

The travel time of emitting the sound signals helps to
estimate relative distances between the acoustic devices and
the sound source. The TDOA at multiple reference devices can
be used as the positioning parameter to measure the distances
between the sound source and multiple reference devices [21].
It does not require the absolute time and the special type
of antennas, showing the superiority to the time of arrival
method and the direction of arrival method. A hyperbola is
generated between the two acoustic devices by a particular
TDOA information on which the sound source may exist.
The location of the sound source is in the intersection of
all hyperbolas. Thus, the problem is defined as a localization
problem which finds the location of sound events in the
environment detected by these end devices. When all data
aggregated from the end devices are sent to the server, the
server can find the time difference among the audio data
through the filter and pick the peak with Fourier transform.
A general assumption is that the correspondence between
different sound events can be captured as long as there exist
sufficiently long time gaps between any two sound events.

Let X denote the location of end devices. A is the location
of sound events and T is the emission time for the sound
signals, which can be defined as follows

X =

x1 y1
x2 y2
...

...
xN yN

 , A =

a1 b1
a2 b2
...

...
aM bM

 , T =

t1
t2
...
tM

 . (13)

We assume that the locations of N end devices are already
known, and the locations of M sound events and the corre-
sponding emission time for the sound signals are unknown.
Then, the detection time of the sound events by the individual
end devices are expressed as

D =

d1,1 d1,2 · · · d1,M
d2,1 d2,2 · · · d2,M

...
...

. . .
...

dN,1 dN,2 · · · dN,M

. (14)

In (14), di,j can be calculated as

di,j = tj + c−1
∣∣∣∣∣∣∣∣(xi

yi

)
−
(
aj
bj

)∣∣∣∣∣∣∣∣
2

+Xσ2
, (15)

where ||·||2 is the Euclidean distance, c is the sound speed,
and Xσ2

is an additive white Gaussian noise with zero mean
and standard deviation σ2. More complex scenarios can also
be applied here. Let (a∗i , b

∗
i) denote the relative location of

source i to node n. Thus, the matrix of relative device location
is calculated as

X∗ =

x∗1 y∗1
x∗2 y∗2
...

...
x∗N y∗N

 =

x1 − xn y1 − yn
x2 − xn y2 − yn

...
...

xN − xn yN − yn

. (16)

This relative arrival time is defined as

d∗i,j = tj + c−1

∣∣∣∣∣∣∣∣(x∗
i

y∗
i

)
−
(

a∗
j

b∗j

)∣∣∣∣∣∣∣∣
2

− tj − c−1

∣∣∣∣∣∣∣∣(a∗
j

b∗j

)∣∣∣∣∣∣∣∣
2

= c−1

{∣∣∣∣∣∣∣∣(x∗
i

y∗
i

)
−
(

a∗
j

b∗j

)∣∣∣∣∣∣∣∣
2

−
∣∣∣∣∣∣∣∣(a∗

j

b∗j

)∣∣∣∣∣∣∣∣
2

}
.

(17)

According to (14), the matrix of the arrival time is calcu-
lated as

D∗ =

d1,1 − dn1,1 d1,2 − dn2,2 · · · d1,M − dnM ,M

d2,1 − dn1,1 d2,2 − dn2,2 · · · d2,M − dnM ,M

...
...

. . .
...

dN,1 − dn1,1 dN,2 − dn2,2 · · · dN,M − dnM ,M

.
(18)

After getting the TDOA information, the sound source
localization problem is transformed into a least-squares for-
mulation, i.e., minimizing the quadratic difference between the
predicted relative measurements and the actual measurements.
The optimization problem is shown as follows

100 200 300 400 500 600

Distance (m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
ab

il
it

y
 o

f
g
u
n
sh

o
t

Figure 4. Effect of the distance in audio classification.

A∗ = argmin
A

N∑
i=1

M∑
j=1

{∣∣∣∣∣∣∣∣(x∗i
y∗i

)
−
(
a∗j
b∗j

)∣∣∣∣∣∣∣∣
2

−
∣∣∣∣∣∣∣∣(a∗j

b∗j

)∣∣∣∣∣∣∣∣
2

− d∗i,j
}2

.

(19)

This formulated optimization problem can be solved effi-
ciently by a sequential quadratic programming solver [22].
One of the performance metrics to evaluate the results of
localization is defined as the root mean square (RMS) error
between the predicted location and the real location. As TDOA
can find the location of an event in the intersection of all
hyperbolas, the noise deteriorates the situation where there
is no cross point among all curves. Thus, the area ratio of
deadzone, which is defined as the ratio of the number of points
that cannot be localized to the total number of points tested,
is also evaluated in Section V.

C. Cooperative Processing

As shown in Fig. 4, the classification accuracy is affected
by the distance between the sound source and the acoustic
device. The performance of the classifier depends on the
sound pressure level of the audio that is used for training.
In Fig. 4, the reference distance of the trained instances is
250 m. Thus, the audio aggregated from different location
results in a variety of classification performance. Therefore,
the scenario of sound event detection forms a multi-classifier
system. The individual devices can be considered as weak
learners with bias. The edge server can be considered as an
aggregate learner that makes a decision based on these weak
learners. The observations aggregated from the devices do not
equally contribute to the final classification result. We now
consider how to combine the results of these multiple devices
into a strong classifier that is superior to any of the individual
devices.

Ensemble learning merges multiple learners to obtain a
more accurate prediction than any individual learner alone.
Majority voting in bootstrap aggregating, a typical algorithm
in ensemble learning, makes final decisions following the
consensus of more than half of the classifiers, which means

Algorithm 1 Ensemble-based cooperation algorithm
1: Predict the labels of a sound event instance m aggregated

from each end device and record the confidence of the
predicted class p, i.e., (20) and vn,p.

2: Calculate the total vote for each predicted class V (p) =∑N
n=1 vn,p.

3: if maxC ′(m, p) > ε OR V (p) >= N/2 then
4: Class p is added to the final decision.
5: else
6: Class p is not considered in the final decision.
7: end if

a high confidence in the final result. Only the classification
results that receive a majority are added to the final decision.
Otherwise, the results are not considered in the decision-
making.

Let C(m, p) denote the set of the probabilities of a certain
sound event instance m predicted as the sound event p by N
end devices, which is

C(m, p) = {h1(m, p), h2(m, p), . . . , hN (m, p)}. (20)

Moreover, a binary variable vn,p is introduced to indicate
whether the device n predicts class p (vn,p = 1) or not
(vn,p = 0).

The ensemble-based cooperation (EC) algorithm that makes
the final decision based on the aggregated information is
illustrated in Algorithm 1. The edge server is naturally a
collector, processing the data with high computation capability
and aggregating each result without increasing the network
traffic among the end devices. After processing the data,
the edge server combines the individual decisions through
a majority vote. Intuitively, the prediction result is credible
if most of the devices classify the sound. Moreover, if some
classifiers have the confidence of an event higher than a certain
threshold ε, the prediction will also be immediately added to
the final decision. In comparison with EC, in local execution,
if the confidence of a certain sound event exceeds the threshold
ε, the event will be confirmed and added to the final decision.

V. PERFORMANCE EVALUATION

The implementation of sound event detection with the
support of edge computing is presented in this section.

A. Setup

Acoustic end devices are deployed in a grid, which is
illustrated in Fig. 5. The neural networks are implemented
on the basis of Tensorflow. The hardware used for the
experiments features a 2.9 GHz Intel Core i5 processor and
8 GB of memory. The path loss model PLn of the end
devices is 127 + 30 ∗ log10(dn/1000) [23]. The parameters
are summarized in Table I. In the default setting, the number
of devices N = 9, the computation capability ratio µ = λ = 8
and the threshold ε = 0.3.

A series of gunshot audio consisting of speech and fusillade
fetched from the Google Audioset is tested. In the experi-
ments, local execution (Local), edge computing (Edge) and

0 100 200 300 400 500

X (m)

0

100

200

300

400

500

Y
 (

m
)

 End devices

 Edge server

Figure 5. Grid deployment.

Table I
SYSTEM PARAMETERS IN THE SIMULATION

Parameter Value Parameter Value
Area 500 m×500 m r 100 m
W 20 MHz D 3840 kbit
PTX 23 dBm N0 -174 dBm
1/η 4.28 [24] σ1 3.6
σ2 1 γI [2, 10] Mbps

cloud computing (Cloud) are conducted for a fair performance
comparison. In Local, each device will first classify the sound
event individually and then communicate with other devices
to finalize the sound event and localize the sound source. In
Edge, the data gathered by the device will be sent to the edge
server for classification and localization. In Cloud, the sink
BS will send the data to the cloud. Considering the dynamic
network condition, the transmission rate in the core network
is randomly selected between 2 and 10 Mbps [25].

B. Impact of the Number of Devices

The effect of the number of devices on the response time
is shown in Fig. 6(a). The device can execute the task
independently where the processing time dominates. However,
the response time of local execution, which depends on the
computation capability of the distributed devices, substantially
remains constant and maintains some fluctuation due to
the dynamic CPU allocation. The more devices deployed
in the grid area, the more data generated by all devices,
which indicates that the edge server may receive and process
more requests. Thus, the response time for task offloading
increases with the number of devices due to the increased
workload. The impact is more obvious in Cloud where the
bottleneck is the data traffic in the core network. In the default
setting, the performance of Edge is improved by 64% when
compared with Local. To some extent, the response time of
task offloading may experience a sharp deterioration with a
large number of devices, which is affected by the computation
capability ratio between the server and the end device.

Fig. 6(b) presents the effect of the number of devices
on the classification accuracy. A small number of devices
cannot cover the detection area well and thus lead to a low
classification accuracy. With more devices participating in
detecting and classifying the sound event, the classification
accuracy increases with a better coverage of the spot of the

4 9 16 25 36

of devices

0

1

2

3

4

5

R
es

p
o

n
se

 t
im

e
(s

)
 Local

 Edge

 Cloud

(a) Response time

4 9 16 25 36

of devices

0

0.2

0.4

0.6

0.8

1

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

 w/o EC

 with EC

(b) Classification accuracy.

4 9 16 25 36

of devices

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

A
v

g
.

lo
ca

li
za

ti
o

n
 e

rr
o

r
(m

)

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

D
ea

d
zo

n
e

Avg. localization error

Deadzone

(c) Localization performance.

Figure 6. Impact of the number of devices.

4 6 8 10 12

Computation capability ratio

0

1

2

3

4

R
es

p
o

n
se

 t
im

e
(s

)

 Local

 Edge
 Cloud

Figure 7. Impact of the computation capability ratio on the response time.

accident. With the support of the edge server which can easily
aggregate and integrate all information, the classification
accuracy is higher in EC because the vast majority of the
devices can reach a consensus even with a low confidence.
In the default setting, the classification accuracy is increased
by 48 % with EC. It is worth noting that there exists a trade-
off between the response time and the classification accuracy
where the increase of the devices will not only improve the
classification performance but also lead to a severe latency.

Moreover, as shown in Fig. 6(c), the effect of the number of
devices on the localization performance is also studied. With
the increasing number of devices, the location error is reduced
as more location information is provided by the devices. It
drops slower when a large number of devices are involved.
Deadzone ratio first declines as more devices can cover the
area better and thus narrow down the deadzone. However, it
then faces a consistent growth. Although more devices provide
more information for localization, much more measurement
noise will make it unsolvable for the optimization problem to
find the sound source location.

C. Impact of the Computation Ratio

Fig. 7 shows the effect of the computation ratio λ and µ.
Here, we set µ = λ. With the increase of the computation
ratio, the total response time of task offloading continually
drops. Edge outperforms Cloud even though the data process-
ing speed of Cloud is much higher than Edge. The bottleneck
of Cloud is the data transmission in the core network, which
dominates the total response time. In the default setting, when

0.1 0.2 0.3 0.4 0.5

Threshold

0

0.2

0.4

0.6

0.8

1

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

 w/o EC

 with EC

Figure 8. Impact of the threshold ε on the classification accuracy.

compared with Local and Cloud, the response time in Edge is
reduced by 68% and 26%, respectively.

D. Impact of the Threshold ε

The impact of the threshold ε is illustrated in Fig. 8.
Intuitively, the confidence of the predicted event is affected
by the trained model. By maintaining the same classification
model, a lower threshold allows the devices output the results
with low confidence. Without EC, a large ε sets a high
threshold to determine whether the predicted event should be
added to the final decision. This leads to a lower accuracy
because the predicted results are not considered. However, in
EC, the final decision not only depends on the confidence of
the results predicted by individual information gathered from
the devices, but also makes an ensemble based on the majority
vote. If most of the evidence shows the existence of an event,
an agreement will be made and reported the abnormal event.
Using the same trained model, the classification accuracy
increases almost tenfold with ε equal to 0.4.

E. Impact of the Device Deployment

Besides the grid deployment, other device deployment
scenarios are also studied in the performance evaluation. An
example is shown in Fig. 9 where devices are randomly
deployed in the area and the edge server also stays in the
center. As shown in Table II, four performance metrics are
evaluated in both the grid and random deployment, i.e.,
response time with the support of edge server (RT), the
classification accuracy with EC (CA), localization error (LE)

0 100 200 300 400 500

X (m)

0

100

200

300

400

500

Y
 (

m
)

 End devices

 Edge server

Figure 9. Random deployment.

Table II
IMPACT OF THE DEVICE DEPLOYMENT SCENARIO

Values RT CA LE DZ
Grid 0.752 s 69 % 2.34 m 18 %

Random 1.182 s 71 % 3.12 m 24 %

and the area ratio of deadzone (DZ). For a fair comparison,
the topology of devices in random deployment will be updated
in each iteration and the performance values are obtained by
taking the average of 1,000 runs.

The response time in random deployment is higher than
that in grid deployment because of the asymmetric locations
of the devices. Some devices that are far from the edge server
need a high communication cost to connect to the edge server.
The classification performance is almost the same in these
two deployments as they both make an ensemble on all the
information aggregated from the end devices. Considering
the performance of localization, random deployment performs
worse than the grid deployment, as it cannot guarantee
to cover the area well if the sound events are uniformly
generated. Thus, both localization error and the area ratio of
deadzone increase in the random deployment.

VI. CONCLUSION AND FUTURE WORK

In this paper, an edge-assisted sound event detection frame-
work is proposed to classify and localize the abnormal sound
in city surveillance. Edge computing leverages the superiority
in computation and communication, providing fast response
to delay-sensitive, computation-intensive audio processing
tasks. An ensemble-based cooperative processing algorithm is
introduced to improve the classification accuracy at the edge
server which aggregates the information from multiple end
devices. Experiments show that the response time of executing
a task is reduced with the involvement of edge computing. The
accuracy of sound event detection is improved by combining
with multiple observations of the sound signal.

In the future work, we plan to adopt a more realistic
sound propagation model in a complex acoustic scenario. The
distance-weighted differentiation can also be used in the post-
processing at the edge.

ACKNOWLEDGMENT

This work is supported in part by NSERC, CFI and BCKDF.

REFERENCES

[1] “Gun violence archive,” http://www.gunviolencearchive.org/past-tolls.
[2] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet

of things realize its potential,” Computer, vol. 49, no. 8, pp. 112–116,
2016.

[3] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile
deep learning framework for edge video analytics,” in Proc. of IEEE
INFOCOM, 2018.

[4] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and
B. Koldehofe, “Mobile fog: A programming model for large-scale
applications on the internet of things,” in Proc. of ACM SIGCOMM
workshop on Mobile cloud computing, 2013, pp. 15–20.

[5] B. Logan, “Mel frequency cepstral coefficients for music modeling.” in
Proc. of ISMIR, vol. 270, 2000, pp. 1–11.

[6] G. Guo and S. Z. Li, “Content-based audio classification and retrieval
by support vector machines,” IEEE Transactions on Neural Networks,
vol. 14, no. 1, pp. 209–215, 2003.

[7] C. Clavel, T. Ehrette, and G. Richard, “Events detection for an audio-
based surveillance system,” in Proc. of IEEE ICME, 2005, pp. 1306–
1309.

[8] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Context-dependent
sound event detection,” EURASIP Journal on Audio, Speech, and Music
Processing, vol. 2013, no. 1, pp. 1–13, 2013.

[9] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Polyphonic sound
event detection using multi label deep neural networks,” in Proc. of
IEEE IJCNN, 2015, pp. 1–7.

[10] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney,
R. J. Weiss, and K. Wilson, “CNN architectures for large-scale audio
classification,” in Proc. of IEEE ICASSP, 2017, pp. 131–135.

[11] Y. Xu, Q. Kong, Q. Huang, W. Wang, and M. D. Plumbley,
“Convolutional gated recurrent neural network incorporating spatial
features for audio tagging,” in Proc. of IJCNN, 2017, pp. 3461–3466.

[12] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn,
and K. R. Walker, “Agile application-aware adaptation for mobility,” in
Proc. of ACM SIGOPS, vol. 31, no. 5, 1997, pp. 276–287.

[13] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and
M. Satyanarayanan, “Quantifying the impact of edge computing on
mobile applications,” in Proc. of ACM SIGOPS, 2016, pp. 1–8.

[14] D. Wang, Y. Peng, X. Ma, W. Ding, H. Jiang, F. Chen, and
J. Liu, “Adaptive wireless video streaming based on edge computing:
Opportunities and approaches,” IEEE Transactions on Services
Computing, 2018.

[15] L. Tang and S. He, “Multi-user computation offloading in mobile edge
computing: A behavioral perspective,” IEEE Network, vol. 32, no. 1,
pp. 48–53, 2018.

[16] A. Goldsmith, Wireless Communications. Cambridge University Press,
2005.

[17] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia cloud computing,”
IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 59–69, 2011.

[18] K. Liu, J. Peng, H. Li, X. Zhang, and W. Liu, “Multi-device task
offloading with time-constraints for energy efficiency in mobile cloud
computing,” Future Generation Computer Systems, vol. 64, pp. 1–14,
2016.

[19] “AudioSet download,” https://research.google.com/audioset/download.
html.

[20] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,
B. Varadarajan, and S. Vijayanarasimhan, “Youtube-8M: A large-
scale video classification benchmark,” arXiv preprint arXiv:1609.08675,
2016.

[21] S. Thrun, “Affine structure from sound,” in Proc. of NIPS, 2006, pp.
1353–1360.

[22] K. Yu and Y. J. Guo, “Improved positioning algorithms for nonline-
of-sight environments,” IEEE Transactions on Vehicular Technology,
vol. 57, no. 4, pp. 2342–2353, 2008.

[23] C. Niu, Y. Li, R. Q. Hu, and F. Ye, “Fast and efficient radio
resource allocation in dynamic ultra-dense heterogeneous networks,”
IEEE Access, vol. 5, pp. 1911–1924, 2017.

[24] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia cloud computing,”
IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 59–69, 2011.

[25] E. Dimogerontakis, R. Meseguer, and L. Navarro, “Internet access
for all: Assessing a crowdsourced web proxy service in a community
network,” in Proc. of ACM PAM, 2017, pp. 72–84.

