Learning-based Cooperative Sound Event Detection with Edge Computing

Jingrong Wang ${ }^{\dagger}$, Kaiyang Liu ${ }^{* *}$, George Tzanetakis ${ }^{\dagger}$, Jianping Pan ${ }^{\dagger}$
tDepartment of Computer Science, University of Victoria,Victoria, Canada
*School of Information Science and Engineering, Central South University, Changsha, China
Email: \{jingrongwang, liukaiyang, pan\}@uvic.ca, gtzan@cs.uvic.ca

Problem and Motivation

- Gunshot violence increasing...
- 6,000+ reported last year in US but 80% more unreported
- Slow response time: about 10 minutes since incoming 911 calls
- Lives and evidence lost
- New services, e.g., ShotSpotter
- Sensors installed in certain places
- Audio clips sent to cloud for ID
- 90% identified in about I minute
- Cost and scalability problem

How to identify a sound event?

- First, extract the audio features

"Short-Time Fourier Transform" + "Log-Mel Spectrogram"

Then classification based on extracted features

E.g., Deep Bag-of-Frames learning-based approach [I]

Randomly
choose I28 \rightarrow batches as audio features

NVIDIA GTX 970 4GB:"4h+" + "300MB+"

Challenges

- Delay-sensitive + computation-intensive
- Front-end devices \rightarrow limited computation capabilities [2]
- Cloud \rightarrow high communication latencies [3]
- Communication among devices, or through an access point

- Edge computing

- Enhances and extends the cloud services at the edge of the network
- Deploys computation capacity closer to where the data is captured
- Breakdown between devices, edge and cloud?

Edge computing system setup

Why multiple acoustic sensors?

- Localization by triangulation
- Classification accuracy is affected by:
- Training data (Google Audioset)
- Learning algorithm (DBof)
- Distance
- Near field
-Reverberant field
- Joint localization and classification needed

Localization

- Least-squares formulation
- Time difference of arrival (TDOA)
- Minimize the quadratic difference between the predicted and the actual value

$$
A^{*}=\underset{A}{\arg \min } \sum_{i=1}^{N} \sum_{j=1}^{M}\left\{\left\|\binom{x_{i}^{*}}{y_{i}^{*}}-\binom{a_{j}^{*}}{b_{j}^{*}}\right\|_{2}-\left\|\binom{a_{j}^{*}}{b_{j}^{*}}\right\|_{2}-D_{i, j}^{*}\right\}^{2}
$$

- Deadzone
- Hyperbolas + measurement noise

- End devices
- Deadzone

Aggregated classifier

- Merge multiple learners to obtain a more accurate prediction than any individual learner alone
- Ensemble learning \rightarrow Majority vote

Performance evaluation: Scenario and metrics

Fig. I Grid deployment

Parameter	Value	Parameter	Value
Area	$500 \mathrm{~m} \times 500 \mathrm{~m}$	r	100 m
W	20 MHz	D	3840 kbit
P^{TX}	23 dBm	N_{0}	-174 dBm
$1 / \eta$	$4.28[24]$	σ_{1}	3.6
σ_{2}	1	γ^{l}	$[2,10] \mathrm{Mbps}$

Tab. I System parameters

Fig. 2 Random deployment

- Metrics
-Response time (RT)
-Classification accuracy (CA)
-Localization error (LE)
-Dead zone ratio (DZ)

Performance evaluation - Response time

Fig. 3 Response time

Performance evaluation - Classification accuracy

Fig. 4 Classification accuracy

Performance evaluation - Localization \& random deployment

Fig. 5 Localization performance

Tab. 2 Impact of deployment

Conclusion and future work

-Edge-assisted sound event detection framework

- Computation capacity at the edge of the network
- Ensemble-based cooperative processing
- Aggregates information for a more accurate result
- Future work
- Realistic sound propagation model + complex acoustic scenario
- Distance-weighted differentiation

Q\&A

Thanks!

Wireless communication model

- Path loss model

$$
P L_{n}=P L\left(d_{0}\right)+10 \theta \log \left(\frac{d_{n}}{d_{0}}\right)
$$

$-d_{n}($ in m$)>d_{0}$ is the distance between the base station and device n
$-\theta$ is the path loss exponent
$-d_{0}$ is the reference distance for the antenna far-field propagation effect

- Received signal strength

$$
P_{n}=P^{\mathrm{TX}}-P L_{n}-X_{\sigma_{1}}
$$

$-P^{\mathrm{TX}}$ (in dBm) is the transmitted power of device n
$-X_{\sigma_{1}}$ denotes the shadowing fading (in dB) subject to the Gaussian distribution with zero mean and standard deviation σ_{1}

- Maximum uplink transmission rate

$$
r_{n}^{\mathrm{TX}}=W \log _{2}\left(1+\frac{10^{P_{n} / 10}}{I_{n}+N_{0}}\right)
$$

- W is the channel bandwidth, N_{0} (in mW) is the noise power
- I_{n} (in mW) is the interference signal from other devices

