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Problem and Motivation

* Gunshot violence increasing...

— 6,000+ reported last year in US
but 80% more unreported

— Slow response time: about 10
minutes since incoming 91| calls

— Lives and evidence lost

*New services, e.g., ShotSpotter

. . . tati
— Sensors installed in certain places  *
—Audio CIiPS sent to CIOUd for' |D il When a shot is fired, the 2 Pplicg repeive GPS data
sound is picked up by pinpointing the location of
o/ : L : . sensors in the monitored gunfire, typically within SOURCES:
— 90% identified in about | minute area that triangulate the 10 feet, and an audio T

origin of the noise. recording of the sounds. Newspapers

— Cost and scalability problem




How to identify a sound event?

* First, extract the audio features
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“Short-Time Fourier Transform” + “Log-Mel Spectrogram”




Then classification based on extracted features

E.g., Deep Bag-of-Frames learning-based approach [1]
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[17 S. Abu-El-Haija, N. Kothari, . Lee, P. Natsev, G. Toderici, B. Varadarajan, and S. Vijayanarasimhan, “Youtube-8M: A large- scale
video classification benchmark,” arXiv preprint arXiv:1609.08675, 2016.




Challenges

* Delay-sensitive + computation-intensive
— Front-end devices — limited computation capabilities [2]
— Cloud — high communication latencies [3]

— Communication among devices, or through an access point

* Edge computing
— Enhances and extends the cloud services at the edge of the network
— Deploys computation capacity closer to where the data is captured

— Breakdown between devices, edge and cloud?

[2] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile deep learning framework for edge video analytics,” in
Proc. of IEEE INFOCOM, 2018.

[3] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwa'lder, and B. Koldehofe, “Mobile fog: A programming model for large-scale
applications on the internet of things,” in Proc. of ACM SIGCOMM workshop on Mobile cloud computing, 2013, pp. 15-20.




Edge computing system setup
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Why multiple acoustic sensors!?

* Localization by triangulation
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L ocalization

* Least-squares formulation
— Time difference of arrival (TDOA)

— Minimize the quadratic difference between the predicted and the actual value
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Aggregated classifier

* Merge multiple learners to obtain a more accurate prediction than
any individual learner alone

— Ensemble learning — Majority vote

Algorithm 1 EC algorithm
1: Predict the labels of a sound event instance m aggregated
from each end device and record the confidence of the
predicted class p, that is, (21) and v, ;.
2: Calculate the total vote for each predicted class V (p) =
ZN:1 Un.p-
if [max C’(m,p) > ¢ |OR |V (p) >= N/2 |then
Class p 1$ added to the final degision.
else
Class p i1$ not considered in the|final decision.

end if
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Performance evaluation: Scenario and metrics
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Performance evaluation — Response time
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Performance evaluation — Classification accuracy
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Fig. 4 Classification accuracy




Performance evaluation — Localization & random deployment
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Conclusion and future work

* Edge-assisted sound event detection framework

— Computation capacity at the edge of the network

 Ensemble-based cooperative processing
— Aggregates information for a more accurate result

e Future work

— Reallistic sound propagation model + complex acoustic scenario
— Distance-weighted differentiation
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Wireless communication model

* Path loss model

d
PL, = PL(d,) + 108log (d—")
0
— d,, (in m) > d, is the distance between the base station and device n

— 0 is the path loss exponent

— d, is the reference distance for the antenna far-field propagation effect
* Received signal strength
— pTX

— P™ (in dBm) is the transmitted power of device n

— X5, denotes the shadowing fading (in dB) subject to the Gaussian distribution with zero
mean and standard deviation g,

* Maximum uplink transmission rate

OPn/10
X = Wlog,(1 + ———)
— W is the channel bandwidth, N, (in mW) is the noise power
— I, (in mW) is the interference signal from other devices




